喀斯特原生林9个树种水力学性状与解剖结构对树干液流的影响

叶雨艳, 丁访军, 吴鹏, 周华, 李源永, 周汀, 崔迎春

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6) : 111-120.

PDF(1308 KB)
PDF(1308 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6) : 111-120. DOI: 10.12302/j.issn.1000-2006.202302010
研究论文

喀斯特原生林9个树种水力学性状与解剖结构对树干液流的影响

作者信息 +

Effects of hydraulics and anatomical structure on sap flow of nine tree species in Karst primary forest

Author information +
文章历史 +

摘要

【目的】揭示茂兰喀斯特森林主要树种水力结构和解剖结构特征及其对树干液流密度的影响。【方法】以茂兰喀斯特森林9个树种为研究对象,用“冲洗法”测定其导水率(Kh)、比导率(Ks)、胡伯尔值(Hv);以解剖学方法测定其导管面积(A)、导管直径(D)、导管水力学直径(Dh)、导管密度(WD)、管胞壁厚度(WVD)等解剖结构参数;采用热扩散探针法监测树干液流密度(Js),并对已测的几个指标进行排序,比较各树种抗旱能力强弱。【结果】①Kh从大到小表现为南酸枣(Choerospondias axillaris)>柿(Diospyros kaki)>山乌桕(Triadica cochin chinensis)>化香(Platycarya strobilacea)>鹅耳枥(Carpinus turczaninovii)>新木姜子(Neolitsea aurata)>山矾(Symplocos sumuntia)>天峨槭(Acer wangchii)>润楠(Machilus nanmu);Ks从大到小表现为南酸枣>山乌桕>柿>化香>鹅耳枥>天峨槭>新木姜子>山矾>润楠;Hv表现为鹅耳枥>新木姜子>润楠>山矾>化香>山乌桕>天峨槭>南酸枣>柿,落叶树种的Kh和Ks大于常绿树种;②除鹅耳枥外,落叶树种的导管面积、直径、水力直径均大于常绿树种,而导管密度则相反;③各树种的Kh、Ks、Hv与Js的相关性均不显著(P>0.05),山乌桕树干液流密度与水力直径呈显著正相关(P<0.05),而天峨槭与水力直径呈显著负相关(P<0.05),山矾的液流密度与导管密度呈显著正相关(P<0.05),其余树种的解剖结构与树干液流密度相关性均不显著(P>0.05);④树种抗旱能力随导管直径的增大而增加,从大到小表现为南酸枣>山乌桕>柿>化香>鹅耳枥>新木姜子>山矾>润楠>天峨槭。【结论】茂兰喀斯特森林中落叶树种的导水、输水和抗旱能力均强于常绿树种。水分充足时,水力学性状对树干液流密度的影响较小,而解剖结构对其影响存在种间差异;优势树种通过增大单位横截面积上的蒸腾拉力抵消树高带来水分运输阻力,为叶片蒸腾和光合作用供给水分。在进行喀斯特植被恢复时应综合考虑落叶、常绿及林分垂直结构的群落配比。

