南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6): 111-120.doi: 10.12302/j.issn.1000-2006.202302010
叶雨艳1,2(), 丁访军2,3,*(
), 吴鹏2, 周华2, 李源永1,2, 周汀1,2, 崔迎春2
收稿日期:
2023-02-14
修回日期:
2023-07-11
出版日期:
2024-11-30
发布日期:
2024-12-10
通讯作者:
*丁访军(ding3929034@163.com),研究员。作者简介:
叶雨艳(yeyuyan19980321@163.com)。
基金资助:
YE Yuyan1,2(), DING Fangjun2,3,*(
), WU Peng2, ZHOU Hua2, LI Yuanyong1,2, ZHOU Ting1,2, CUI Yingchun2
Received:
2023-02-14
Revised:
2023-07-11
Online:
2024-11-30
Published:
2024-12-10
摘要:
【目的】揭示茂兰喀斯特森林主要树种水力结构和解剖结构特征及其对树干液流密度的影响。【方法】以茂兰喀斯特森林9个树种为研究对象,用“冲洗法”测定其导水率(Kh)、比导率(Ks)、胡伯尔值(Hv);以解剖学方法测定其导管面积(A)、导管直径(D)、导管水力学直径(Dh)、导管密度(WD)、管胞壁厚度(WVD)等解剖结构参数;采用热扩散探针法监测树干液流密度(Js),并对已测的几个指标进行排序,比较各树种抗旱能力强弱。【结果】①Kh从大到小表现为南酸枣(Choerospondias axillaris)>柿(Diospyros kaki)>山乌桕(Triadica cochin chinensis)>化香(Platycarya strobilacea)>鹅耳枥(Carpinus turczaninovii)>新木姜子(Neolitsea aurata)>山矾(Symplocos sumuntia)>天峨槭(Acer wangchii)>润楠(Machilus nanmu);Ks从大到小表现为南酸枣>山乌桕>柿>化香>鹅耳枥>天峨槭>新木姜子>山矾>润楠;Hv表现为鹅耳枥>新木姜子>润楠>山矾>化香>山乌桕>天峨槭>南酸枣>柿,落叶树种的Kh和Ks大于常绿树种;②除鹅耳枥外,落叶树种的导管面积、直径、水力直径均大于常绿树种,而导管密度则相反;③各树种的Kh、Ks、Hv与Js的相关性均不显著(P>0.05),山乌桕树干液流密度与水力直径呈显著正相关(P<0.05),而天峨槭与水力直径呈显著负相关(P<0.05),山矾的液流密度与导管密度呈显著正相关(P<0.05),其余树种的解剖结构与树干液流密度相关性均不显著(P>0.05);④树种抗旱能力随导管直径的增大而增加,从大到小表现为南酸枣>山乌桕>柿>化香>鹅耳枥>新木姜子>山矾>润楠>天峨槭。【结论】茂兰喀斯特森林中落叶树种的导水、输水和抗旱能力均强于常绿树种。水分充足时,水力学性状对树干液流密度的影响较小,而解剖结构对其影响存在种间差异;优势树种通过增大单位横截面积上的蒸腾拉力抵消树高带来水分运输阻力,为叶片蒸腾和光合作用供给水分。在进行喀斯特植被恢复时应综合考虑落叶、常绿及林分垂直结构的群落配比。
中图分类号:
叶雨艳,丁访军,吴鹏,等. 喀斯特原生林9个树种水力学性状与解剖结构对树干液流的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(6): 111-120.
YE Yuyan, DING Fangjun, WU Peng, ZHOU Hua, LI Yuanyong, ZHOU Ting, CUI Yingchun. Effects of hydraulics and anatomical structure on sap flow of nine tree species in Karst primary forest[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(6): 111-120.DOI: 10.12302/j.issn.1000-2006.202302010.
