基于SSR标记的皱皮木瓜遗传多样性分析及品种分子身份证构建

李慧, 侯立娜, 王天琪, 毕宁宁, 李圣波, 刘忠华

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1) : 59-68.

PDF(13892 KB)
PDF(13892 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1) : 59-68. DOI: 10.12302/j.issn.1000-2006.202301027
研究论文

基于SSR标记的皱皮木瓜遗传多样性分析及品种分子身份证构建

作者信息 +

The genetic diversity analysis and molecular ID establishment of Chaenomeles speciosa based on SSR markers

Author information +
文章历史 +

摘要

【目的】皱皮木瓜(Chaenomeles speciosa)具有较高的观赏价值食用价值与药用价值,我国是皱皮木瓜的起源分布中心,研究皱皮木瓜种质资源遗传多样性,并构建品种分子身份证,以解决近年来因缺乏品种间统一的分类标准,同名异种、同种异名和品种间来源及演化不清等问题。【方法】以收集的168 份皱皮木瓜种质资源为材料,利用SSR标记结合毛细管电泳法对木瓜遗传多样性和群体内遗传分化程度进行分析,根据观测等位基因数(Na)、Shannon’s信息指数(I)和多态性信息含量(PIC)的筛选能区分全部种质的引物组合,并基于字符串编码构建DNA分子身份证。【结果】26 对引物在168 个皱皮木瓜品种中共扩增出304 个等位基因,平均每个位点扩增出11.577 个;期望杂合度(He)、I和PIC的平均值分别为0.748、1.731和0.607。根据聚类分析的结果可将该群体分为2 大类,进一步分为6 个类群;种群结构分析将供试材料分为2 个亚类。从26 对引物中筛选出11 对核心引物构建了168 份皱皮木瓜种质资源的条形码和二维码身份证。【结论】所选扩增位点的变异程度高、鉴别力度大,在进行遗传多样性分析、核心引物筛选,以及指纹图谱构建中可优先选用。该研究为皱皮木瓜的良种鉴定、遗传资源管理及种质资源数据库的构建等提供了参考。

Abstract

【Objective】Chaenomeles speciosa has high ornamental, edible, and medicinal values. China is the origin and distribution center of C. speciosa. The genetic diversity of Chaenomeles speciosa germplasm resources was studied, and the molecular identity card of varieties was constructed to solve the problems of lack of unified classification criteria among varieties, homonymous and synoonymous, and unclear origin and evolution among varieties in recent years.【Method】A total of 168 C. speciosa varieties and SSR (simple sequence repeats) markers were combined with capillary electrophoresis to analyze the genetic diversity and the degree of genetic differentiation. The observed number of alleles (Na), Shannon’s information index (I), and the polymorphism information content (PIC) were employed to screen primer combinations that can distinguish the entire germplasm and construct DNA molecular IDs based on string codes. 【Result】The results showed that 26 pairs of primers amplified 304 alleles in 168 C. speciosa varieties, with an average of 11.577 per locus. The average expected heterozygosity (He), I and PIC were determined as 0.748, 1.731 and 0.607, respectively. Based on the cluster analysis, the population could be divided into two groups, and further into six groups. Moreover, based on population structure analysis, the tested materials was divided into two subgroups. Four pairs of core primers were selected from 26 pairs of primers to construct barcode and two-dimensional code identification cards of C. speciosa varieties. 【Conclusion】The selected amplification loci have a high degree of variation and strong discrimination, and are thus suitable for applications in genetic diversity analysis, core primer screening, and fingerprint construction. The results can provide a reference for the variety identification, genetic resource management, and the construction of a germplasm resource database of C. speciosa.

关键词

皱皮木瓜 / 遗传多样性 / SSR / 分子身份证

Key words

Chaenomeles speciosa / genetic diversity / SSR / molecular ID

引用本文

导出引用
李慧, 侯立娜, 王天琪, . 基于SSR标记的皱皮木瓜遗传多样性分析及品种分子身份证构建[J]. 南京林业大学学报(自然科学版). 2025, 49(1): 59-68 https://doi.org/10.12302/j.issn.1000-2006.202301027
LI Hui, HOU Lina, WANG Tianqi, et al. The genetic diversity analysis and molecular ID establishment of Chaenomeles speciosa based on SSR markers[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(1): 59-68 https://doi.org/10.12302/j.issn.1000-2006.202301027
中图分类号: S793.9;S567.9   