Abstract

【Objective】This study aims to explore the hydraulic and anatomical characteristics of predominant tree species in the Maolan Karst Forest and their impact on sap flow density.【Method】The hydraulic conductivity (Kh), specific conductivity (Ks), and Huber value (Hv) of nine tree species in the Maolan Karst Forest were determined through the ‘washing method’. Anatomical structure parameters such as vessel area (A), vessel diameter (D), hydraulic vessel diameter (Dh), vessel density (WD), and vessel wall thickness (WVD) were assessed using anatomical techniques. The thermal diffusion probe method was employed to monitor the sap flow density (Js) of the tree trunks. The measured indexes were subsequently ranked via the subordinate function method to discern drought resistance.【Result】(1)The Kh value behaved Choerospondias axillaris> Diospyros kaki> Triadica cochinchinensis> Platycarya strobilacea > Carpinus turczaninovii > Neolitsea aurata > Symplocos sumuntia > Acer wangchii> Machilus nanmu, the Ks value behaved C. axillaris > T. cochinchinensis > D. kaki > P. strobilacea > C. turczaninovii > A. wangchii > N. aurata > S. sumuntia> M. nanmu, and the Hv value behaved C. turczaninovii > N. aurata > M. nanmu > S. sumuntia > P. strobilacea > T. cochinchinensis > A. wangchii > C. axillaris > D. kaki, the Kh and Ks values of deciduous trees are higher than those of evergreen trees. (2) In addition to C. turczaninowii, the vessel area, vessel diameter and hydraulic diameter value of eight trees revealed that deciduous trees were lager than evergreen trees. In contrast, the vessel density of evergreen trees was larger than that of deciduous trees; overall, the relevance of nine anatomical parameters varied between trees. (3) No significant correlation was found between the Kh, Ks, Hv of the nine trees and sap flow density (P<0.05), Sap flow density of T. chinensis showed a significantly positive correlation with vessel hydraulic diameter(P<0.05), while that of A. wangchii indicated a significantly negative correlation(P<0.05). Conversely, the sap flow density of S. sumuntia positively correlated with vessel density (P<0.05), but the sap flow density of the remaining six species didn’t significantly correlate with anatomical structure parameters (P>0.05); (4) Drought resistance of the nine species increased with vessel diameter, ranking as follows: C. axillaris> T. cochin chinensis > D. kaki> P. strobilacea > C. turczaninovii > N. aurata> S. sumuntia> M. nanmu> A. wangchii.【Conclusion】The water conductivity, water transport, and drought resistance of the nine studied species were superior to evergreens. While water availability was ample, the hydraulic traits minimally impacted the sap flow density, whereas the anatomical structure variably influenced it. The dominant species managed to counterbalance the water transport resistance caused by tree height by boosting transpiration tension per unit cross-sectional area, thus facilitating leaf transpiration and photosynthesis. For the effective restoration of Karst vegetation, it is essential to consider the community ratio of deciduous to evergreen species and the stand vertical structure.

关键词

茂兰喀斯特森林 / 树干液流密度 / 水力学性状 / 解剖结构 / 抗旱能力

Key words

Maolan Karst forest / sap flow density / hydraulic trait / anatomy structure / drought resistance capacity

引用本文

导出引用
叶雨艳, 丁访军, 吴鹏, . 喀斯特原生林9个树种水力学性状与解剖结构对树干液流的影响[J]. 南京林业大学学报(自然科学版). 2024, 48(6): 111-120 https://doi.org/10.12302/j.issn.1000-2006.202302010
YE Yuyan, DING Fangjun, WU Peng, et al. Effects of hydraulics and anatomical structure on sap flow of nine tree species in Karst primary forest[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(6): 111-120 https://doi.org/10.12302/j.issn.1000-2006.202302010
中图分类号: S718.5   

