紫荆种子吸胀和层积过程中不同相态水分变化的核磁共振检测

宫楠, 祖鑫, 解志军, 朱长红, 李淑娴

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6) : 42-50.

PDF(2116 KB)
PDF(2116 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6) : 42-50. DOI: 10.12302/j.issn.1000-2006.202301023
专题报道Ⅰ:“攥紧中国种子”视域下的中国林草种业研究专题Ⅱ(执行主编 施季森 李维林)

紫荆种子吸胀和层积过程中不同相态水分变化的核磁共振检测

作者信息 +

A low-field nuclear magnetic resonance detection of moisture changes in different water phases during the imbibition and stratification process of Cercis chinensis seeds

Author information +
文章历史 +

摘要

【目的】应用低场核磁共振技术揭示紫荆(Cercis chinensis)种子吸胀和层积过程中水分相态的变化,再结合层积过程中营养物质含量的变化,分析各相态水分在其中的作用,揭示紫荆种子萌发过程中的物质基础和生理状态。【方法】对80 ℃热水处理解除硬实后的紫荆种子,用称重法确定其吸水曲线。随机选取一部分紫荆种子经低温层积处理解除其生理休眠,测定不同层积阶段紫荆种子的发芽率和营养物质含量,同时采用低场核磁共振技术测定吸胀和层积过程水分相态及含量的动态变化。【结果】①80 ℃热水浸种5 min后再进行60 d低温层积可以有效提高紫荆种子的发芽率。②紫荆种子的吸水曲线呈“ S”形变化,(0,9] h为快速吸水阶段,(9,24] h吸水速率逐渐减慢,24 h后进入平衡吸水期。③核磁共振波谱图表明,紫荆种子水分质量(x)与核磁共振弛豫图谱峰面积(y)呈显著线性关系:y = 164 604.7 x + 4 962.3,决定系数R2 = 0.999 6。④根据核磁共振T2弛豫谱将紫荆种子吸胀过程中水分相态分为束缚水(T2a)、自由水(T2b)和刚进入种子的水分(T2c)3种。⑤紫荆种子吸水0~3 h过程中T2a含量持续下降,T2b含量大幅度增加;3 h后出现了T2c,此后仅存在T2b和T2c,两者含量均呈增加趋势,峰顶点右移,水分流动性增强。层积过程中T2b和T2c峰顶点向右偏移,峰面积和峰比例波动变化,总的来说向水分流动性增强的趋势发展。⑥紫荆种子层积过程中,淀粉含量持续下降,可溶性糖含量呈上升态势,可溶性蛋白含量呈先上升后下降的变化趋势。【结论】紫荆种子吸水层积过程中,水分的流动性增强。吸胀过程紫荆种子中出现过T2a、T2b和T2c 3种相态的水分,层积过程仅出现过T2b和T2c两种水分,且淀粉、可溶性糖和可溶性蛋白等营养物质含量的变化与T2b含量的变化趋势大体相同。各相态水分的波动变化为紫荆种子萌发提供适宜的水分环境,其中层积过程T2b的各种变化可能与其萌发密切相关。

Abstract

【Objective】Using low-field nuclear magnetic resonance (NMR) technology, changes in the water phase during the imbibition and stratification of Cercis chinensis seeds were detected nondestructively. Combined with the nutrient content changes during stratification, the role of each water phase was analyzed to reveal the material base and physiological conditions during the germination of C. chinensis seeds. 【Method】After being treated with hot water at 80 ℃, the hardness of C. chinensis seeds was removed and its water absorption curve was calculated by the gravimetric method. Cold stratification was applied to break the physiological dormancy of C. chinensis seeds by random selection. The germination percentage and nutrient content of seeds were determined during different stratification periods. Low-field NMR was employed to investigate the dynamic transitions of the water phase and water content during imbibition and stratification. 【Result】(1)Hot water immersion at 80 ℃ for 5 min followed by 60 days of cold stratification effectively improved the germination rate of C. chinensis seeds. (2)The water absorption curve of C. chinensis seeds exhibited an “S” type variation and from 0 h to 9 h was the rapid water absorption stage. At from 9 h to 24 h, seed water absorption gradually slowed. Ultimately, the seeds entered a balanced water absorption stage after 24 h. (3)NMR spectra revealed that the water mass (x) of C. chinensis seeds and the peak areas of the NMR relaxation spectra (y) exhibited a significant linear relationship, according to the linear regression equation y = 164 604.7 x + 4 962.3, with a correlation coefficient R2 = 0.999 6. (4)NMR T2 relaxation spectra enabled division of the water phases during the imbibition process of C. chinensis seeds into three types: bound water T2a, free water T2b, and newly absorbed water T2c. (5)During the water absorption process from 0 to 3 h, the content of T2a decreased continuously, whereas T2b content increased dramatically. After 3 h, T2c appeared and T2a disappeared. Only T2b and T2c existed in the seeds; both showed an increasing trend, with the peak maximum moving to the right and water mobility being enhanced. Peaks T2b and T2c shifted to the right during stratification, with fluctuating changes in peak area and peak ratio, and in general showed a trend towards increased water mobility. (6)During the stratification process of C. chinensis seeds, the starch content continued to decrease, soluble sugar content increased, and soluble protein content showed an increasing trend, followed by a decreasing trend. 【Conclusion】Water mobility is enhanced during the absorption and the stratification of C. chinensis seeds. There are three types of water phases in the imbibition process of C. chinensis seeds: T2a, T2b and T2c. However, only T2b and T2c appear during stratification. The changes in the nutrient contents of starch, soluble sugars, and soluble proteins roughly follow the same trend as those in T2b content. The fluctuations in water in each phase provides a suitable water environment for C. chinensis seed germination, and the changes in T2b during the stratification process might be closely related to germination.