参考文献

[1]
陈红, 王关祥, 郑林, 等. 木瓜属(贴梗海棠)品种分类的研究历史与现状[J]. 山东林业科技, 2006, 36(5):70-71,78.
CHEN H, WANG G X, ZHENG L, et al. The studying history and current status of Chaenomeles[J]. J Shandong For Sci Technol, 2006, 36(5):70-71,78.DOI: 10.3969/j.issn.1002-2724.2006.05.031.
[2]
SINGH R B, SINGH B, SINGH R K. Evaluation of genetic diversity in Saccharum species clones and commercial varieties employing molecular (SSR) and physiological markers[J]. Ind Jour Plant Gene Resour, 2018, 31(1): 17.DOI: 10.5958/0976-1926.2018.00003.7.
[3]
王明明, 陈化榜, 王建华, 等. 木瓜属品种亲缘关系的SRAP分析[J]. 中国农业科学, 2010, 43(3):542-551.
WANG M M, CHEN H B, WANG J H, et al. Genetic relationship of Chaenomeles cultivars revealed by SRAP analysis[J]. Sci Agric Sin, 2010, 43(3):542-551.DOI: 10.3864/j.issn.0578-1752.2010.03.014.
[4]
HE J S, FAN J W, LI S B, et al. Genetic variability of cultivated Chaenomeles speciosa (Sweet) Nakai based on AFLP analysis[J]. Biochem Syst Ecol, 2014, 57:445-450.DOI: 10.1016/j.bse.2014.09.022.
[5]
张艳艳, 齐红, 郭庆梅, 等. 利用苹果EST-SSR分析木瓜属种质遗传多样性[J]. 生物技术通报, 2016, 32(7):93-98.
ZHANG Y Y, QI H, GUO Q M, et al. Analysis of genetic diversity in Chaenomeles using apple EST-SSRs[J]. Biotechnol Bull, 2016, 32(7):93-98.DOI: 10.13560/j.cnki.biotech.bull.1985.2016.07.014.
[6]
蒋小刚, 林先明, 张美德, 等. 基于ISSR分子标记的皱皮木瓜遗传多样性分析[J]. 分子植物育种, 2020, 18(21):7239-7245.
JIANG X G, LIN X M, ZHANG M D, et al. Genetic diversity analysis of Chaenomeles speciosa(sweet) nakai based on ISSR molecular markers[J]. Mol Plant Breed, 2020, 18(21):7239-7245.DOI: 10.13271/j.mpb.018.007239.
[7]
HECKENBERGER M, VAN DER VOORT J R, PELEMAN J, et al. Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties:II.genetic and technical sources of variation in AFLP data and comparison with SSR data[J]. Mol Breed, 2003, 12(2):97-106.DOI: 10.1023/A:1026040007166.
[8]
王凤格, 赵久然, 田红丽, 等. 农作物品种DNA指纹库构建研究进展[J]. 分子植物育种, 2015, 13(9):2118-2126.
WANG F G, ZHAO J R, TIAN H L, et al. The progress of the crop varieties DNA fingerprint database construction[J]. Mol Plant Breed, 2015, 13(9):2118-2126.DOI: 10.13271/j.mpb.013.002118.
[9]
徐雷锋, 葛亮, 袁素霞, 等. 利用荧光标记SSR构建百合种质资源分子身份证[J]. 园艺学报, 2014, 41(10):2055-2064.
XU L F, GE L, YUAN S X, et al. Using the fluorescent labeled SSR markers to establish molecular identity of lily germplasms[J]. Acta Hortic Sin, 2014, 41(10):2055-2064.DOI: 10.16420/j.issn.0513-353x.2014.10.012.
[10]
游倩. 甘蔗种质资源的SSR遗传多样性分析及指纹数据库构建[D]. 福州: 福建农林大学, 2014.
YOU Q. Genetic diversity analysis and database construction of DNA fingerprintings in sugarcane based on SSR fluorescence markers[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014.
[11]
赵久然, 王凤格. 玉米品种指纹鉴定技术研究与应用[M]. 北京: 中国农业科学技术出版社, 2014.
ZHAO J R, WANG F G. Research and application of fingerprint identification technology of corn varieties[M]. Beijing: China Agricultural Science and Technology Press, 2014.
[12]
SCHUELKE M. An economic method for the fluorescent labeling of PCR fragments[J]. Nat Biotechnol, 2000, 18(2):233-234.DOI: 10.1038/72708.
[13]
HULCE D, LI X, SNYDERLEIBY T, et al. GeneMarker© genotyping software: tools to increase the statistical power of DNA fragment analysis[J]. J Biomol Tech, 2011, 22(Sl):35-36.
[14]
YEH F C, YANG R C, BOYLE T. POPGENE Version 1.32: microsoft Windows-based freeware for populations genetic analysis[EB/OL]. Edmonton: University of Alberta. (1999). [2022-03-20]. http://sites.ualberta.ca/-fyeh/popgene_download.html.
[15]
