南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (4): 271-278.doi: 10.12302/j.issn.1000-2006.202301025
收稿日期:
2023-01-29
修回日期:
2023-05-29
出版日期:
2024-07-30
发布日期:
2024-08-05
作者简介:
张青萍(qpzh@njfu.edu.cn),教授。
基金资助:
Received:
2023-01-29
Revised:
2023-05-29
Online:
2024-07-30
Published:
2024-08-05
摘要:
【目的】江南园林假山是园林遗产的重要组分。植物根劈现象广泛存在于各遗产园林之中,严重威胁着假山遗产的长久保存与发展。作为假山安全与保护的影响因素,将植物根劈现象纳入假山预防性保护体系,能够为假山预防性保护体系的构建和完善进而有效开展园林遗产保护提供依据。【方法】以南京瞻园为例,对假山受植物根劈的作用机理进行量化分析,总结南京瞻园假山现状中的问题树种,提出并验证了5个与植物根劈作用显著相关的植物变量,建立了有关植物根劈的裂缝面积回归预测模型。【结果】通过分析植物根劈现象的现状特征,认为直根系、深根系树种更容易导致假山裂缝问题,南京瞻园的此类树种中,朴树、女贞的根劈作用对假山的影响最为显著,枇杷、龙爪槐、广玉兰、木瓜的根劈作用次之。通过相关性分析发现,裂隙内根长、根径、植物冠幅、树高、基径是根劈作用的5种主要影响因子,与根劈作用产生的裂缝面积显著相关。其中,裂隙内根长、裂隙内根径与产生的裂隙面积呈正相关。通过多元回归性分析,初步构建假山裂缝面积预测模型,并设置相应的假山裂缝变化预警阈值,认为裂隙内根径不变而根长变化值超过11.25 cm时,即应考虑抑制单条根系的发育。【结论】植物根劈作用加剧了假山石体表面裂隙的发育和扩展,甚至有可能导致石体的断裂和山体的崩塌,严重威胁着假山遗产的长久保存与发展。根据量化分析的结果进一步筛选环境变量,划分监测等级并明确预警指标,可以提高假山遗产保护的预知能力和定量判断能力,达到及时预防、削弱植物根劈作用力并完善假山预防性保护体系的目的,为古典园林假山遗产的预防性保护工作提供参考。
中图分类号:
张青萍,陈凤仪. 植物根劈作用对江南园林假山遗产的影响——以南京瞻园为例[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 271-278.
ZHANG Qingping, CHEN Fengyi. The influence of plant root splitting on garden rockeries in Jiangnan: taking the Zhanyuan Garden as an example[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(4): 271-278.DOI: 10.12302/j.issn.1000-2006.202301025.
图1
根劈作用的3个主要阶段 a.根劈作用第1阶段,裂隙仍在发育the first stage of root cleavage, and cracks are still developing;b.根劈作用第2阶段,裂隙进一步扩展the second stage of root cleavage, and the fissure expands further;c.根劈作用第3阶段,石体最终因根系发育而断裂the third stage of root splitting, and the stone body eventually breaks due to root development。绿色所示部分即为根系,红色所示部分即为石体裂隙。The roots are shaded in green,the red shadow is the stone fissure."
