赤皮青冈容器苗生长和根系发育对缓释肥添加的动态响应

杨孟晴, 黄盛怡, 王斌, 周志春, 徐小牛, 徐卫可, 吴仁超

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1) : 103-111.

PDF(2963 KB)
PDF(2963 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1) : 103-111. DOI: 10.12302/j.issn.1000-2006.202302036
研究论文

赤皮青冈容器苗生长和根系发育对缓释肥添加的动态响应

作者信息 +

Response of the growth and root development of Cyclobalanopsis gilva container seedlings to the slow-release fertilizer addition

Author information +
文章历史 +

摘要

【目的】研究不同施肥水平下赤皮青冈1年生容器苗生长和根系发育的动态变化,探讨根系形态对不同施肥水平的适应策略,为提高其容器苗培育水平提供技术支撑。【方法】基于容器苗缓释肥添加试验,设置5个基质缓释肥添加水平(1.50、2.25、3.00、3.75和4.50 kg/m3),研究不同施肥水平对赤皮青冈芽苗移栽后速生期(苗龄9~11月)苗木生长和根系发育的影响。【结果】苗龄9月赤皮青冈容器苗苗高对施肥量的变化不敏感,10和11月龄容器苗苗高对施肥量变化的响应显著增加,并以缓释肥添加量3.00 kg/m3时最高;地径对施肥量的变化总体不敏感。随着容器苗苗龄增加,缓释肥添加对幼苗生长和根系发育的影响不断增强,1.50 kg/m3缓释肥添加量对9月龄容器苗生长和根系发育有较好促进作用,2.25~3.00 kg/m3缓释肥添加量对10和11月龄容器苗有较好促进作用。9~11月龄赤皮青冈容器苗根长均以≤0.2 mm径级最高,随着径级的增加,不同径级根长呈显著下降趋势。不同施肥水平下容器苗根系径级分布的差异随苗龄增加逐渐增大,根系生长和发育指标间的相关性也发生显著变化,分形维数与其他指标的相关性显著增强,其他指标两两间的相关性总体降低。【结论】赤皮青冈不同苗龄容器苗对缓释肥添加的响应存在显著差异,相对偏低的养分环境有利于芽苗移栽后幼苗的生长和根系发育,待幼苗苗龄10~11月时适当追肥,可实现节约用肥和培育优质容器苗的目的。

