[1] |
褚可龙, 马以菘, 顾宝龙, 等. 木兰科植物引种与筛选[J]. 上海交通大学学报(农业科学版), 2007, 25(3):307-311.
|
|
CHU K L, MA Y S, GU B L, et al. Transplant and selection of Magnoliaceae plants in Shanghai[J]. J Shanghai Jiao Tong Univ (Agric Sci), 2007, 25(3):307-311.DOI: 10.3969/j.issn.1671-9964.2007.03.024.
|
[2] |
宦智群, 徐小蓉, 耿兴敏, 等. 木兰科植物组织培养技术研究进展[J]. 广西植物, 2022, 42(11):1980-1993.
|
|
HUAN Z Q, XU X R, GENG X M, et al. Advances in tissue culture techniques of Magnoliaceae[J]. Guihaia, 2022, 42(11):1980-1993.DOI: 10.11931/guihaia.gxzw202101048.
|
[3] |
CUI Y Y, DENG Y W, ZHENG K Y, et al. An efficient micropropagation protocol for an endangered ornamental tree species (Magnolia sirindhorniae Noot.& Chalermglin) and assessment of genetic uniformity through DNA markers[J]. Sci Rep, 2019, 9(1):9634.DOI: 10.1038/s41598-019-46050-w.
|
[4] |
张新华, 夏念和. 木兰科植物染色体数目报道[J]. 热带亚热带植物学报, 2005, 13(6):516-518.
|
|
ZHANG X H, XIA N H. Chromosome numbers of five species and one hybrid in Magnoliaceae[J]. J Trop Subtrop Bot, 2005, 13(6):516-518.DOI: 10.3969/j.issn.1005-3395.2005.06.011.
|
[5] |
杨科明, 陈新兰. 广东含笑的引种繁育与园林应用研究[J]. 广东园林, 2011, 33(1):44-46.
|
|
YANG K M, CHEN X L. Introduction,breeding and landscape application of Michelia guangdongensis[J]. Guangdong Landsc Archit, 2011, 33(1):44-46.DOI: 10.3969/j.issn.1671-2641.2011.01.011.
|
[6] |
徐斌, 朱报著, 潘文, 等. 广东含笑的光响应特性及其最适模型研究[J]. 林业科学研究, 2017, 30(4):604-609.
|
|
XU B, ZHU B Z, PAN W, et al. Photosynthetic light response characteristics of Michelia guangdongensis and practicability of six models[J]. For Res, 2017, 30(4):604-609.DOI: 10.13275/j.cnki.lykxyj.2017.04.010.
|
[7] |
覃海宁, 杨永, 董仕勇, 等. 中国高等植物受威胁物种名录[J]. 生物多样性, 2017, 25(7):696-744.
|
|
QIN H N, YANG Y, DONG S Y, et al. Threatened species list of China’s higher plants[J]. Biodivers Sci, 2017, 25(7):696-744.DOI: 10.17520/biods.2017144.
|
[8] |
杨蕾蕾, 王文广, 郎校安, 等. 极小种群广东含笑野外资源现状[J]. 生物多样性, 2019, 27(9):1016-1020.
|
|
YANG L L, WANG W G, LANG X A, et al. Resource status of Michelia guangdongensis(Magnoliaceae),a wild plant species with extremely small populations[J]. Biodivers Sci, 2019, 27(9):1016-1020.DOI: 10.17520/biods.2019159.
|
[9] |
ZOSCHKE R, BOCK R. Chloroplast translation:structural and functional organization,operational control,and regulation[J]. Plant Cell, 2018, 30(4):745-770.DOI: 10.1105/tpc.18.00016.
|
[10] |
季凯凯, 宋希强, 陈春国, 等. 木兰科叶绿体基因组的密码子使用特征分析[J]. 中国农业科技导报, 2020, 22(11):52-62.
|
|
JI K K, SONG X Q, CHEN C G, et al. Codon usage profiling of chloroplast genome in Magnoliaceae[J]. J Agric Sci Technol, 2020, 22(11):52-62.DOI: 10.13304/j.nykjdb.2019.0937.
|
[11] |
朱斌, 钱方, 王晓双, 等. 基于叶绿体基因组的木兰科植物系统发育探究[J]. 生物学杂志, 2022, 39(3):53-58.
|
|
ZHU B, QIAN F, WANG X S, et al. The phylogeny of Magnoliaceae based on chloroplast genome[J]. J Biol, 2022, 39(3):53-58.DOI: 10.3969/j.issn.2095-1736.2022.03.053.
|
[12] |
DENG Y W, LUO Y Y, HE Y, et al. Complete chloroplast genome of Michelia shiluensis and a comparative analysis with four Magnoliaceae species[J]. Forests, 2020, 11(3):267.DOI: 10.3390/f11030267.
|
[13] |
CHEN Y X, CHEN Y S, SHI C M, et al. SOAPnuke:a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data[J]. Gigascience, 2018, 7(1):gix120.DOI: 10.1093/gigascience/gix120.
|
[14] |
BANKEVICH A, NURK S, ANTIPOV D, et al. SPAdes:a new genome assembly algorithm and its applications to single-cell sequencing[J]. J Comput Biol, 2012, 19(5):455-477.DOI: 10.1089/cmb.2012.0021.
|
[15] |
TILLICH M, LEHWARK P, PELLIZZER T, et al. GeSeq-versatile and accurate annotation of organelle genomes[J]. Nucleic Acids Res, 2017, 45(1):6-11.DOI: 10.1093/nar/gkx391.