关键词

紫荆 / 吸胀 / 层积 / 核磁共振 / 水分相态 / 营养物质

Key words

Cercis chinensis / imbibition / stratification / low-field nuclear magnetic resonance / water phase / nutritive materials

引用本文

导出引用
宫楠, 祖鑫, 解志军, . 紫荆种子吸胀和层积过程中不同相态水分变化的核磁共振检测[J]. 南京林业大学学报(自然科学版). 2023, 47(6): 42-50 https://doi.org/10.12302/j.issn.1000-2006.202301023
GONG Nan, ZU Xin, XIE Zhijun, et al. A low-field nuclear magnetic resonance detection of moisture changes in different water phases during the imbibition and stratification process of Cercis chinensis seeds[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(6): 42-50 https://doi.org/10.12302/j.issn.1000-2006.202301023
中图分类号: S722.1   

参考文献

[1]
胡晋. 种子生物学[M]. 北京: 高等教育出版社, 2006.
HU J. Seed biology[M]. Beijing: Higher Education Press, 2006.
[2]
宋平. 基于低场核磁共振技术的水稻浸种过程种子水分检测研究[D]. 沈阳: 沈阳农业大学, 2016.
SONG P. Study of water contect detection in the rice seed soaking process based on low field NMR techniques[D]. Shenyang: Shenyang Agricultural University, 2016.
[3]
阮榕生. 核磁共振技术在食品和生物体系中的应用[M]. 北京: 中国轻工业出版社, 2009.
RUAN R S. Application of nuclear magnetic resonance technology in food and biological systems[M]. Beijing: China Light Industry Press, 2009.
[4]
ZHANG J S, LIN X Y, RUAN R S, et al. Mobility of water in binary system of bread and cheese as studied by magnetic resonance imaging[J]. J Food Sci, 2006, 37(11): 132-138. DOI:10.3321/j.issn:1002-6630.2006.11.026.
[5]
牟红梅, 何建强, 邢建军, 等. 小麦灌浆过程籽粒水分变化的核磁共振检测[J]. 农业工程学报, 2016, 32 (8): 98-104.
MOU H M, HE J Q, XING J J, et al. Water changes in wheat spike during grain filling stage investigated by nuclear magnetic resonance[J]. Trans Chin Soc Agric Eng, 2016, 32(8): 98-104. DOI: 10.11975/j.issn.1002-6819.2016.08.014.
[6]
付晓记, 唐爱清, 闵华, 等. 花生浸种过程中水分相态和水分迁移动态研究[J]. 中国油料作物学报, 2018, 40(4): 552-557.
FU X J, TANG A Q, MIN H, et al. Analysis on water phase state and transport in process of peanut seed soaking by using low-field nuclear magnetic resonance[J]. Chin J Oil Crop Sci, 2018, 40(4): 552-557. DOI: 10.7505/j.issn.1007-9084.2018.04.012.
[7]
LECHOWSKA K, KUBALA S, WOJTYLA L, et al. New insight on water status in germinating Brassica napus seeds in relation to priming-improved germination[J]. Int J Mol Sci, 2019, 20(3):540-564. DOI: 10.3390/ijms20030540.
[8]
BAI Y L, XIN M G, LIN R M, et al. Metabolomics and water migration analysis provides valuable insights into nutrient generation in Tartary buckwheat (Fagopyrum tataricum) seed germination[J]. Food Agric Immunol, 2022, 33(1): 692-708. DOI: 10.1080/09540105.2022.2117797.
[9]
李进宇, 赵爽, 王茂良, 等. 紫荆属(Cercis L.)种质资源情况及研究进展[J]. 西北林学院学报, 2021, 36(6): 145-152.
LI J Y, ZHAO S, WANG M L, et al. Germplasm resources and research progress of Cercis L[J]. J Northwest For Univ, 2021, 36(6): 145-152. DOI: 10.3969/j.issn.1001-7461.2021.06.21.
[10]
康四和, 邓海英. 湖北紫荆皮植物学及生药鉴定研究[J]. 时珍国医国药, 2010, 21(1): 185-187.
KANG S H, DENG H Y. Phytology and pharmacognostic identification of Hubei Zijinpi[J]. Lishizhen Med Mater Med Res, 2010, 21(1): 185-187. DOI: 10.3969/j.issn.1008-0805.2010.01.092.
[11]
王彦玲, 陆帅, 牛若琳. 紫荆的栽培技术及应用[J]. 陕西农业科学, 2010, 56(4): 233-234.