Abstract

【Objective】This study investigated the dynamic changes in the growth and root development of one-year-old container seedlings under different fertilization levels to overcome the late emergence and slow seedling growth in the cultivation of container seedlings of Cyclobalanopsis gilva. Moreover, the adaptation strategies of root morphology to different fertilization levels were explored to improve the cultivation level of container seedlings and to promote the early emergence of seedlings by enhancing their growth and root development.【Method】Slow-release fertilizer addition tests were conducted on container seedlings at five levels (1.50, 2.25, 3.00, 3.75 and 4.50 kg/m3). Seedling growth indicators such as the seedling height, ground diameter, and dry mass of roots, stems, and leaves of seedlings (ages from 9 to 11 months) were continuously monitored during the rapid growth period. Root development indexes of different diameter grades including root length and root surface area were analyzed using a plant root scanner (EPSON Perfection V700/V750 3.83) and root analysis system software (WinRHIZO). SPSS 20.0 was employed to conduct one-way ANOVA to determine the variation of different slow-release fertilizer supplemental levels in promoting seedling growth and root development, as well as the adaptation strategies of seedling root morphology to different fertilization levels. 【Result】The effects of different fertilization levels on leaf, stem and root biomass and the root-top ratio increased gradually with the growth of C. gilva seedlings. The seedling height of 9-month-old container seedlings was not sensitive to change in the fertilizer application amount, However, the response of seedling height of 10 and 11-month-old container seedlings to such a change increased significantly. The optimal slow-release fertilizer addition amount was determined as 3.00 kg/m3. The ground diameter of the container seedlings was not sensitive to changes in fertilizer application amount. The growth indexes of container seedlings exhibited an increasing trend with the container seedling age. In particular, the root system of the container seedlings increased its contact area with the soil through continuous lateral growth, thus absorbing more nutrients. Moreover, the effect of slow-release fertilizer addition on seedling growth and root development was continuously enhanced, and the appropriate fertilization level was able to promote the root development of seedlings. The addition of 1.50 kg/m3 slow-release fertilizer had a better effect on the growth and root development of 9-month-old container seedlings compared to 10 and 11-month-old seedlings, while the addition of 2.25-3.00 kg/m3 slow-release fertilizer had a better effect on the growth of 10 and 11-months- seedlings. From 9 to 10 months of seedling growth, the fractal dimension of container seedlings was relatively low, while that for 11-month-old container seedlings increased significantly. The maximum root fractal dimension of container seedlings of different ages was observed at 4.50 kg/m3, while the root tip number of container seedlings was maximized at 1.50 kg/m3. The number of root tips decreased with the increase in slow-release fertilizer. In addition, the slow-release fertilizer addition of 3.75 kg/m3 resulted in the highest specific root length and specific surface area of container seedlings. From 9 to 11 months of seedling age, the root length of C. gilva container seedlings was the highest in the 0-0.2 mm diameter class, and the root length of different diameter classes showed a significant decreasing trend with the increase in diameter class. The adaptation strategies of container seedling roots to the nutrient status varied with the growth stage. For the 9 and 10-month-old seedlings, more roots were formed under the relatively low-nutrient status, while the medium nutrient status was conducive to the formation of more roots in the 11-month-old seedlings. Under different fertilization levels, the difference in the root diameter class distribution of container seedlings gradually increased with the seedling age. The correlation between root growth and the development indexes also changed markedly with the increase in seedling age. The correlation between the fractal dimension and other indexes increased significantly, while the correlation between other indexes decreased. 【Conclusion】Significant differences were observed in the response of C. gilva container seedlings at different seedling ages to slow-release fertilizer. The low-nutrient environment of container seedlings with a seedling age of less than 9 months can ensure the high growth of seedlings and aid in forming a better root structure. The root growth of container seedlings is vigorous during the rapid growth period of 10-11 months, and the nutrient content of the substrate should be appropriately increased to meet the growth needs of seedlings. A relatively low-nutrient environment is conducive to the growth and root development of the seedlings after 4-months-old container seedling transplanting. When the seedlings are 10-11 months old, an appropriate topdressing should be applied to promote the root development of seedlings to save fertilizer and cultivate high-quality container seedlings.

关键词

赤皮青冈 / 容器苗 / 缓释肥 / 苗木生长 / 根系形态 / 动态响应

Key words

Cyclobalanopsis gilva / container seedling / slow-release fertilizer / seedling growth / root morphology / dynamic response

引用本文

导出引用
杨孟晴, 黄盛怡, 王斌, . 赤皮青冈容器苗生长和根系发育对缓释肥添加的动态响应[J]. 南京林业大学学报(自然科学版). 2025, 49(1): 103-111 https://doi.org/10.12302/j.issn.1000-2006.202302036
YANG Mengqing, HUANG Shengyi, WANG Bin, et al. Response of the growth and root development of Cyclobalanopsis gilva container seedlings to the slow-release fertilizer addition[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(1): 103-111 https://doi.org/10.12302/j.issn.1000-2006.202302036
中图分类号: S792.99   