表1
茂兰喀斯特森林9个树种样树基本信息"
物种名(代码) species name(code) | 树高/m tree height | 胸径/cm DBH | 边材宽度/mm sapwood width | 生长习性及材性 growth and wood property |
---|---|---|---|---|
山矾(Ss)Symplocos sumuntia | 15.0±0.3 | 9.8±0.1 | 15.4±0.6 | 常绿,散孔材 |
润楠(Mn)Machilus nanmu | 8.2±0.4 | 9.0±0.2 | 10.7±1.2 | 常绿,散孔材 |
天峨槭(Aw)Acer wangchii | 15.3±0.4 | 25.6±0.2 | 18.96±4.3 | 常绿,散孔材 |
新木姜子(Na)Neolitsea aurata | 8.5±0.3 | 10.1±0.3 | 13.5±1.2 | 常绿,散孔材 |
南酸枣(Ca)Choerospondias axillaris | 16.8±0.2 | 26.1±0.2 | 16.7±5.0 | 落叶,环孔材 |
柿(Dk)Diospyros kaki | 19.6±0.2 | 28.3±0.2 | 24.1±5.3 | 落叶,环孔材 |
化香(Ps)Platycarya strobilacea | 13.2±0.3 | 15.1±0.3 | 25.6±3.5 | 落叶,环孔材 |
鹅耳枥(Ct)Carpinus turczaninovii | 8.2±0.3 | 9.0±0.1 | 18.5±3.5 | 落叶,环孔材 |
山乌桕(Tc)Triadica cochinchinensis | 7.5±0.2 | 13.0±0.2 | 22.5±3.5 | 落叶,环孔材 |
表2
茂兰喀斯特森林9个树种的木质部解剖结构特征"
解剖结构特征 anatomy structure feature | 落叶树种 deciduous species | 常绿树种 evergreen species | |||||||
---|---|---|---|---|---|---|---|---|---|
Ca | Dk | Tc | Ps | Ct | Na | Ss | Aw | Mn | |
导管面积/μm2 vessel area | 2 189.47± 31.86 a | 1 154± 13.57 c | 1 653.46± 28.19 b | 1 044.41± 7.09 d | 626.59± 1.96 e | 662.56± 1.74 e | 555.43± 0.89 f | 538.42± 1.26 f | 355.74± 0.97 g |
导管直径/μm vessel diameter | 48.27± 0.4 a | 33.31± 0.23 c | 42.32± 0.32 b | 32.58± 0.23 c | 24.10± 0.77 e | 26.91± 0.15 d | 25.93± 0.14 d | 24.51± 0.07 e | 21.28± 0.62 f |
导管水力直径/μm hydraulic diameter of vessel | 82.24± 3.32 a | 64.23± 4.89 b | 66.08± 3.69 b | 51.97± 1.94 c | 45.47± 1.62 cd | 43.52± 2.39 d | 28.75± 1.09 e | 30.10± 0.91 e | 23.52± 0.72 e |
导管密度/(个·mm-2) density of vessel | 50.43± 4.27 e | 54.29± 4.9 e | 31.13± 1.71 e | 88.10± 4.98 d | 116.72± 5.6 c | 159.89± 5.52 b | 147.73± 5.23 b | 255.93± 12.88 a | 271.82± 15.4 a |
管胞壁厚度/μm wall thickness of vessel | 19.04± 2.03 bc | 9.43± 1.62 d | 21.52± 1.63 ab | 18.46± 1.38b c | 21.04± 1.6 ab | 19.28± 0.98 bc | 23.75± 1.08 a | 6.66± 0.54 d | 15.67± 1.22 c |
表3
9个树种树干液流密度与影响因素的相关性分析"
因子 factor | 落叶树种 deciduous species | 常绿树种 evergreen tree species | |||||||
---|---|---|---|---|---|---|---|---|---|
Ca | Dk | Tc | Ps | Ct | Na | Ss | Aw | Mn | |
导水率hydraulic conductivity | -0.455 | -0.323 | 0.375 | 0.268 | 0.251 | -0.357 | 0.058 | -0.387 | 0.085 |
比导率specific conductivity | -0.301 | -0.103 | 0.005 | 0.112 | 0.039 | -0.357 | 0.248 | 0.286 | -0.003 |
胡伯尔值Huber value | 0.201 | 0.257 | -0.119 | -0.269 | 0.294 | -0.035 | -0.387 | -0.262 | -0.128 |
导管面积vessel area | -0.074 | 0.209 | -0.233 | -0.058 | 0.042 | 0.008 | -0.083 | 0.137 | 0.127 |
导管直径vessel diameter | 0.392 | -0.081 | 0.001 | -0.110 | 0.495 | 0.471 | 0.457 | -0.175 | -0.058 |
导管水力直径hydraulic diameter of vessel | -0.198 | -0.007 | 0.522* | 0.362 | 0.318 | -0.001 | -0.434 | -0.523* | 0.169 |
导管密度density of vessel | 0.289 | -0.415 | -0.011 | -0.034 | 0.136 | -0.279 | 0.543* | 0.002 | -0.308 |