WANG Y L, LU S, NIU R L. Cultivation techniques and application of Cercis chinensis[J]. Shaanxi J Agric Sci, 2010, 56(4): 233-234. DOI: 10.3969/j.issn.0488-5368.2010.04.095.
[12]
周健. 紫荆种子休眠特性及其吸水机制研究[D]. 南京: 南京林业大学, 2016.
ZHOU J. The mechanism of water absorbing and dormancy in Cercis chinensis seeds[D]. Nanjing: Nanjing Forestry University, 2016.
[13]
宋平, 杨涛, 王成, 等. 利用低场核磁共振分析水稻种子浸泡过程中的水分变化[J]. 农业工程学报, 2015, 31(15): 279-284.
SONG P, YANG T, WANG C, et al. Analysis of moisture changes during rice seed soaking process using low-field NMR[J]. Trans Chin Soc Agric Eng, 2015, 31(15): 279-284. DOI: 10.11975/j.issn.1002-6819.2015.15.038.
[14]
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
LI H S. Principles and techniques of plant physiological and biochemical experiment[M]. Beijing: Higher Education Press, 2000.
[15]
刘潇, 沈飞, 黄怡, 等. 基于 LF-NMR 的糙米发芽过程水分状态变化[J]. 中国粮油学报, 2018, 33(4): 7-12.
LIU X, SHEN F, HUANG Y, et al. Moisture state change of brown rice during soaking and germination process by LF-NMR[J]. J Chin Cereals Oils Assoc, 2018, 33(4): 7-12. DOI: 10.3969/j.issn.1003-0174.2018.04.002.
[16]
杜恬恬, 代松, 钱滕, 等. 基于核磁共振技术的合欢种子吸水特性[J]. 林业科学, 2022, 58(4): 22-31.
DU T T, DAI S, QIAN T, et al. Water absorption characteristics of Albizzia julibrissin seeds by nuclear magnetic resonance technique[J]. Sci Silvae Sin, 2022, 58(4): 22-31. DOI: 10.11707/j.1001-7488.20220403.
[17]
袁鸣, 朱铭玮, 侯静, 等. 利用低场核磁共振技术检测刺槐种子吸水过程水分的变化[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 135-142.
YUAN M, ZHU M W, HOU J, et al. Changes of water content in Robinia pseudoacacia seeds during imbibition by a low nuclear magnetic resonance[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(2):135-142. DOI: 10.12302/j.issn.1000-2006.202103018.
[18]
TROUTMAN M Y, MASTIKHIN I V, BALCOM B J, et al. Moisture migration in soft-panned confections during engrossing and aging as observed by magnetic resonance imaging[J]. J Food Eng, 2001, 48(3): 257-267. DOI: 10.1016/S0260-8774(00)00167-9.
[19]
彭宇飞. 基于核磁共振技术玉米种子萌发过程水分分布与变化研究[D]. 沈阳: 沈阳农业大学, 2018.
PENG Y F. Study on water distribution and change of maize seed during germination based on NMR[D]. Shenyang: Shenyang Agricultural University, 2018.
[20]
杨鹏, 陆兰芳, 王展, 等. 基于低场核磁共振技术监测谷子萌发过程中内部水分变化[J]. 食品工业科技, 2020, 41(14): 65-68, 74.
YANG P, LU L F, WANG Z, et al. Change in internal water of millet during soaking and germination based on LF-NMR technology[J]. Sci Technol Food Ind, 2020, 41 (14): 65-68,74. DOI: 10.13386/j.issn1002-0306.2020.14.011.
[21]
宋平, 彭宇飞, 王桂红, 等. 玉米种子萌发过程内部水分流动规律的低场核磁共振检测[J]. 农业工程学报, 2018, 34 (10): 274-281.
SONG P, PENG Y F, WANG G H, et al. Detection of internal water flow in germinating corn seeds based on low field nuclear magnetic resonance[J]. Trans Chin Soc Agric Eng, 2018, 34(10): 274-281. DOI: 10.11975/j.issn.1002-6819.2018.10.035.
[22]
潘瑞炽. 植物生理学[M]. 7版. 北京: 高等教育出版社, 2012.
PAN R C. Plant physiology[M]. 7th ed. Beijing: Higher Education Press, 2012.

脚注

基金

国家自然科学基金项目(31901331)
江苏高校优势学科建设工程资助项目(PAPD)

编辑: 李燕文
PDF(2116 KB)

Accesses

Citation

Detail

段落导航
相关文章

/