参考文献

[1]
GANDEZA A T, SHOJI S, YAMADA I. Simulation of crop response to polyolefin-coated urea:I.field dissolution[J]. Soil Science Soc Amer J, 1991, 55(5):1462-1467.DOI: 10.2136/sssaj1991.03615995005500050044x.
[2]
HAWKINS B J, BURGESS D, MITCHELL A K. Growth and nutrient dynamics of western hemlock with conventional or exponential greenhouse fertilization and planting in different fertility conditions[J]. Can J For Res, 2005, 35(4):1002-1016.DOI: 10.1139/x05-026.
[3]
楚秀丽, 孙晓梅, 张守攻, 等. 日本落叶松容器苗不同控释肥生长效应[J]. 林业科学研究, 2012, 25(6):697-702.
CHU X L, SUN X M, ZHANG S G, et al. Effect of controlled release fertilizers on net container seedlings growth of Larix kaempferi[J]. For Res, 2012, 25(6):697-702.DOI: 10.13275/j.cnki.lykxyj.2012.06.010.
[4]
宋协海, 郭欢欢, 刘勇, 等. 黄连木容器苗生长对缓释肥的响应[J]. 南京林业大学学报(自然科学版), 2018, 42(3): 117-122.
SONG X H, GUO H H, LIU Y, et al. The growth response of Pistacia chinensis Bunge containerized seedlings to slow-release fertilizer[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(3): 117-122. DOI: 10.3969/j.issn.1000-2006.201707035.
[5]
陈一群, 何波祥, 黄建雄, 等. 缓释肥对马尾松苗木生长和根系形态建成的影响[J]. 林业与环境科学, 2021, 37(4):16-23.
CHEN Y Q, HE B X, HUANG J X, et al. Effects on the growth and root morphogenesis of Pinus massoniana seedlings under different slow-released fertilizer application[J]. For Environ Sci, 2021, 37(4):16-23.DOI: 10.3969/j.issn.1006-4427.2021.04.003.
[6]
DE ARAÚJO J M, DE CARVALHO A N R, DE OLIVEIRA J R, et al. Shading and slow release fertilizer effects on the growth characteristics of assai seedlings (Euterpe oleracea)[J]. Floresta Ambient, 2019, 26(3): e20180019.DOI: 10.1590/2179-8087.001918.
[7]
周玮, 周运超. 施肥对马尾松幼苗及根系生长的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(3):70-74.
ZHOU W, ZHOU Y C. Effect on the growth of Pinus massoniana seedlings and root under different fertilizer treatments[J]. J Nanjing For Univ (Nat Sci Ed), 2011, 35(3):70-74.DOI: 10.3969/j.issn.1000-2006.2011.03.014.
[8]
杨阳, 张德鹏, 及利, 等. 配比施肥对紫椴播种苗生长、养分积累及根系形态的影响[J]. 中南林业科技大学学报, 2021, 41(9):63-70.
YANG Y, ZHANG D P, JI L, et al. Effects of formula fertilization on growth,nutrient accumulation and root morphology of Tilia amurensis seedlings[J]. J Cent South Univ For Technol, 2021, 41(9):63-70.DOI: 10.14067/j.cnki.1673-923x.2021.09.007.
[9]
王妍, 冯金玲, 吴小慧, 等. 施肥对闽楠根系形态及苗木质量的调控作用[J]. 西北农林科技大学学报(自然科学版), 2022, 50(10):44-56.
WANG Y, FENG J L, WU X H, et al. Effects of fertilization on root morphology and seedling quality of Phoebe bournei[J]. J Northwest A & F Univ (Nat Sci Ed), 2022, 50(10):44-56.DOI: 10.13207/j.cnki.jnwafu.2022.10.005.
[10]
肖遥, 楚秀丽, 王秀花, 等. 缓释肥加载对3种珍贵树种大规格容器苗生长和N、P库构建的影响[J]. 林业科学研究, 2015, 28(6):781-787.
XIAO Y, CHU X L, WANG X H, et al. Effect of slow-release fertilizer loading on growth and N,P accumulation of container-growing seedlings for three precious tree species[J]. For Res, 2015, 28(6):781-787.DOI: 10.13275/j.cnki.lykxyj.2015.06.004.
[11]
王素娟. 基质、施肥对青冈栎和赤皮青冈容器苗生长的影响[D]. 杭州: 浙江农林大学, 2012.