表1
不同乔木引发的缝隙数量与石体缝隙现状"
植物 plant species | 根系形态 root morphology | 裂隙数 fracture number | 占总裂隙 数比/ % ratio | 裂缝特征fracture characteristics | ||||||
---|---|---|---|---|---|---|---|---|---|---|
平均长度/ cm average length | 平均宽度/ cm average width | 平均最宽/ cm mean widest | 总面积/ cm2 gross area | 占总面积比/ % ratio | 平均面积/ cm2 mean area | |||||
木瓜Chaenomeles sinensis | — | 1 | 3.23 | 9.67 | 0.22 | 0.22 | 2.19 | 0.57 | 2.19 | |
朴树Celtis julianae | 深根 | 10 | 32.26 | 29.29 | 0.80 | 1.67 | 225.35 | 58.28 | 22.54 | |
广玉兰Magnolia grandis | 深根 | 3 | 9.68 | 15.85 | 0.44 | 0.88 | 14.89 | 3.85 | 4.96 | |
枇杷Eriobotrya japonica | 深根 | 5 | 16.13 | 13.97 | 0.58 | 1.02 | 34.68 | 8.97 | 6.94 | |
女贞Ligustrum lucidum | 深根 | 10 | 32.26 | 20.69 | 0.69 | 0.98 | 96.43 | 24.94 | 9.64 | |
龙爪槐Sophora japonica var.japonica f.pendula | 深根 | 2 | 6.45 | 19.15 | 0.33 | 0.75 | 13.14 | 3.40 | 7.57 |
表2
调查植株的基本参数范围"
类别 category | 参数 parameter | 样本数 samples | 最小值 min | 最大值 max | 平均值±标准差 mean ± SD | |
---|---|---|---|---|---|---|
单条裂缝 single crack | 裂隙内根径/cm inner root diameter of fissure | 38 | 0.348 | 6.207 | 1.337 | ±1.236 |
裂隙内根长/cm the inner root length of the fissure | 4.127 | 62.441 | 20.165 | ±13.085 | ||
裂隙与植株种植点距离/cm distance between fissure and plant planting point | 2.000 | 180.000 | 59.194 | ±57.464 | ||
单株乔木 single tree | 胸径/cm DBH | 10 | 52.000 | 223.000 | 124.300 | ±58.735 |
基径/cm arbor base path | 58.000 | 315.000 | 150.600 | ±76.674 | ||
树高/cm tree height | 400.000 | 1 860.000 | 883.000 | ±461.585 | ||
冠幅/cm crown width | 300.000 | 1 300.000 | 636.000 | ±300.905 |
表3
单条裂缝面积与乔木根系特征的相关性"
指标 parameter | 裂缝 面积 fracture area | 裂隙内 根长 inner root length of the fissure | 裂隙内 根径 inner root diameter of the fissure | 种植点与 裂隙距离 distance between fissure and plant planting point |
---|---|---|---|---|
裂缝面积 fracture area | 1 | |||
裂隙内根长 inner root length of the fissure | 0.792** | 1 | ||
裂隙内根径 inner root diameter of fissure | 0.499** | 0.449* | 1 | |
种植点与裂缝距离 distance between fissure and plant planting point | 0.305 | 0.458** | 0.014 | 1 |
表5
植物根劈作用产生裂缝面积预测模型的变量指标"
模型 model | 变量 variable | B | R2 Adjusted | DW | P | VIF |
---|---|---|---|---|---|---|
模型1 model 1 | 裂隙内根长 | 1.093 | 0.629 | 1.715 | 0 | 1.252 |
裂隙内根径 | 2.919 | 0.16 | 1.252 | |||
模型2 model 2 | 基径 | 0.457 | 0.493 | 1.984 | 0.391 | 8.488 |
树高 | -24.393 | 0.419 | 99.255 | |||
冠幅 | 40.773 | 0.318 | 74.811 | |||
模型2修正 adjusted model 2 | 基径 | 0.202 | 0.511 | 2.289 | 0.621 | 5.513 |
冠幅 | 9.507 | 0.372 | 5.513 |
[1] | 端木山. 江南私家园林假山研究:起源与形态[D]. 北京: 中央美术学院, 2011. |
DUANMU S. Research on rockery of private gardens in Jiangnan—origin and form[D]. Beijing: Central Academy of Fine Arts, 2011. | |
[2] | 徐亮, 李金宇. 石涛叠山作品的“人间孤本” 扬州片石山房:兼与曹汛先生商石涛寓扬期间造园史实[J]. 中国园林, 2014, 30(8):116-119. |
XU L, LI J Y. Yangzhou Pieces of Rock Hill Housing:the unique copy in the world of Shi Tao’s artificial rockwork and discussion with Mr.Cao Xun on historical facts about Shi Tao’s building a landscape garden in Yangzhou[J]. Chin Landsc Archit, 2014, 30(8):116-119. | |