管胞壁厚度wall thickness of vessel | -0.449 | 0.032 | -0.063 | 0.239 | 0.084 | 0.212 | 0.356 | 0.298 | -0.404 |
表4
9个树种隶属函数值比较及综合评价"
生长习性 growth habit | 树种代码 species code | 平均导管 直径/μm average vessel diameter | 函数值 U | 排序 rank | 生长习性 growth habit | 树种代码 species code | 平均导管 直径/μm average vessel diameter | 函数值 U | 排序 rank |
---|---|---|---|---|---|---|---|---|---|
落叶 deciduous species | Ct | 24.10 | 0.48 | 5 | 常绿 evergreen tree species | Mn | 21.28 | 0.19 | 8 |
Ps | 32.58 | 0.55 | 4 | Aw | 24.51 | 0.11 | 9 | ||
Ca | 48.27 | 0.85 | 1 | Ss | 25.93 | 0.25 | 7 | ||
Tc | 42.32 | 0.70 | 2 | Na | 26.91 | 0.44 | 6 | ||
Dk | 33.31 | 0.51 | 3 |
[1] | HUNTINGTON T G. Evidence for intensification of the global water cycle:review and synthesis[J]. J Hydrol, 2006, 319(1/2/3/4):83-95.DOI: 10.1016/j.jhydrol.2005.07.003. |
[2] | TYREE M T, SPERRY J S. Vulnerability of xylem to cavitation and embolism[J]. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40:19-36.DOI: 10.1146/annurev.pp.40.060189.000315. |
[3] | 洪震, 刘术新, 洪琮浩, 等. 5种造林树种对干旱胁迫的抗性应答[J]. 南京林业大学学报(自然科学版), 2021, 45(2):111-119. |
HONG Z, LIU S X, HONG C H, et al. Resistance response of five afforestation tree species under drought stress[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(2):111-119.DOI: 10.11833/j.issn.2095-0756.2016.04.012. | |
[4] | JUMP A S, RUIZ-BENITO P, GREENWOOD S, et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback[J]. Glob Chang Biol, 2017, 23(9):3742-3757.DOI: 10.1111/gcb.13636. |
[5] | CHOAT B, JANSEN S, BRODRIBB T J, et al. Global convergence in the vulnerability of forests to drought[J]. Nature, 2012, 491(7426):752-755.DOI: 10.1038/nature11688. |
[6] | 刘娟娟, 张建国, 李吉跃, 等. CO2浓度升高对4种乔木幼树水力结构的影响[J]. 生态学杂志, 2017, 36(7):1769-1776. |
LIU J J, ZHANG J G, LI J Y, et al. Influences of elevated CO2 concentration on hydraulic architecture of seedlings of 4 tree species[J]. Chin J Ecol, 2017, 36(7):1769-1776.DOI: 10.13292/j.1000-4890.201707.037. | |
[7] | 郑茹萍, 张马啸, 吴亚岚, 等. 杉木不同形态特征对水力结构的影响[J]. 森林与环境学报, 2023, 43(1):17-25. |
ZHENG R P, ZHANG M X, WU Y L, et al. Effects of different morphological characteristics on hydraulic architecture of Chinese fir[J]. J For Environ, 2023, 43(1):17-25.DOI: 10.13324/j.cnki.jfcf.2023.01.003. | |
[8] | 李吉跃, 翟洪波. 木本植物水力结构与抗旱性[J]. 应用生态学报, 2000, 11(2):301-305. |
LI J Y, ZHAI H B. Hydraulic architecture and drought resistance of woody plants[J]. Chin J Appl Ecol, 2000, 11(2):301-305.DOI: 10.13287/j.1001-9332.2000.0079. | |
[9] | STEPPE K, VANDEGEHUCHTE M W, TOGNETTI R, et al. Sap flow as a key trait in the understanding of plant hydraulic functioning[J]. Tree Physiol, 2015, 35(4):341-345.DOI: 10.1093/treephys/tpv033. |
[10] | OREN R, PHILLIPS N, EWERS B E, et al. Sap-flux-scaled transpiration responses to light,vapor pressure deficit,and leaf area reduction in a flooded Taxodium distichum forest[J]. Tree Physiol, 1999, 19(6):337-347.DOI: 10.1093/treephys/19.6.337. |