WANG S J. The effect of substrate and fertilization on the growth of Cyclobalanopsis glauca and Cyclobalanopsis gliva container seedlings[D]. Hangzhou: Zhejiang A & F University, 2012.
[12]
徐志红, 戴良选, 张斌, 等. 氮素指数施肥对赤皮青冈苗期生长的影响[J]. 中南林业科技大学学报, 2020, 40(11):85-92.
XU Z H, DAI L X, ZHANG B, et al. Effect of exponential N fertilization on growth of Cyclobalanopsis gilva seedlings[J]. J Cent South Univ For Technol, 2020, 40(11):85-92.DOI: 10.14067/j.cnki.1673-923x.2020.11.011.
[13]
李峰卿, 王秀花, 楚秀丽, 等. 缓释肥N/P比及加载量对5种珍贵树种1年生苗生长和养分库构建的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(1):72-80.
LI F Q, WANG X H, CHU X L, et al. Effects of N/P ratio and loading on growth and construction of nutrients reserves of one-year-old seedlings for five kinds of precious tree species[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(1):72-80.DOI: 10.3969/j.issn.1000-2006.201902007.
[14]
黄义林, 张中瑞, 丁晓纲, 等. 施肥对红锥幼苗叶功能性状的影响[J]. 林业与环境科学, 2018, 34(4):115-118.
HUANG Y L, ZHANG Z R, DING X G, et al. Effects of fertilization on leaf functional traits of Castanopsis hystrix seedlings[J]. For Environ Sci, 2018, 34(4):115-118.DOI: 10.3969/j.issn.1006-4427.2018.04.020.
[15]
楚秀丽, 王秀花, 张东北, 等. 基质配比和缓释肥添加量对浙江楠大规格容器苗质量的影响[J]. 南京林业大学学报(自然科学版), 2015, 39(6):67-73.
CHU X L, WANG X H, ZHANG D B, et al. Effect of substrate ratio and slow-release fertilizer loading on the quality of large size container seedlings of Phoebe chekiangensis[J]. J Nanjing For Univ (Nat Sci Ed), 2015, 39(6):67-73.DOI: 10.3969/j.issn.1000-2006.2015.06.013.
[16]
JACOBS D F, ROSE R, HAASE D L. Development of Douglas-fir seedling root architecture in response to localized nutrient supply[J]. Can J For Res, 2003, 33(1):118-125.DOI: 10.1139/x02-160.
[17]
宋曰钦, 乔春华, 马小利, 等. 不同施肥方法对青冈栎苗木生长的影响[J]. 西南林业大学学报, 2015, 35(1):12-16.
SONG Y Q, QIAO C H, MA X L, et al. Influence of different fertilization methods on growth of Cyclobalanopsis glauca seedlings[J]. J Southwest For Univ, 2015, 35(1):12-16.DOI: 10.11929/j.issn.2095-1914.2015.01.003.
[18]
吴小林, 张东北, 楚秀丽, 等. 赤皮青冈容器苗不同基质配比和缓释肥施用量的生长效应[J]. 林业科学研究, 2014, 27(6):794-800.
WU X L, ZHANG D B, CHU X L, et al. Effect of substrate ratio and slow-release fertilizer dose on the growth of containerized Cyclobalanopsis gilva seedlings[J]. For Res, 2014, 27(6):794-800.DOI: 10.13275/j.cnki.lykxyj.2014.06.014.
[19]
王燕, 晏紫依, 苏艳, 等. 不同施肥方法对欧洲云杉生长生理和根系形态的影响[J]. 西北林学院学报, 2015, 30(6):15-21.
WANG Y, YAN Z Y, SU Y, et al. Effects of different fertilizing methods on growth,physiological characteristics and root morphological traits of Picea abies[J]. J Northwest For Univ, 2015, 30(6):15-21.DOI: 10.3969/j.issn.1001-7461.2015.06.03.
[20]
马雪红, 胡根长, 冯建国, 等. 基质配比、缓释肥量和容器规格对木荷容器苗质量的影响[J]. 林业科学研究, 2010, 23(4):505-509.
MA X H, HU G C, FENG J G, et al. Comparison on the substrate and container size of container nursery of Schima superba[J]. For Res, 2010, 23(4):505-509.DOI: 10.13275/j.cnki.lykxyj.2010.04.010.
[21]
祝燕, 马履一, 刘勇, 等. 控释氮肥对长白落叶松苗木生长的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(1):24-28.