|
[16] |
ZHENG S Y, POCZAI P, HYVÖNEN J, et al. Chloroplot:an online program for the versatile plotting of organelle genomes[J]. Front Genet, 2020, 11:576124.DOI: 10.3389/fgene.2020.576124.
|
[17] |
孙孟涛, 张峻鑫, 黄体冉, 等. 虎杖叶绿体基因组结构与变异分析[J]. 生物工程学报, 2022, 38(5):1953-1964.
|
|
SUN M T, ZHANG J X, HUANG T R, et al. Genome structure and variation of Reynoutria japonica Houtt.chloroplast genome[J]. Chin J Biotechnol, 2022, 38(5):1953-1964.DOI: 10.13345/j.cjb.210843.
|
[18] |
KUMAR S, STECHER G, TAMURA K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874.DOI: 10.1093/molbev/msw054.
|
[19] |
李泳潭, 张军, 黄亚丽, 等. 杜梨叶绿体基因组分析[J]. 园艺学报, 2020, 47(6):1021-1032.
|
|
LI Y T, ZHANG J, HUANG Y L, et al. Analysis of chloroplast genome of Pyrus betulaefolia[J]. Acta Hortic Sin, 2020, 47(6):1021-1032.DOI: 10.16420/j.issn.0513-353x.2019-0658.
|
[20] |
ROZAS J, FERRER-MATA A, SÁNCHEZ-DELBARRIO J C, et al. DnaSP 6:DNA sequence polymorphism analysis of large data sets[J]. Mol Biol Evol, 2017, 34(12):3299-3302.DOI: 10.1093/molbev/msx248.
|
[21] |
STAMATAKIS A. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies[J]. Bioinformatics, 2014, 30(9):1312-1313.DOI: 10.1093/bioinformatics/btu033.
|
[22] |
SERRANO M, WANG B J, ARYAL B, et al. Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5[J]. Plant Physiol, 2013, 162(4):1815-1821.DOI: 10.1104/pp.113.218156.
|
[23] |
ZHU H Y, CHOI H K, COOK D R, et al. Bridging model and crop legumes through comparative genomics[J]. Plant Physiol, 2005, 137(4):1189-1196.DOI: 10.1104/pp.104.058891.
|
[24] |
李述成, 郭生虎, 贝盏临. 小檗属植物叶绿体基因组序列结构及系统发育分析[J]. 中草药, 2022, 53(3):818-826.
|
|
LI S C, GUO S H, BEI Z L. Chloroplast genome sequences and phylogenetic analysis of Berberis genus[J]. Chin Tradit Herb Drugs, 2022, 53(3):818-826.DOI: 10.7501/j.issn.0253-2670.2022.03.022.
|
[25] |
OZDILEK A, CENGEL B, KANDEMIR G, et al. Molecular phylogeny of relict-endemic Liquidambar orientalis Mill based on sequence diversity of the chloroplast-encoded matK gene[J]. Plant Syst Evol, 2012, 298(2):337-349.DOI: 10.1007/s00606-011-0548-6.
|
[26] |
黄永健, 蔡冠龙, 潘东阳, 等. 盐胁迫对桉树4个叶绿体基因表达的影响[J]. 东北林业大学学报, 2019, 47(10):12-15.
|
|
HUANG Y J, CAI G L, PAN D Y, et al. Effects of salt stress on expression of four chloroplast genes in Eucalyptus[J]. J Northeast For Univ, 2019, 47(10):12-15.DOI: 10.13759/j.cnki.dlxb.2019.10.003.
|
[27] |
AZUMA H, GARCÍA-FRANCO J G, RICO-GRAY V, et al. Molecular phylogeny of the Magnoliaceae:the biogeography of tropical and temperate disjunctions[J]. Am J Bot, 2001, 88(12):2275-2285.
|
[28] |
DONG W P, XU C, LI W Q, et al. Phylogenetic resolution in Juglans based on complete chloroplast genomes and nuclear DNA sequences[J]. Front Plant Sci, 2017, 8:1148.DOI: 10.3389/fpls.2017.01148.
|
[29] |
ZHAO M L, SONG Y, NI J, et al. Comparative chloroplast genomics and phylogenetics of nine Lindera species (Lauraceae)[J]. Sci Rep, 2018, 8(1):8844.DOI: 10.1038/s41598-018-27090-0.
|
[30] |
NIE Z L, WEN J, AZUMA H, et al. Phylogenetic and biogeographic complexity of Magnoliaceae in the northern Hemisphere inferred from three nuclear data sets[J]. Mol Phylogenet Evol, 2008, 48(3):1027-1040.DOI: 10.1016/j.ympev.2008.06.004.
|
[31] |
刘玉壶. 木兰科分类系统的初步研究[J]. 中国科学院大学学报, 1984, 22(2): 89-109.
|
|
LIU Y H. A preliminary study on the taxonomy of the family Magnoliaceae[J]. Journal of University of Chinese Academy of Sciences, 1984, 22(2): 89-109.
|
[32] |
NOOTEBOOM H P. Notes on Magnoliaceae,with a revision of Pachylarnax and Elmerrillia and the Malesian species of Manglietia and Michelia[J]. Blumea, 1985, 31:65-121.
|
[33] |
黄丽峰. 木兰科6属20种植物的RAPD和ISSR分析[D]. 福州: 福建师范大学, 2007.
|
|
HUANG L F. RAPD and ISSR analysis of 20 species in 6 genera of Magnoliaceae[D]. Fuzhou: Fujian Normal University, 2007.
|