[11] | 龙翠玲. 不同地形部位喀斯特森林物种多样性的比较研究:以贵州茂兰自然保护区为例[J]. 中国岩溶, 2007, 26(1):55-60. |
LONG C L. Comparison of species diversity in Karst forest among different topography sites: a case study in Maolan Natural Reserve,Guizhou Province[J]. Carsologica Sin, 2007, 26(1):55-60.DOI: 10.3969/j.issn.1001-4810.2007.01.009. | |
[12] | 朱秀勤. 石林溶丘洼地区不同恢复阶段植物水分利用的稳定同位素研究[D]. 昆明: 云南师范大学, 2014. |
ZHU X Q. Study on stable isotopes of plant water use in different restoration stages in Rrongqiuwa area of Shilin[D]. Kunming: Yunnan Normal University, 2014. | |
[13] | 梁千慧. 不同水分条件下黑麦草对喀斯特土壤深度的生长与生理响应[D]. 重庆: 西南大学, 2016. |
LIANG Q H. Growth and physiological response of Lolium perenne to Karst soil depth under different water conditions[D]. Chongqing: Southwest University, 2016. | |
[14] | 张启伟. 北热带喀斯特山地不同坡位木本植物的水力结构与功能[D]. 南宁: 广西大学, 2021. |
ZHANG Q W. Hydraulic structure and function of woody plants at different slope positions in northern tropical Karst mountainous areas[D]. Nanning: Guangxi University, 2021.DOI: 10.27034/d.cnki.ggxiu.2021.000052. | |
[15] | 程娟, 丁访军, 谭正洪, 等. 贵州茂兰喀斯特森林两树种叶片气孔形态特征及其对蒸腾的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5):125-132. |
CHENG J, DING F J, TAN Z H, et al. Leaf stomatal morphological characteristics and their effects on transpiration for two tree species in Maolan Karst area,Guizhou Province[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(5):125-132.DOI: 10.12302/j.issn.1000-2006.202010005. | |
[16] | 袁丛军, 程娟, 丁访军, 等. 喀斯特森林优势树种蒸腾特征及其对气孔和气象因子的响应[J]. 中南林业科技大学学报, 2022, 42(7):96-105. |
YUAN C J, CHENG J, DING F J, et al. Transpiration characteristics of dominant tree species and their responses to stomatal and meteorological factors in Karst regions[J]. J Cent South Univ For Technol, 2022, 42(7):96-105.DOI: 10.14067/j.cnki.1673-923x.2022.07.011. | |
[17] | 李成龙, 刘延惠, 丁访军, 等. 茂兰喀斯特森林小果润楠蒸腾特征及影响因素[J]. 南京林业大学学报(自然科学版), 2019, 43(3):51-58. |
LI C L, LIU Y H, DING F J, et al. Transpiration characteristics and influencing factors of the dominant species of Machilus microcarpa in Maolan Karst forest[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(3):51-58.DOI: 10.3969/j.issn.1000-2006.201808018. | |
[18] | 吴鹏, 杨文斌, 崔迎春, 等. 喀斯特区天峨槭(Acer wangchii)树干液流特征及其与环境因子的相关分析[J]. 生态学报, 2017, 37(22):7552-7567. |
WU P, YANG W B, CUI Y C, et al. Characteristics of sap flow and correlation analysis with environmental factors of Acer wangchii in the Karst area[J]. Acta Ecol Sin, 2017, 37(22):7552-7567.DOI: 10.5846/stxb201609251934. | |
[19] | GRANIER A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J]. Tree Physiol, 1987, 3(4):309-320.DOI: 10.1093/treephys/3.4.309. |
[20] | 樊大勇, 谢宗强, 赵常明, 等. 一种测定木本植物最大水力导度的装置及其使用方法[P]. 2015-11-11. |