[3] | 朱子墨. 江南私家园林假山路径量化研究:以瞻园北假山、艺圃主假山、怡园主假山为例[D]. 南京: 南京林业大学, 2020. |
ZHU Z M. Quantitative research on rockery paths of Jiangnan private garden[D]. Nanjing: Nanjing Forestry University, 2020. | |
[4] | (明)计成. 园冶注释[M]. 2版. 北京: 中国建筑工业出版社, 2020:37-45. |
[5] | 张莉. 苏州遗产园林植物造景现状与保护修复研究[D]. 苏州: 苏州大学, 2020. |
ZHANG L. Study on the current situation and protection and restoration of plant landscaping in Suzhou heritage garden[D]. Suzhou: Soochow University, 2020. | |
[6] | 樊维. 裂隙岩体植物根劈作用机理研究[D]. 重庆: 重庆交通大学, 2016. |
FAN W. The mechanism study of rock-broken process by root-growth of plant in fractured rock[D]. Chongqing: Chongqing Jiaotong University, 2016. | |
[7] | 张青萍, 董芊里, 傅力. 江南园林假山遗产预防性保护研究[J]. 建筑遗产, 2021(4):53-61. |
ZHANG Q P, DONG Q L, FU L. Preventive conservation research of heritage rockeries in Jiangnan private gardens[J]. Herit Archit, 2021(4):53-61.DOI: 10.19673/j.cnki.ha.2021.04.007. | |
[8] | 梅雯. 园林遗产监测预警体系研究:以苏州古典园林为例[D]. 杭州: 浙江农林大学, 2019. |
MEI W. Research on monitoring and early warning system of garden heritage[D]. Hangzhou: Zhejiang A & F University, 2019. | |
[9] | 程洪福, 胡伏原. 环秀山庄假山遗产监测探究[J]. 中国园林, 2021, 37(2):139-144. |
CHENG H F, HU F Y. Research on the heritage monitoring of the rockery in the mountain villa with embracing beauty[J]. Chin Landsc Archit, 2021, 37(2):139-144.DOI: 10.19775/j.cla.2021.02.0139. | |
[10] | 刘甜, 赵晓文, 刘建军, 等. 对大型土遗址的植物病害研究:以西安阿房宫遗址为例[J]. 文物保护与考古科学, 2019, 31(1):105-110. |
LIU T, ZHAO X W, LIU J J, et al. Plant-induced diseases at an earthen site,using the Epang Palace Site as an example[J]. Sci Conserv Archaeol, 2019, 31(1):105-110.DOI: 10.16334/j.cnki.cn31-1652/k.2019.01.014. | |
[11] | 赵晓文. 植物对土遗址裂隙的影响及其作用机理研究[D]. 杨凌: 西北农林科技大学, 2014. |
ZHAO X W. The influence on cracks and reaction mechanism of plants on the conservation of earthen sites[D]. Yangling: Northwest A & F University, 2014. | |
[12] | 赵晓进, 梁芝栋, 邵立杰, 等. SPSS软件非线性回归功能的分析与评价[J]. 统计与决策, 2021, 37(23):20-22. |
ZHAO X J, LIANG Z D, SHAO L J, et al. Analysis and evaluation on nonlinear regression function of SPSS software[J]. Stat Decis, 2021, 37(23):20-22.DOI: 10.13546/j.cnki.tjyjc.2021.23.004. | |
[13] | 王姝, 柴建设. 基于社会科学统计程序(SPSS)回归性分析的尾矿库事故预测模型[J]. 中国安全科学学报, 2008, 18(12):34-40,177. |
WANG S, CHAI J S. Accident prediction model for tailings reservoir based on regression analysis of SPSS[J]. China Saf Sci J (CSSJ),2008, 18(12):34-40,177.DOI: 10.16265/j.cnki.issn1003-3033.2008.12.005. | |
[14] | 查剑锐. 山东长清灵岩寺石质文物风化过程及保护材料研究[D]. 北京: 北京科技大学, 2021. |
ZHA J R. The weathering process and protection materials of stone relics in lingyan temple,Changqing,Shandong[D]. Beijing: University of Science and Technology Beijing, 2021. | |
[15] | 凌建明, 孙钧. 脆性岩石的细观裂纹损伤及其时效特征[J]. 岩石力学与工程学报, 1993, 12(4):304-312. |
LING J M, SUN J. On mesocrack damage of brittle rocks and its time-dependent characteristics[J]. Chin J Rock Mech Eng, 1993, 12(4):304-312.DOI: 10.1007/BF02943552. | |
