[22] |
HAIR J F, RISHER J J, SARSTEDT M, et al. When to use and how to report the results of PLS-SEM[J]. Eur Bus Rev, 2019, 31(1): 2-24. DOI: 10.1108/ebr-11-2018-0203.
|
[23] |
HUI D F, JACKSON R B. Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data[J]. New Phytol, 2006, 169(1): 85-93. DOI: 10.1111/j.1469-8137.2005.01569.x.
|
[24] |
CALEÑO-RUIZ B L, GARZÓN F, LÓPEZ-CAMACHO L, et al. Soil resources and functional trait trade-offs determine species biomass stocks and productivity in a tropical dry forest[J]. Front Vet Sci, 2023, 6: 1028359.DOI: 10.3389/ffgc.2023.1028359.
|
[25] |
王晓濛, 侯继华, 何念鹏. 中国植物群落生产力由东向西分布格局及其驱动因素[J]. 生态学报, 2023, 43(6):2488-2500.
|
|
WANG X M, HOU J H, HE N P, et al. Distribution pattern and driving factors of plant community productivity from east to west in China[J]. Acta Ecol Sin, 2023, 43(6): 2488-2500. DOI: 10.5846/stxb202203100578.
|
[26] |
GONMADJE C, PICARD N, GOURLET-FLEURY S, et al. Altitudinal filtering of large-tree species explains aboveground biomass variation in an Atlantic Central African rain forest[J]. J Trop Ecol, 2017, 33(2): 143-154. DOI: 10.1017/s0266467416000602.
|
[27] |
孙丽娜. 山西省森林生物量碳密度空间格局和影响因素研究[D]. 太原: 山西大学, 2020.
|
|
SUN L N. Spatial pattern and influencing factors of forest biomass carbon density in Shanxi Province[D]. Taiyuan: Shanxi University, 2020. DOI: 10.27284/d.cnki.gsxiu.2020.002024.
|
[28] |
PIEDALLU C, PEDERSOLI E, CHASTE E, et al. Optimal resolution of soil properties maps varies according to their geographical extent and location[J]. Geoderma, 2022, 412(15): 115723. DOI: 10.1016/j.geoderma.2022.115723.
|
[29] |
MALHI Y, WOOD D, BAKER T R, et al. The regional variation of aboveground live biomass in old-growth Amazonian forests[J]. Glob Change Biol, 2006, 12(7): 1107-1138. DOI: 10.1111/j.1365-2486.2006.01120.x.
|
[30] |
KITAYAMA K, AIBA S I. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo[J]. J Ecol, 2002, 90(1): 37-51. DOI: 10.1046/j.0022-0477.2001.00634.x.
|
[31] |
MOSER G, HERTEL D, LEUSCHNER C. Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis[J]. Ecosystems, 2007, 10: 924-935. DOI: 10.1007/s10021-007-9063-6.
|
[32] |
钱春花, 李明阳, 郑超. 苏南丘陵山区森林生物量时空变化驱动因素分析[J]. 江苏农业学报, 2021, 37(2):382-388.
|
|
QIAN C H, LI M Y, ZHENG C. Analysis on driving factors of spatiotemporal changes of forest biomass in hilly areas of southern Jiangsu[J]. Jiangsu J Agr Sci, 2021, 37(2):382-388.DOI:10.3969/j.issn.1000-4440.2021.02.014.
|
[33] |
PENG L, XU X J, LIAO X F, et al. Ampelocalamus luodianensis (Poaceae), a plant endemic to Karst, adapts to resource heterogeneity in differing microhabitats by adjusting its biomass allocation[J]. Glob Ecol Conserv, 2023, 41: e02374. DOI: 10.1016/j.gecco.2023.e02374.
|
[34] |
FIALA K, TUMA L, HOLUB P. Effect of nitrogen addition and drought on aboveground biomass of expanding tall grasses Calamagrostis epigejos and Arrhenatherum elatius[J]. Biologia, 2011, 66: 275-281. DOI: 10.2478/s11756-011-0001-x.