FAN D Y, XIE Z Q, ZHAO C M. A device and method for measuring the maximum hydraulic conductivity of woody plants[P]. 2015-11-11. | |
[21] | 熊仕发, 吴立文, 陈益存, 等. 不同种源白栎幼苗叶片对干旱胁迫的响应及抗旱性评价[J]. 生态学杂志, 2020, 39(12):3924-3933. |
XIONG S F, WU L W, CHEN Y C, et al. Response of leaf of Quercus fabri seedlings from different provenances to drought stress and drought resistance evaluation[J]. Chin J Ecol, 2020, 39(12):3924-3933.DOI: 10.13292/j.1000-4890.202012.022. | |
[22] | 车路平. 14个造林树种木质部、叶片解剖特征及抗旱性评价[D]. 泰安: 山东农业大学, 2022. |
CHE L P. Anatomical characteristics and drought resistance evaluation of xylem and leaves of 14 afforestation tree species[D]. Taian: Shandong Agricultural University, 2022. | |
[23] | FAN D Y, JIE S L, LIU C C, et al. The trade-off between safety and efficiency in hydraulic architecture in 31 woody species in a Karst area[J]. Tree Physiol, 2011, 31(8):865-877.DOI: 10.1093/treephys/tpr076. |
[24] | 赵延涛, 许洺山, 张志浩, 等. 浙江天童常绿阔叶林不同演替阶段木本植物的水力结构特征[J]. 植物生态学报, 2016, 40(2):116-126. |
ZHAO Y T, XU M S, ZHANG Z H, et al. Hydraulic architecture of evergreen broad-leaved woody plants at different successional stages in Tiantong National Forest Park,Zhejiang Province,China[J]. Chin J Plant Ecol, 2016, 40(2):116-126.DOI: 10.3724/SP.J.1258.2014.00078. | |
[25] | 王佳敏, 成应杰, 陈金艺, 等. 模拟不同降雨时间格局下喀斯特垂直异质生境对桢楠幼苗光合和生长的影响[J]. 生态学报, 2021, 41(18):7348-7356. |
WANG J M, CHENG Y J, CHEN J Y, et al. Effects of simulated Karst vertical heterogeneous habitat on photosynthesis and growth of Phoebe zhennan S.Lee seedlings under different rainfall temporal pattern[J]. Acta Ecol Sin, 2021, 41(18):7348-7356.DOI: 10.5846/stxb202007131824. | |
[26] | 李吉跃, 翟洪波, 刘晓燕. 树木水力结构特征的昼夜变化规律[J]. 北京林业大学学报, 2002, 24(4):39-44. |
LI J Y, ZHAI H B, LIU X Y. Day and night change of tree hydraulic architecture characteristics[J]. J Beijing For Univ, 2002, 24(4):39-44.DOI: 10.3321/j.issn:1000-1522.2002.04.009. | |
[27] | 黄恺翔, 俞重阳, 钱海蓉, 等. 鸡公山国家级自然保护区散孔材、环孔材树种木质部结构和功能的关系[J]. 浙江农林大学学报, 2022, 39(2):244-251. |
HUANG K X, YU C Y, QIAN H R, et al. Relationship between xylem structure and function of diffuse-porous and ring-porous wood species in Jigongshan Nature Reserve[J]. J Zhejiang A F Univ, 2022, 39(2):244-251.DOI: 10.11833/j.issn.2095-0756.20210628. | |
[28] | PARENDS L A, EWEL K C. Usefulness of annual growth rings of cypress trees (Taxodium distichum) for impact analysis[J]. Tree-Ring Bulletin, 1984(44): 39-43. |
[29] | CANNY M. Vessel contents during transpiration: embolisms and refilling[J]. Am J Bot, 1997, 84(9):1223. |
[30] | CHOAT B, BALL M C, LULY J G, et al. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia[J]. Trees, 2005, 19(3):305-311.DOI: 10.1007/s00468-004-0392-1. |
[31] | CHEN J W, ZHANG Q, CAO K F. Inter-species variation of photosynthetic and xylem hydraulic traits in the deciduous and evergreen Euphorbiaceae tree species from a seasonally tropical forest in south-western China[J]. Ecol Res, 2009, 24(1):65-73.DOI: 10.1007/s11284-008-0482-4. |