[16] | 赵毅鑫, 刘斌, 杨志良, 等. 神东矿区不同赋存深度沉积岩抗拉强度与断裂韧度研究[J]. 煤炭学报, 2019, 44(6):1732-1741. |
ZHAO Y X, LIU B, YANG Z L, et al. Tensile strength and fracture toughness of sedimentary rocks at different buried depths in Shendong coal field[J]. J China Coal Soc, 2019, 44(6):1732-1741.DOI: 10.13225/j.cnki.jccs.2018.9031. | |
[17] | 凌建明, 孙钧. 应变空间表述的岩体损伤本构关系[J]. 同济大学学报(自然科学版), 1994, 22(2):135-140. |
LING J M, SUN J. A constitutive relation of rock mass expressed in strain space[J]. J Tongji Univ, 1994, 22(2):135-140. | |
[18] | 兰恒星, 吕洪涛, 包含, 等. 石窟寺岩体劣化机制与失稳机理研究进展[J]. 地球科学, 2022, 48(4):1603-1633. |
LAN H X, LÜ H T, BAO H, et al. Advances in degradation and instability mechanism of grotto temple rock mass[J]. Earth Sci, 2022, 48(4):1603-1633. DOI: 10.3799/dqkx.2022.307. | |
[19] | 汪东云, 付林森, 姚金石, 等. 北山石窟岩体风化现状及控制因素[J]. 重庆建筑工程学院学报, 1993, 15(1):81-86. |
WANG D Y, FU L S, YAO J S, et al. Present situation and controlling factors of rock weathering in Beishan Grottoes[J]. J Chongqing Archit Univ, 1993, 15(1):81-86. | |
[20] | 杨鸿锐, 刘平, 孙博, 等. 冻融循环对麦积山石窟砂砾岩微观结构损伤机制研究[J]. 岩石力学与工程学报, 2021, 40(3):545-555. |
YANG H R, LIU P, SUN B, et al. Study on damage mechanisms of the microstructure of sandy conglomerate at Maijishan grottoes under freeze-thaw cycles[J]. Chin J Rock Mech Eng, 2021, 40(3):545-555.DOI: 10.13722/j.cnki.jrme.2020.0767. | |
[21] | 王翀, 王明鹏, 白崇斌, 等. 陕西省露天石质文物藻类、地衣、苔藓调查[J]. 文物保护与考古科学, 2015, 27(4):76-82. |
WANG C, WANG M P, BAI C B, et al. Survey of algae,lichen and moss on outdoor stone cultural heritages in Shaanxi Province[J]. Sci Conserv Archaeol, 2015, 27(4):76-82.DOI: 10.16334/j.cnki.cn31-1652/k.2015.04.013. | |
[22] | 张永, 武发思, 苏敏, 等. 石质文物的生物风化及其防治研究进展[J]. 应用生态学报, 2019, 30(11):3980-3990. |
ZHANG Y, WU F S, SU M, et al. Research progress on the bioweathering and controlling of stone cultural relics[J]. Chin J Appl Ecol, 2019, 30(11):3980-3990.DOI: 10.13287/j.1001-9332.201911.034. | |
[23] | 张兵峰. 川渝石窟裂隙水病害机理研究:以大足石刻大佛湾卧佛区域为例[J]. 中国文化遗产, 2018(4):27-34. |
ZHANG B F. Study on the mechanism of fissure water disease in Sichuan-Chongqing Grottoes: taking the reclining Buddha area in Dazu Stone Carving Buddha Bay as an example[J]. China Cult Herit, 2018(4):27-34. | |
[24] | 徐方圆, 吴来明, 解玉林, 等. 文物保存环境中温湿度评估方法研究[J]. 文物保护与考古科学, 2012, 24(S1):6-12. |
XU F Y, WU L M, XIE Y L, et al. Study of methods for temperature and humidity evaluation in museum environments[J]. Sci Conserv Archaeol, 2012, 24(S1):6-12.DOI: 10.16334/j.cnki.cn31-1652/k.2012.s1.015. | |
[25] | 周安庆. “金陵第一名园” 的神姿风采:清代袁江及其《瞻园图》画卷释读[J]. 收藏界, 2014(2):66-69. |
ZHOU A Q. The charm of “Jinling’s No.1 garden”:interpretation of Yuan Jiang in Qing dynasty and his picture of Zhanyuan[J]. Collect World, 2014(2):66-69. | |
[26] | 强大双. 江南古典私家园林旅游环境容量测算及调控研究:以南京瞻园为例[D]. 南京: 东南大学, 2016. |
QIANG D S. Research on calculation and regulation of tourism environmental carrying capacity of Jiangnan classical private garden[D]. Nanjing: Southeast University, 2016. | |
[27] | 周格至. 南京古典私家园林历史考证与特征研究[D]. 南京: 南京农业大学, 2019. |