参考文献

[1]
HUNTINGTON T G. Evidence for intensification of the global water cycle:review and synthesis[J]. J Hydrol, 2006, 319(1/2/3/4):83-95.DOI: 10.1016/j.jhydrol.2005.07.003.
[2]
TYREE M T, SPERRY J S. Vulnerability of xylem to cavitation and embolism[J]. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40:19-36.DOI: 10.1146/annurev.pp.40.060189.000315.
[3]
洪震, 刘术新, 洪琮浩, 等. 5种造林树种对干旱胁迫的抗性应答[J]. 南京林业大学学报(自然科学版), 2021, 45(2):111-119.
HONG Z, LIU S X, HONG C H, et al. Resistance response of five afforestation tree species under drought stress[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(2):111-119.DOI: 10.11833/j.issn.2095-0756.2016.04.012.
[4]
JUMP A S, RUIZ-BENITO P, GREENWOOD S, et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback[J]. Glob Chang Biol, 2017, 23(9):3742-3757.DOI: 10.1111/gcb.13636.
[5]
CHOAT B, JANSEN S, BRODRIBB T J, et al. Global convergence in the vulnerability of forests to drought[J]. Nature, 2012, 491(7426):752-755.DOI: 10.1038/nature11688.
[6]
刘娟娟, 张建国, 李吉跃, 等. CO2浓度升高对4种乔木幼树水力结构的影响[J]. 生态学杂志, 2017, 36(7):1769-1776.
LIU J J, ZHANG J G, LI J Y, et al. Influences of elevated CO2 concentration on hydraulic architecture of seedlings of 4 tree species[J]. Chin J Ecol, 2017, 36(7):1769-1776.DOI: 10.13292/j.1000-4890.201707.037.
[7]
郑茹萍, 张马啸, 吴亚岚, 等. 杉木不同形态特征对水力结构的影响[J]. 森林与环境学报, 2023, 43(1):17-25.
ZHENG R P, ZHANG M X, WU Y L, et al. Effects of different morphological characteristics on hydraulic architecture of Chinese fir[J]. J For Environ, 2023, 43(1):17-25.DOI: 10.13324/j.cnki.jfcf.2023.01.003.
[8]
李吉跃, 翟洪波. 木本植物水力结构与抗旱性[J]. 应用生态学报, 2000, 11(2):301-305.
LI J Y, ZHAI H B. Hydraulic architecture and drought resistance of woody plants[J]. Chin J Appl Ecol, 2000, 11(2):301-305.DOI: 10.13287/j.1001-9332.2000.0079.
[9]
STEPPE K, VANDEGEHUCHTE M W, TOGNETTI R, et al. Sap flow as a key trait in the understanding of plant hydraulic functioning[J]. Tree Physiol, 2015, 35(4):341-345.DOI: 10.1093/treephys/tpv033.
[10]
OREN R, PHILLIPS N, EWERS B E, et al. Sap-flux-scaled transpiration responses to light,vapor pressure deficit,and leaf area reduction in a flooded Taxodium distichum forest[J]. Tree Physiol, 1999, 19(6):337-347.DOI: 10.1093/treephys/19.6.337.
[11]
龙翠玲. 不同地形部位喀斯特森林物种多样性的比较研究:以贵州茂兰自然保护区为例[J]. 中国岩溶, 2007, 26(1):55-60.
LONG C L. Comparison of species diversity in Karst forest among different topography sites: a case study in Maolan Natural Reserve,Guizhou Province[J]. Carsologica Sin, 2007, 26(1):55-60.DOI: 10.3969/j.issn.1001-4810.2007.01.009.
[12]
朱秀勤. 石林溶丘洼地区不同恢复阶段植物水分利用的稳定同位素研究[D]. 昆明: 云南师范大学, 2014.
ZHU X Q. Study on stable isotopes of plant water use in different restoration stages in Rrongqiuwa area of Shilin[D]. Kunming: Yunnan Normal University, 2014.
[13]
梁千慧. 不同水分条件下黑麦草对喀斯特土壤深度的生长与生理响应[D]. 重庆: 西南大学, 2016.
LIANG Q H. Growth and physiological response of Lolium perenne to Karst soil depth under different water conditions[D]. Chongqing: Southwest University, 2016.