|
[35] |
GATTI R C, CASTALDI S, LINDSELL J A, et al. The impact of selective logging and clearcutting on forest structure, tree diversity and aboveground biomass of African tropical forests[J]. Ecol Res, 2014, 30(1): 119-132. DOI: 10.1007/s11284-014-1217-3.
|
[36] |
IMANI G, BOYEMBA F, LEWIS S, et al. Height-diameter allometry and aboveground biomass in tropical montane forests: insights from the Albertine Rift in Africa[J]. Plos One, 2017. 12(6): e0179653. DOI: 10.1371/journal.pone.0179653.
|
[37] |
WANG C T, SUN Y, CHEN H Y H, et al. Meta-analysis shows non-uniform responses of above-and belowground productivity to drought[J]. Sci Total Environ, 2021, 782: 146901. DOI: 10.1016/j.scitotenv.2021.146901.
|
[38] |
文国卫, 黄秋良, 吕增伟, 等. 气候变化情境下木荷潜在地理分布及生态适宜性分析[J]. 生态学报, 2023, 43(16): 1-10.
|
[1] |
芦伟, 余建平, 任海保, 等. 古田山中亚热带常绿阔叶林群落物种多样性的空间变异特征[J]. 生物多样性, 2018, 26(9):1023-1028.
|
|
LU W, YU J P, REN H B, et al. Spatial variation characteristics of species diversity of subtropical evergreen broad-leaved forest community in Gutian Mountain[J]. Biodivers Sci, 2018, 26(9): 1023-1028. DOI: 10.17520/biods.2018138.
|
[2] |
DIXON R K, SOLOMON A M, BROWN S, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144): 185-190. DOI: 10.1126/science.263.5144.185.
|
[3] |
HOUGHTON R A. Aboveground forest biomass and the global carbon balance[J]. Glob Change Biol, 2005, 11(6): 945-958. DOI: 10.1111/j.1365-2486.2005.00955.x.
|
[4] |
GONZALEZ-AKRE E, PIPONIOT C, LEPORE M, et al. Allodb: an R package for biomass estimation at globally distributed extratropical forest plots[J]. Methods Ecol Evol, 2021, 13(2): 330-338. DOI: 10.1111/2041-210X.13756.
|
[5] |
SLIK J W F, PAOLI G, MCGUIRE K, et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics[J]. Glob Ecol Biogeogr, 2013, 22(12): 1261-1271. DOI: 10.1111/geb.12092.
|
[6] |
LIU Y C, YU G R, WANG Q F, et al. How temperature, precipitation and stand age control the biomass carbon density of global mature forests[J]. Glob Ecol Biogeogr, 2014, 23: 323-333. DOI: 10.1111/geb.12113.
|
[7] |
LARJAVAARA M, MULLER-LANDAU H C. Temperature explains global variation in biomass among humid old-growth forests: temperature and old-growth forest biomass[J]. Glob Ecol Biogeogr, 2012, 21(10): 998-1006. DOI: 10.1111/j.1466-8238.2011.00740.x.
|
[8] |
BARALOTO C, RABAUD C, MOLTO Q, et al. Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests[J]. Glob Change Biol, 2011, 17(8): 2677-2688. DOI: 10.1111/j.1365-2486.2011.02432.x.
|
[9] |
杨远盛, 张晓霞, 于海艳, 等. 中国森林生物量的空间分布及其影响因素[J]. 西南林业大学学报, 2015, 35(6):45-52.
|
|
YANG Y S, ZHANG X X, YU H Y, et al. Spatial distribution of forest biomass and its influencing factors in China[J]. J Southwest For Univ, 2015, 35(6): 45-52. DOI: 10.11929/j.issn.2095-1914.2015.06.008.
|
[10] |
NIE X Q, WANG D, ZHOU G Y, et al. Storage and controlling factors of soil organic carbon in alpine wetlands and meadow across the Tibetan Plateau[J]. Eur J Soil Sci, 2023, e13383. DOI: 10.1111/ejss.13383.
|
[11] |
MALEKI S, KHORMALI F, BODAGHABADI M B, et al. Role of geomorphic surface on the aboveground biomass and soil organic carbon storage in a semi-arid region of Iranian Loess Plateau[J]. Quat Int, 2020, 552(30): 111-121. DOI: 10.1016/j.quaint.2018.11.001.