ZHOU G Z. Research on the history and characteristics of Nanjing private garden[D]. Nanjing: Nanjing Agricultural University, 2019. | |
[28] | 张青萍, 毛清, 贾星星. 瞻园假山的植物景观空间尺度变迁研究[J]. 中国园林, 2022, 38(2):42-47. |
ZHANG Q P, MAO Q, JIA X X. Study on the spatial scale changes of the plant landscape of Zhanyuan rockery[J]. Chin Landsc Archit, 2022, 38(2):42-47.DOI: 10.19775/j.cla.2022.02.0042. | |
[29] | 李斌, 谢东辉, 丁勇, 等. 基于图像处理和标识物的裂缝变化测量方法[J]. 工程质量, 2022, 40(8):69-74. |
LI B, XIE D H, DING Y, et al. Measurement method of crack variation based on image processing and marker[J]. Constr Qual, 2022, 40(8):69-74.DOI: 10.3969/j.issn.1671-3702.2022.08.016. | |
[30] | NOVÁK V. Soil-crack characteristics: estimation methods applied to heavy soils in the NOPEX area[J]. Agric For Meteorol, 1999, 98:501-507.DOI: 10.1016/S0168-1923(99)00119-7. |
[31] | 吴美萍. 预防性保护理念下建筑遗产监测问题的探讨[J]. 华中建筑, 2011, 29(3):169-171. |
WU M P. Monitoring of architectural heritage under the concept of preventive conservation[J]. Huazhong Archit, 2011, 29(3):169-171.DOI: 10.13942/j.cnki.hzjz.2011.03.037. | |
[32] | 刘彦婷. 岩体裂缝动态识别算法研究[D]. 赣州: 江西理工大学, 2012. |
LIU Y T. Research on dynamic identification algorithm of rock mass cracks[D]. Ganzhou: Jiangxi University of Science and Technology, 2012. |
[1] | 刘杰, 张浪, 张青萍. 城市绿地系统进化特征及驱动机制分析——以河南省许昌市为例[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 275-284. |
[2] | 杨赫, 米锋. 社会经济地位下城市绿地可达性对居民心理健康的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 248-256. |
[3] | 杨云峰, 杨家琪. 基于蚊患防控的亚热带地区城市公园生态整治设计[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 211-218. |
[4] | 吴妍, 李若楠, 赵志强. 黑龙江省国家级森林公园空间分布特征研究[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 189-196. |
[5] | 唐晓岚, 王忆梅, 周孔飞. 基于生态安全格局的山岳型风景区景观资源保护利用研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 178-186. |
[6] | 薛思寒, 马悦, 王琨. 寒冷地区绿化指标对住区室外舒适度的多途径调控分析——以郑州市为例[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 210-218. |
[7] | 赵梦蕾, 姚正阳, 毛达. 基于i2SFCA的新乡市主城区公园绿地空间步行可达性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 227-232. |
[8] | 张清海, 张山峰, 赵晨晔. 基于空间句法优化的南浔近代私家园林空间特征研究[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 209-216. |
[9] | 王子芝, 李玥, 华世明, 周俊宏, 刘文斗, 廖声熙. 基于生态保护加权的普达措国家公园功能分区研究[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 225-231. |
[10] | 王志鹏, 王薇, 邢思懿. 城市公园绿地特征和使用方式与人群健康关系研究[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 223-231. |
[11] | 时珍, 邢露华, 郑琳琳, 穆博, 田国行. 城市公园绿地游憩供需协同度评价及优化策略[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 197-204. |
[12] | 熊瑶, 严妍. 基于人体热舒适度的江南历史街区空间格局研究——以南京高淳老街为例[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 219-226. |
[13] | 梁慧琳, 张青萍. 园林文化遗产三维数字化测绘与信息管理研究进展[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 9-16. |
[14] | 张卓然, 唐晓岚. 环太湖地区历史村落的环境适应性及特征[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 17-24. |
[15] | 乐志, 应天慧, 马群. 园林历史研究中的量化及分析算法研究——以南京明、清杏花村地块为例[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 25-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||