MARSHALL T C, SLATE J, KRUUK L E, et al. Statistical confidence for likelihood-based paternity inference in natural populations[J]. Mol Ecol, 1998, 7(5):639-655.DOI: 10.1046/j.1365-294x.1998.00374.x.
[16]
BASAK S, RAMESH A M, KESARI V, et al. Genetic diversity and relationship of Hedychium from northeast India as dissected using PCA analysis and hierarchical clustering[J]. Meta Gene, 2014, 2:459-468.DOI: 10.1016/j.mgene.2014.05.002.
[17]
LIU K J, MUSE S V. PowerMarker:an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9):2128-2129.DOI: 10.1093/bioinformatics/bti282.
[18]
PRITCHARD J K, STEPHENS M, DONNELLY P. Inference of population structure using multilocus genotype data[J]. Genetics, 2000, 155(2):945-959.DOI: 10.1093/genetics/155.2.945.
[19]
李清, 罗永坚, 吴柔贤, 等. 广东省大豆种质资源遗传多样性分析及DNA分子身份证构建[J]. 广东农业科学, 2020, 47(12):221-228.
LI Q, LUO Y J, WU R X, et al. Analysis on genetic diversity and construction of DNA molecular identity card of soybean germplasm resources in Guangdong Province[J]. Guangdong Agric Sci, 2020, 47(12):221-228.DOI: 10.16768/j.issn.1004-874x.2020.12.023.
[20]
BOTSTEIN D, WHITE R L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet, 1980, 32(3):314-331.
[21]
EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study[J]. Mol Ecol, 2005, 14(8):2611-2620.DOI: 10.1111/j.1365-294X.2005.02553.x.
[22]
陶乃奇, 张斌, 刘信凯, 等. 利用荧光标记SSR鉴别21个茶花新品种[J]. 植物学报, 2019, 54(1):37-45.
TAO N Q, ZHANG B, LIU X K, et al. Identification of 21 new Camellia hybrid varieties by fluorescence-labelled simple sequence repeat markers[J]. Chin Bull Bot, 2019, 54(1):37-45.DOI: 10.11983/CBB18019.
[23]
ZHAO Y N, WANG Y, WANG L X, et al. Molecular identification of mung bean accessions (Vigna radiata L.) from Northeast China using capillary electrophoresis with fluorescence-labeled SSR markers[J]. Food Energy Secur, 2020, 9(1):e182.DOI: 10.1002/fes3.182.
[24]
黄兴发, 尹跃, 赵建华, 等. 黑果枸杞基因组SSR标记开发及遗传多样性分析[J]. 西北农林科技大学学报(自然科学版), 2021, 49(1):126-135.
HUANG X F, YIN Y, ZHAO J H, et al. Development of genomic SSR markers and genetic diversity analysis of Lycium ruthenicum Murr[J]. J Northwest A F Univ (Nat Sci Ed), 2021, 49(1):126-135.DOI: 10.13207/j.cnki.jnwafu.2021.01.015.
[25]
AVVARU A K, SHARMA D, VERMA A, et al. MSDB:a comprehensive,annotated database of microsatellites[J]. Nucleic Acids Res, 2020, 48(D1):155-159.DOI: 10.1093/nar/gkz886.
[26]
杨凯敏, 李贵全, 郭数进, 等. 大豆自然群体SSR标记遗传多样性及其与农艺性状的关联分析[J]. 核农学报, 2014, 28(9):1576-1584.
YANG K M, LI G Q, GUO S J, et al. Genetic diversity and association analysis of agronomic traits with SSR in a natural population of soybean cultivars[J]. J Nucl Agric Sci, 2014, 28(9):1576-1584.DOI: 10.11869/j.issn.100-8551.2014.09.1576.
[27]
OHTSUBO K, NAKAMURA S. Cultivar identification of rice (Oryza sativa L.) by polymerase chain reaction method and its application to processed rice products[J]. J Agric Food Chem, 2007, 55(4):1501-1509.DOI: 10.1021/jf062737z.
[28]
DANGL G S, YANG J, GOLINO D A, et al. A practical method for almond cultivar identification and parental analysis using simple sequence repeat markers[J]. Euphytica, 2009, 168(1):41-48.DOI: 10.1007/s10681-008-9877-0.
[29]
陈昌文, 曹珂, 王力荣, 等. 中国桃主要品种资源及其野生近缘种的分子身份证构建[J]. 中国农业科学, 2011, 44(10):2081-2093.
CHEN C W, CAO K, WANG L R, et al. Molecular ID establishment of main China peach varieties and peach related species[J]. Sci Agric Sin, 2011, 44(10):2081-2093.DOI: 10.3846/j.issn.0578-175.2011.10.013.

基金

国家林业和草原局业务委托项目(DNA-2021)
北京市园林绿化局计划(2021-STBHXFC-04-11)
陕西省榆林市榆阳区林业局服务项目(2024HXFW059)

编辑: 吴祝华
PDF(13892 KB)

Accesses

Citation

Detail

段落导航
相关文章

/