[14]
张启伟. 北热带喀斯特山地不同坡位木本植物的水力结构与功能[D]. 南宁: 广西大学, 2021.
ZHANG Q W. Hydraulic structure and function of woody plants at different slope positions in northern tropical Karst mountainous areas[D]. Nanning: Guangxi University, 2021.DOI: 10.27034/d.cnki.ggxiu.2021.000052.
[15]
程娟, 丁访军, 谭正洪, 等. 贵州茂兰喀斯特森林两树种叶片气孔形态特征及其对蒸腾的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5):125-132.
CHENG J, DING F J, TAN Z H, et al. Leaf stomatal morphological characteristics and their effects on transpiration for two tree species in Maolan Karst area,Guizhou Province[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(5):125-132.DOI: 10.12302/j.issn.1000-2006.202010005.
[16]
袁丛军, 程娟, 丁访军, 等. 喀斯特森林优势树种蒸腾特征及其对气孔和气象因子的响应[J]. 中南林业科技大学学报, 2022, 42(7):96-105.
YUAN C J, CHENG J, DING F J, et al. Transpiration characteristics of dominant tree species and their responses to stomatal and meteorological factors in Karst regions[J]. J Cent South Univ For Technol, 2022, 42(7):96-105.DOI: 10.14067/j.cnki.1673-923x.2022.07.011.
[17]
李成龙, 刘延惠, 丁访军, 等. 茂兰喀斯特森林小果润楠蒸腾特征及影响因素[J]. 南京林业大学学报(自然科学版), 2019, 43(3):51-58.
LI C L, LIU Y H, DING F J, et al. Transpiration characteristics and influencing factors of the dominant species of Machilus microcarpa in Maolan Karst forest[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(3):51-58.DOI: 10.3969/j.issn.1000-2006.201808018.
[18]
吴鹏, 杨文斌, 崔迎春, 等. 喀斯特区天峨槭(Acer wangchii)树干液流特征及其与环境因子的相关分析[J]. 生态学报, 2017, 37(22):7552-7567.
WU P, YANG W B, CUI Y C, et al. Characteristics of sap flow and correlation analysis with environmental factors of Acer wangchii in the Karst area[J]. Acta Ecol Sin, 2017, 37(22):7552-7567.DOI: 10.5846/stxb201609251934.
[19]
GRANIER A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J]. Tree Physiol, 1987, 3(4):309-320.DOI: 10.1093/treephys/3.4.309.
[20]
樊大勇, 谢宗强, 赵常明, 等. 一种测定木本植物最大水力导度的装置及其使用方法[P]. 2015-11-11.
FAN D Y, XIE Z Q, ZHAO C M. A device and method for measuring the maximum hydraulic conductivity of woody plants[P]. 2015-11-11.
[21]
熊仕发, 吴立文, 陈益存, 等. 不同种源白栎幼苗叶片对干旱胁迫的响应及抗旱性评价[J]. 生态学杂志, 2020, 39(12):3924-3933.
XIONG S F, WU L W, CHEN Y C, et al. Response of leaf of Quercus fabri seedlings from different provenances to drought stress and drought resistance evaluation[J]. Chin J Ecol, 2020, 39(12):3924-3933.DOI: 10.13292/j.1000-4890.202012.022.
[22]
车路平. 14个造林树种木质部、叶片解剖特征及抗旱性评价[D]. 泰安: 山东农业大学, 2022.
CHE L P. Anatomical characteristics and drought resistance evaluation of xylem and leaves of 14 afforestation tree species[D]. Taian: Shandong Agricultural University, 2022.
[23]
FAN D Y, JIE S L, LIU C C, et al. The trade-off between safety and efficiency in hydraulic architecture in 31 woody species in a Karst area[J]. Tree Physiol, 2011, 31(8):865-877.DOI: 10.1093/treephys/tpr076.
[24]
赵延涛, 许洺山, 张志浩, 等. 浙江天童常绿阔叶林不同演替阶段木本植物的水力结构特征[J]. 植物生态学报, 2016, 40(2):116-126.