|
[12] |
CABRERA M, DUIVENVOORDEN J F. Drivers of aboveground biomass of high mountain vegetation in the Andes[J]. Acta Oecol-Int J Ecol, 2019, 102: 103504. DOI: 10.1016/j.actao.2019.103504.
|
[13] |
KRAMER M G, CHADWICK O A. Controls on carbon storage and weathering in volcanic soils across a high-elevation climate gradient on Mauna Kea, Hawaii[J]. Ecology, 2016, 97(9): 2384-2395. DOI: 10.1002/ecy.1467.
|
[14] |
WANG X H, KENT M, FANG X F. Evergreen broad-leaved forest in eastern China: its ecology and conservation and the importance of resprouting in forest restoration[J]. For Ecol Manage, 2007, 245: 76-87. DOI: 10.1016/j.foreco.2007.03.043.
|
[15] |
孔祥海. 福建梅花山国家级自然保护区常绿阔叶林生态学研究[D]. 厦门: 厦门大学, 2008.
|
|
KONG X H. Ecological study on evergreen broad-leaved forest in Meihuashan national nature reserve in Fujian Province[D]. Xiamen: Xiamen University, 2008.
|
[16] |
樊海东, 陈海燕, 吴雁南, 等. 金华北山南坡主要植被类型的群落特征[J]. 植物生态学报, 2019, 43(10):921-928.
|
|
FAN H D, CHEN H Y, WU Y N, et al. The community characteristics of main vegetation types on the south slope of north mountain in Jinhua[J]. J Plant Ecol, 2019, 43(10): 921-928. DOI: 10.17521/cjpe.2019.0114.
|
[17] |
温远光, 周晓果, 朱宏光, 等. 桉树生态营林的理论探索与实践[J]. 广西科学, 2019, 26(2):159-175+252.
|
|
WEN Y G, ZHOU X G, ZHU H G, et al. Theoretical exploration and practice of Eucalyptus ecological forest management[J]. Guangxi Sci, 2019, 26(2): 159-175+252. DOI: 10.13656/j.cnki.gxkx.20190419.012.
|
[18] |
赖江山, 张谧, 谢宗强. 三峡库区常绿阔叶林优势种群的结构和格局动态[J]. 生态学报, 2006(4):1073-1079.
|
|
LAI J S, ZHANG M, XIE Z Q. The structure and pattern dynamics of dominant populations in evergreen broad-leaved forests in the Three Gorges Reservoir Area[J]. Acta Ecol Sin, 2006 (4): 1073-1079. DOI: 10.3321/j.issn:1000-0933.2006.04.013.
|
[19] |
胡喜生, 洪伟, 吴承祯, 等. 木荷天然种群生命表分析[J]. 广西植物, 2007, 7(3):469-474.
|
|
HU X S, HONG W, WU C Z, et al. Life table analysis of Schima superba natural population[J]. Guihaia, 2007, 7(3): 469-474. DOI: 10.3969/j.issn.1000-3142.2007.03.019.
|
[20] |
李川, 张廷军, 陈静. 近40年青藏高原地区的气候变化——NCEP和ECMWF地面气温及降水再分析和实测资料对比分析[J]. 高原气象, 2004(S1):97-103.
|
|
LI C, ZHANG T J, CHEN J. Climate change in the Qinghai Tibet Plateau region over the past 40 years: reanalysis and comparative analysis of NCEP and ECMWF surface temperature and precipitation data[J]. Plateau Meteor, 2004 (S1): 97-103. DOI: 10.3321/j.issn:1000-0534.2004.z1.016.
|
[38] |
WEN G W, HUANG Q L, LYU Z W, et al. Analysis of potential geographical distribution and ecological suitability of Schima superba under climate change[J]. Acta Ecol Sin, 2023, 43(16): 1-10. DOI: 10.5846/stxb202201130121.
|
[21] |
WANG B L, FRENCH H M. Climate controls and high-altitude permafrost, Qinghai-Xizang (Tibet) Plateau, China[J]. Permafrost Periglacial Process, 1994, 5(2): 87-100. DOI: 10.1002/ppp.3430050203.
|