[32] | 谭凤森. 桂西南北热带喀斯特季雨林木本植物的水力学特征研究[D]. 南宁: 广西大学, 2019. |
TAN F S. Study on hydraulic characteristics of woody plants in tropical Karst monsoon forest in northwest Guangxi[D]. Nanning: Guangxi University, 2019. | |
[33] | 刘晓静, 赵平, 王权, 等. 树高对马占相思整树水分利用的效应[J]. 应用生态学报, 2009, 20(1):13-19. |
LIU X J, ZHAO P, WANG Q, et al. Effects of tree height on whole-tree water use of Acacia mangium[J]. Chin J Appl Ecol, 2009, 20(1):13-19. | |
[34] | 赵平, 孙谷畴, 倪广艳, 等. 成熟马占相思水力导度对水分利用和光合响应的季节性差异[J]. 应用生态学报, 2013, 24(1):49-56. |
ZHAO P, SUN G C, NI G Y, et al. Seasonal differences in the leaf hydraulic conductance of mature Acacia mangium in response to its leaf water use and photosynthesis[J]. Chin J Appl Ecol, 2013, 24(1):49-56.DOI: 10.13287/j.1001-9332.2013.0126. | |
[35] | 倪鸣源. 中亚热带喀斯特天然林树种枝条木质部性状与生长速率的相关性研究[D]. 南宁: 广西大学, 2021. |
NI M Y. Correlation between xylem characteristics and growth rate of tree branches in Karst natural forest in central subtropical zone[D]. Nanning: Guangxi University, 2021.DOI: 10.27034/d.cnki.ggxiu.2021.001287. | |
[36] | HACKE U G, SPICER R, SCHREIBER S G, et al. An ecophysiological and developmental perspective on variation in vessel diameter[J]. Plant Cell Environ, 2017, 40(6):831-845.DOI: 10.1111/pce.12777. |
[37] | 樊大勇, 谢宗强. 木质部导管空穴化研究中的几个热点问题[J]. 植物生态学报, 2004, 28(1):126-132. |
FAN D Y, XIE Z Q. Several controversial viewpoints in studying the cavitation of xylem vessels[J]. Acta Phytoecol Sin, 2004, 28(1):126-132. | |
[38] | 陈昭. 润楠属枝条和叶片的水力特征及协同关系[D]. 南宁: 广西大学, 2018. |
CHEN Z. Hydraulic characteristics and synergistic relationship of branches and leaves of Machilus[D]. Nanning: Guangxi University, 2018. | |
[39] | 陈模舜, 柯世省, 杨勇宇, 等. 珍稀濒危植物天台鹅耳枥营养器官的解剖学研究[J]. 浙江林业科技, 2010, 30(5):14-19. |
CHEN M S, KE S S, YANG Y Y, et al. Anatomical study on vegetative organs of Carpinus tientaiensis[J]. J Zhejiang For Sci Technol, 2010, 30(5):14-19.DOI: 10.3969/j.issn.1001-3776.2010.05.004. | |
[40] | 韩丽娟, 周春丽, 吴树明. 国产胡桃科次生木质部导管分子的比较解剖及其系统位置的讨论[J]. 西北植物学报, 2002, 22(6):146-151,296. |
HAN L J, ZHOU C L, WU S M. Comparative anatomical studies on the vessel elements in the secondary xylem of Juglandaceae from China and discussion on their evolutionary position[J]. Acta Bot Boreali Occidentalia Sin, 2002, 22(6):146-151,296.DOI: 10.3321/j.issn:1000-4025.2002.06.024. | |
[41] | 张瑞婷, 杨金艳, 阮宏华. 树干液流对环境变化响应研究的整合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5):113-120. |
ZHANG R T, YANG J Y, RUAN H H. Meta-analyses of responses of sap flow to changes in environmental factors[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(5):113-120.DOI: 10.12302/j.issn.1000-2006.202101029. | |
[42] | 王连春. 酸枣荆条液流特征及其耗水尺度扩展研究[D]. 北京: 北京林业大学, 2013. |