ZHAO Y T, XU M S, ZHANG Z H, et al. Hydraulic architecture of evergreen broad-leaved woody plants at different successional stages in Tiantong National Forest Park,Zhejiang Province,China[J]. Chin J Plant Ecol, 2016, 40(2):116-126.DOI: 10.3724/SP.J.1258.2014.00078.
[25]
王佳敏, 成应杰, 陈金艺, 等. 模拟不同降雨时间格局下喀斯特垂直异质生境对桢楠幼苗光合和生长的影响[J]. 生态学报, 2021, 41(18):7348-7356.
WANG J M, CHENG Y J, CHEN J Y, et al. Effects of simulated Karst vertical heterogeneous habitat on photosynthesis and growth of Phoebe zhennan S.Lee seedlings under different rainfall temporal pattern[J]. Acta Ecol Sin, 2021, 41(18):7348-7356.DOI: 10.5846/stxb202007131824.
[26]
李吉跃, 翟洪波, 刘晓燕. 树木水力结构特征的昼夜变化规律[J]. 北京林业大学学报, 2002, 24(4):39-44.
LI J Y, ZHAI H B, LIU X Y. Day and night change of tree hydraulic architecture characteristics[J]. J Beijing For Univ, 2002, 24(4):39-44.DOI: 10.3321/j.issn:1000-1522.2002.04.009.
[27]
黄恺翔, 俞重阳, 钱海蓉, 等. 鸡公山国家级自然保护区散孔材、环孔材树种木质部结构和功能的关系[J]. 浙江农林大学学报, 2022, 39(2):244-251.
HUANG K X, YU C Y, QIAN H R, et al. Relationship between xylem structure and function of diffuse-porous and ring-porous wood species in Jigongshan Nature Reserve[J]. J Zhejiang A F Univ, 2022, 39(2):244-251.DOI: 10.11833/j.issn.2095-0756.20210628.
[28]
PARENDS L A, EWEL K C. Usefulness of annual growth rings of cypress trees (Taxodium distichum) for impact analysis[J]. Tree-Ring Bulletin, 1984(44): 39-43.
[29]
CANNY M. Vessel contents during transpiration: embolisms and refilling[J]. Am J Bot, 1997, 84(9):1223.
[30]
CHOAT B, BALL M C, LULY J G, et al. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia[J]. Trees, 2005, 19(3):305-311.DOI: 10.1007/s00468-004-0392-1.
[31]
CHEN J W, ZHANG Q, CAO K F. Inter-species variation of photosynthetic and xylem hydraulic traits in the deciduous and evergreen Euphorbiaceae tree species from a seasonally tropical forest in south-western China[J]. Ecol Res, 2009, 24(1):65-73.DOI: 10.1007/s11284-008-0482-4.
[32]
谭凤森. 桂西南北热带喀斯特季雨林木本植物的水力学特征研究[D]. 南宁: 广西大学, 2019.
TAN F S. Study on hydraulic characteristics of woody plants in tropical Karst monsoon forest in northwest Guangxi[D]. Nanning: Guangxi University, 2019.
[33]
刘晓静, 赵平, 王权, 等. 树高对马占相思整树水分利用的效应[J]. 应用生态学报, 2009, 20(1):13-19.
LIU X J, ZHAO P, WANG Q, et al. Effects of tree height on whole-tree water use of Acacia mangium[J]. Chin J Appl Ecol, 2009, 20(1):13-19.
[34]
赵平, 孙谷畴, 倪广艳, 等. 成熟马占相思水力导度对水分利用和光合响应的季节性差异[J]. 应用生态学报, 2013, 24(1):49-56.
ZHAO P, SUN G C, NI G Y, et al. Seasonal differences in the leaf hydraulic conductance of mature Acacia mangium in response to its leaf water use and photosynthesis[J]. Chin J Appl Ecol, 2013, 24(1):49-56.DOI: 10.13287/j.1001-9332.2013.0126.
[35]
倪鸣源. 中亚热带喀斯特天然林树种枝条木质部性状与生长速率的相关性研究[D]. 南宁: 广西大学, 2021.
NI M Y. Correlation between xylem characteristics and growth rate of tree branches in Karst natural forest in central subtropical zone[D]. Nanning: Guangxi University, 2021.DOI: 10.27034/d.cnki.ggxiu.2021.001287.
[36]
HACKE U G, SPICER R, SCHREIBER S G, et al. An ecophysiological and developmental perspective on variation in vessel diameter[J]. Plant Cell Environ, 2017, 40(6):831-845.DOI: 10.1111/pce.12777.
[37]
樊大勇, 谢宗强. 木质部导管空穴化研究中的几个热点问题[J]. 植物生态学报, 2004, 28(1):126-132.
FAN D Y, XIE Z Q. Several controversial viewpoints in studying the cavitation of xylem vessels[J]. Acta Phytoecol Sin, 2004, 28(1):126-132.
[38]
陈昭. 润楠属枝条和叶片的水力特征及协同关系[D]. 南宁: 广西大学, 2018.
CHEN Z. Hydraulic characteristics and synergistic relationship of branches and leaves of Machilus[D]. Nanning: Guangxi University, 2018.
[39]
陈模舜, 柯世省, 杨勇宇, 等. 珍稀濒危植物天台鹅耳枥营养器官的解剖学研究[J]. 浙江林业科技, 2010, 30(5):14-19.
CHEN M S, KE S S, YANG Y Y, et al. Anatomical study on vegetative organs of Carpinus tientaiensis[J]. J Zhejiang For Sci Technol, 2010, 30(5):14-19.DOI: 10.3969/j.issn.1001-3776.2010.05.004.
[40]
韩丽娟, 周春丽, 吴树明. 国产胡桃科次生木质部导管分子的比较解剖及其系统位置的讨论[J]. 西北植物学报, 2002, 22(6):146-151,296.
HAN L J, ZHOU C L, WU S M. Comparative anatomical studies on the vessel elements in the secondary xylem of Juglandaceae from China and discussion on their evolutionary position[J]. Acta Bot Boreali Occidentalia Sin, 2002, 22(6):146-151,296.DOI: 10.3321/j.issn:1000-4025.2002.06.024.
[41]
张瑞婷, 杨金艳, 阮宏华. 树干液流对环境变化响应研究的整合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5):113-120.
ZHANG R T, YANG J Y, RUAN H H. Meta-analyses of responses of sap flow to changes in environmental factors[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(5):113-120.DOI: 10.12302/j.issn.1000-2006.202101029.
[42]
王连春. 酸枣荆条液流特征及其耗水尺度扩展研究[D]. 北京: 北京林业大学, 2013.
WANG L C. Study on the characteristics of the sap flow of Vitex spinosa and the expansion of its water consumption scale[D]. Beijing: Beijing Forestry University, 2013.
[43]
袁星明. 湘西石漠化地区不同生境下三种乔木的树干液流特征[D]. 长沙: 中南林业科技大学, 2022.DOI: 10.27662/d.cnki.gznlc.2022.000075.
YUAN X M. Characteristics of sap flow of three kinds of trees in different habitats in rocky desertification areas of western Hunan[D]. Changsha: Central South University of Forestry & Technology, 2022.DOI: 10.27662/d.cnki.gznlc.2022.000075.
[44]
宋波, 董豪, 全飞, 等. 橡胶树干CO2释放速率垂直变化及其与树干液流和木质部结构间的关系[J]. 热带生物学报, 2022, 13(1):1-6.
SONG B, DONG H, QUAN F, et al. Vertical variation of stem CO2 efflux and its relationship with sap flow and xylem structure of rubber trees(Hevea brasiliensis)[J]. J Trop Biol, 2022, 13(1):1-6.DOI: 10.15886/j.cnki.rdswxb.2022.01.001.
[45]
王秀伟, 毛子军. 输导组织结构对液流速度和树干CO2释放通量的影响[J]. 北京林业大学学报, 2013, 35(4):9-15.
WANG X W, MAO Z J. Effects of conducting tissue structure on sap flow density and stem CO2 efflux[J]. J Beijing For Univ, 2013, 35(4):9-15.DOI: 10.13332/j.1000-1522.2013.04.016.
[46]
刘春鹏, 马长明, 王连春, 等. 酸枣荆条耗水特征及其茎木质部解剖构造[J]. 水土保持通报, 2017, 37(5):92-97.