WANG L C. Study on the characteristics of the sap flow of Vitex spinosa and the expansion of its water consumption scale[D]. Beijing: Beijing Forestry University, 2013. | |
[43] | 袁星明. 湘西石漠化地区不同生境下三种乔木的树干液流特征[D]. 长沙: 中南林业科技大学, 2022.DOI: 10.27662/d.cnki.gznlc.2022.000075. |
YUAN X M. Characteristics of sap flow of three kinds of trees in different habitats in rocky desertification areas of western Hunan[D]. Changsha: Central South University of Forestry & Technology, 2022.DOI: 10.27662/d.cnki.gznlc.2022.000075. | |
[44] | 宋波, 董豪, 全飞, 等. 橡胶树干CO2释放速率垂直变化及其与树干液流和木质部结构间的关系[J]. 热带生物学报, 2022, 13(1):1-6. |
SONG B, DONG H, QUAN F, et al. Vertical variation of stem CO2 efflux and its relationship with sap flow and xylem structure of rubber trees(Hevea brasiliensis)[J]. J Trop Biol, 2022, 13(1):1-6.DOI: 10.15886/j.cnki.rdswxb.2022.01.001. | |
[45] | 王秀伟, 毛子军. 输导组织结构对液流速度和树干CO2释放通量的影响[J]. 北京林业大学学报, 2013, 35(4):9-15. |
WANG X W, MAO Z J. Effects of conducting tissue structure on sap flow density and stem CO2 efflux[J]. J Beijing For Univ, 2013, 35(4):9-15.DOI: 10.13332/j.1000-1522.2013.04.016. | |
[46] | 刘春鹏, 马长明, 王连春, 等. 酸枣荆条耗水特征及其茎木质部解剖构造[J]. 水土保持通报, 2017, 37(5):92-97. |
LIU C P, MA C M, WANG L C, et al. Water-consumption characteristics and stem xylem anatomical structure of Zizyphus jujuba and Vitex negundo var.heterophylla[J]. Bull Soil Water Conserv, 2017, 37(5):92-97.DOI: 10.13961/j.cnki.stbctb.2017.05.016. | |
[47] | 赵培强, 赵平, 牛俊峰, 等. 华南地区常见树种导管特征与树干液流的关系[J]. 热带亚热带植物学报, 2014, 22(6):537-548. |
ZHAO P Q, ZHAO P, NIU J F, et al. Relationship between vessel characteristics and sap flow of eight subtropical tree species[J]. J Trop Subtrop Bot, 2014, 22(6):537-548.DOI: 10.11926/j.issn.1005-3395.2014.06.001. | |
[48] | 方菁, 叶琳峰, 陈森, 等. 自然和人工生境被子植物枝木质部结构与功能差异[J]. 植物生态学报, 2021, 45(6):650-658. |
FANG J, YE L F, CHEN S, et al. Differences in anatomical structure and hydraulic function of xylem in branches of angiosperms in field and garden habitats[J]. Chin J Plant Ecol, 2021, 45(6):650-658.DOI: 10.17521/cjpe.2020.0430. | |
[49] | 董彦君, 李宗善, 陈颖, 等. 黄耆属草本植物根部导管结构对环境因子的响应[J]. 生态学杂志, 2023, 42(12):2936-2943. |
DONG Y J, LI Z S, CHEN Y, et al. Effects of environmental factors on root vessel anatomical traits of Astragalus herbs[J]. Chin J Ecol, 2023, 42(12):2936-2943.DOI: 10.13292/j.1000-4890.202312.012. | |
[50] | 张新英, 曹宛虹. 生长在不同生境下的沙棘次生木质部解剖学的研究[J]. 植物学报, 1990, 32(12):909-915,993-994. |
ZHANG X Y, CAO W H. Studies on the secondary xylem anatomy of Hippophae rhamnoides under different habitats[J]. J Integr Plant Biol, 1990, 32(12):909-915,993-994. | |
[51] | 张海昕. 几个杨属无性系木质部导管结构与栓塞脆弱性研究[D]. 杨凌: 西北农林科技大学, 2013. |
ZHANG H X. Study on vessel structure and embolism vulnerability of xylem of several Populus clones[D]. Yangling: Northwest A & F University, 2013. | |
[52] | 张硕新, 申卫军, 张远迎, 等. 几个抗旱树种木质部栓塞脆弱性的研究[J]. 西北林学院学报, 1997, 12(2): 1-6. |
ZHANG S X, SHEN W J, ZHANG Y Y, et al. The vulnerability of xylem embolism in twigs of some drought-resistent tree species[J]. Journal of Northwest Forestry College, 1997, 12(2): 1-6. DOI:CNKI:SUN:XBLX.0.1997-02-000. | |
[53] | 艾绍水, 李秧秧, 陈佳村, 等. 陕北沙地3种典型灌木根木质部解剖结构及水力特性[J]. 应用生态学报, 2015, 26(11):3277-3284. |
AI S S, LI Y Y, CHEN J C, et al. Root anatomical structure and hydraulic traits of three typical shrubs on the sandy lands of northern Shaanxi Province,China[J]. Chin J Appl Ecol, 2015, 26(11):3277-3284.DOI: 10.13287/j.1001-9332.20150921.045. | |
[54] | ZHU S D, CHEN Y J, FU P L, et al. Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability[J]. Tree Physiol, 2017, 37(11):1469-1477.DOI: 10.1093/treephys/tpx094. |
[55] | 周朝彬, 辛慧慧, 宋于洋. 梭梭次生木质部解剖特征及其可塑性研究[J]. 西北林学院学报, 2014, 29(2):207-212. |
ZHOU C B, XIN H H, SONG Y Y. Secondary xylem anatomical structure and its plasticity of Haloxylon ammodendron[J]. J Northwest For Univ, 2014, 29(2):207-212.DOI: 10.3969/j.issn.1001-7461.2014.02.37. | |
[56] | 刘娟娟, 李吉跃, 王继强. 北京城市绿化树种的水力结构特征[J]. 北京林业大学学报, 2006, 28(S1):38-46. |
LIU J J, LI J Y, WANG J Q. Hydraulic architecture characteristics of urban afforestation trees in Beijing[J]. J Beijing For Univ, 2006, 28(S1):38-46. DOI:10.3969/j.issn.1000-2006.2008.06.032. |
[1] | 刘夏岚, 宋子琪, 胡凤荣, 尚旭岚. 青钱柳二倍体和四倍体叶特征比较研究[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 76-84. |
[2] | 金点坤, 吕卓, 王曙光, 龙昊, 张冲, 王声翰. 6种竹子叶器官的解剖结构比较[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 109-120. |
[3] | 向丽, 尹佟明, 陈赢男. 南京地区簸箕柳雌、雄花序建成动态观察[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 154-162. |
[4] | 杨雅运, 傅华君, 苏佳露, 万雅雯, 张春霞, 丁雨龙, 林树燕. 竹叶去硅方法的筛选及其细胞学研究[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 74-80. |
[5] | 赵云芳,代佳灵,高素萍,雷霆,蒋雨兰,张芯周,朱俞婷. 蓝花丹花芽分化外部形态与解剖结构的关系[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 203-208. |
[6] | 韩明慧,彭方仁,邓秋菊,谭鹏鹏. 薄壳山核桃雌雄花芽分化外部形态与内部结构的关系[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 1-7. |
[7] | 杨鑫,张高洁,姚继周,于水强,方月丰. 水杉人工林细根解剖结构和菌根侵染研究[J]. 南京林业大学学报(自然科学版), 2016, 40(06): 97-102. |
[8] | 任媛媛,刘艳萍,王念,罗晓雅,翟晓巧. 9种屋顶绿化阔叶植物叶片解剖结构与抗旱性的关系[J]. 南京林业大学学报(自然科学版), 2014, 38(04): 64-68. |
[9] | 吴小芹,郑玲,叶建仁. 黑松3种菌根解剖结构差异及其与生长的关系[J]. 南京林业大学学报(自然科学版), 2012, 36(01): 11-15. |
[10] | 洑香香,冯岚,尚旭岚,杨万霞,方升佐. 青钱柳雌、雄花芽分化进程的形态解剖特征观察[J]. 南京林业大学学报(自然科学版), 2011, 35(06): 17-22. |
[11] | 陈昕,曹珊珊,张红星. 黄山花楸种子休眠解除技术及其解剖学观察[J]. 南京林业大学学报(自然科学版), 2011, 35(04): 23-26. |
[12] | 徐超,吴小芹*,张红岩. D精氨酸对菌根化马尾松植株内源多胺和抗旱能力的影响[J]. 南京林业大学学报(自然科学版), 2009, 33(04): 19-23. |
[13] | 王芳1,张静2,邢世岩1*,胡爱华1,韩克杰1. 银杏品种枝桠管胞形态径向变化趋势研究[J]. 南京林业大学学报(自然科学版), 2009, 33(03): 99-102. |
[14] | 卢龙斗1,常生辉1,高武军1,邓传良1,洪达1,向其柏2*. 木犀属植物叶片微形态结构[J]. 南京林业大学学报(自然科学版), 2008, 32(06): 52-56. |
[15] | 郑玲,吴小芹*. 植物茵根共生体结构的研究进展[J]. 南京林业大学学报(自然科学版), 2008, 32(05): 135-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||