LIU C P, MA C M, WANG L C, et al. Water-consumption characteristics and stem xylem anatomical structure of Zizyphus jujuba and Vitex negundo var.heterophylla[J]. Bull Soil Water Conserv, 2017, 37(5):92-97.DOI: 10.13961/j.cnki.stbctb.2017.05.016.
[47]
赵培强, 赵平, 牛俊峰, 等. 华南地区常见树种导管特征与树干液流的关系[J]. 热带亚热带植物学报, 2014, 22(6):537-548.
ZHAO P Q, ZHAO P, NIU J F, et al. Relationship between vessel characteristics and sap flow of eight subtropical tree species[J]. J Trop Subtrop Bot, 2014, 22(6):537-548.DOI: 10.11926/j.issn.1005-3395.2014.06.001.
[48]
方菁, 叶琳峰, 陈森, 等. 自然和人工生境被子植物枝木质部结构与功能差异[J]. 植物生态学报, 2021, 45(6):650-658.
FANG J, YE L F, CHEN S, et al. Differences in anatomical structure and hydraulic function of xylem in branches of angiosperms in field and garden habitats[J]. Chin J Plant Ecol, 2021, 45(6):650-658.DOI: 10.17521/cjpe.2020.0430.
[49]
董彦君, 李宗善, 陈颖, 等. 黄耆属草本植物根部导管结构对环境因子的响应[J]. 生态学杂志, 2023, 42(12):2936-2943.
DONG Y J, LI Z S, CHEN Y, et al. Effects of environmental factors on root vessel anatomical traits of Astragalus herbs[J]. Chin J Ecol, 2023, 42(12):2936-2943.DOI: 10.13292/j.1000-4890.202312.012.
[50]
张新英, 曹宛虹. 生长在不同生境下的沙棘次生木质部解剖学的研究[J]. 植物学报, 1990, 32(12):909-915,993-994.
ZHANG X Y, CAO W H. Studies on the secondary xylem anatomy of Hippophae rhamnoides under different habitats[J]. J Integr Plant Biol, 1990, 32(12):909-915,993-994.
[51]
张海昕. 几个杨属无性系木质部导管结构与栓塞脆弱性研究[D]. 杨凌: 西北农林科技大学, 2013.
ZHANG H X. Study on vessel structure and embolism vulnerability of xylem of several Populus clones[D]. Yangling: Northwest A & F University, 2013.
[52]
张硕新, 申卫军, 张远迎, 等. 几个抗旱树种木质部栓塞脆弱性的研究[J]. 西北林学院学报, 1997, 12(2): 1-6.
ZHANG S X, SHEN W J, ZHANG Y Y, et al. The vulnerability of xylem embolism in twigs of some drought-resistent tree species[J]. Journal of Northwest Forestry College, 1997, 12(2): 1-6. DOI:CNKI:SUN:XBLX.0.1997-02-000.
[53]
艾绍水, 李秧秧, 陈佳村, 等. 陕北沙地3种典型灌木根木质部解剖结构及水力特性[J]. 应用生态学报, 2015, 26(11):3277-3284.
AI S S, LI Y Y, CHEN J C, et al. Root anatomical structure and hydraulic traits of three typical shrubs on the sandy lands of northern Shaanxi Province,China[J]. Chin J Appl Ecol, 2015, 26(11):3277-3284.DOI: 10.13287/j.1001-9332.20150921.045.
[54]
ZHU S D, CHEN Y J, FU P L, et al. Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability[J]. Tree Physiol, 2017, 37(11):1469-1477.DOI: 10.1093/treephys/tpx094.
[55]
周朝彬, 辛慧慧, 宋于洋. 梭梭次生木质部解剖特征及其可塑性研究[J]. 西北林学院学报, 2014, 29(2):207-212.
ZHOU C B, XIN H H, SONG Y Y. Secondary xylem anatomical structure and its plasticity of Haloxylon ammodendron[J]. J Northwest For Univ, 2014, 29(2):207-212.DOI: 10.3969/j.issn.1001-7461.2014.02.37.
[56]
刘娟娟, 李吉跃, 王继强. 北京城市绿化树种的水力结构特征[J]. 北京林业大学学报, 2006, 28(S1):38-46.
LIU J J, LI J Y, WANG J Q. Hydraulic architecture characteristics of urban afforestation trees in Beijing[J]. J Beijing For Univ, 2006, 28(S1):38-46. DOI:10.3969/j.issn.1000-2006.2008.06.032.

基金

国家自然科学基金项目(31760240)

编辑: 郑琰燚
PDF(1308 KB)

Accesses

Citation

Detail

段落导航
相关文章

/