ZHU Y, MA L Y, LIU Y, et al. Application of controlled-release fertilizer in the cultivation of Larix olgensis seedling[J]. J Nanjing For Univ (Nat Sci Ed), 2011, 35(1):24-28.DOI: 10.3969/j.issn.1000-2006.2011.01.006.
[22]
汪洪, 金继运, 山内章. 以盒维数法分形分析水稻根系形态特征及初探其与锌吸收积累的关系[J]. 作物学报, 2008, 34(9):1637-1643.
WANG H, JIN J Y, SHAN N Z. Fractal analysis of root system architecture by box-counting method and its relationship with Zn accumulation in rice (Oryza sativa L.)[J]. Acta Agron Sin, 2008, 34(9):1637-1643.DOI: 10.3321/j.issn:0496-3490.2008.09.021.
[23]
单立山, 李毅, 董秋莲, 等. 红砂根系构型对干旱的生态适应[J]. 中国沙漠, 2012, 32(5):1283-1290.
SHAN L S, LI Y, DONG Q L, et al. Ecological adaptation of Reaumuria soongorica root system architecture to arid environment[J]. J Desert Res, 2012, 32(5):1283-1290.
[24]
BURTON A J, PREGITZER K S, HENDRICK R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests[J]. Oecologia, 2000, 125(3):389-399.DOI: 10.1007/s004420000455.
[25]
PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees[J]. Ecol Monogr, 2002, 72(2):293.DOI: 10.2307/3100029.
[26]
滕飞, 刘勇, 王琰, 等. 底部渗灌下容器类型及规格对油松根系结构的影响[J]. 浙江农林大学学报, 2017, 34(3):449-458.
TENG F, LIU Y, WANG Y, et al. Sub-irrigation with different container types and sizes for containerized root growth of Pinus tabuliformis seedlings[J]. J Zhejiang A & F Univ, 2017, 34(3):449-458.DOI: 10.11833/j.issn.2095-0756.2017.03.010.
[27]
BAND L R, BENNETT M J. Mapping the site of action of the Green Revolution hormone gibberellin[J]. Proc Natl Acad Sci USA, 2013, 110(12):4443-4444.DOI: 10.1073/pnas.1301609110.
[28]
张蕊, 王艺, 金国庆, 等. 施氮对木荷3个种源幼苗根系发育和氮磷效率的影响[J]. 生态学报, 2013, 33(12):3611-3621.
ZHANG R, WANG Y, JIN G Q, et al. Nitrogen addition affects root growth,phosphorus and nitrogen efficiency of three provenances of Schima superba in barren soil[J]. Acta Ecol Sin, 2013, 33(12):3611-3621.DOI: 10.5846/stxb201210191453.
[29]
宋平, 张蕊, 张一, 等. 模拟氮沉降对低磷胁迫下马尾松无性系细根形态和氮磷效率的影响[J]. 植物生态学报, 2016, 40(11):1136-1144.
SONG P, ZHANG R, ZHANG Y, et al. Effects of simulated nitrogen deposition on fine root morphology,nitrogen and phosphorus efficiency of Pinus massoniana clone under phosphorus deficiency[J]. Chin J Plant Ecol, 2016, 40(11):1136-1144.DOI: 10.17521/cjpe.2016.0109.
[30]
刘莹, 王国梁, 刘国彬, 等. 不同分类系统下油松幼苗根系特征的差异与联系[J]. 植物生态学报, 2010, 34(12):1386-1393.
LIU Y, WANG G L, LIU G B, et al. Difference and inherent linkage of root characteristics in different root classification of Pinus tabulaeformis seedlings[J]. Chin J Plant Ecol, 2010, 34(12):1386-1393.DOI: 10.3773/j.issn.1005-264x.2010.12.004.
[31]
于立忠, 丁国泉, 史建伟, 等. 施肥对日本落叶松人工林细根直径、根长和比根长的影响[J]. 应用生态学报, 2007, 18(5):959-964.
YU L Z, DING G Q, SHI J W, et al. Effects of fertilization on fine root diameter,root length and specific root length in Larix kaempferi plantation[J]. Chin J Appl Ecol, 2007, 18(5):959-964.
[32]
梁振旭, 张延龙, 牛立新, 等. 秦巴山区野百合表型多样性[J]. 广西植物, 2014, 34(6):727-733.
LIANG Z X, ZHANG Y L, NIU L X, et al. Phenotypic diversity of Lilium browniinative to Qinba mountainous area[J]. Guihaia, 2014, 34(6):727-733.DOI: 10.3969/j.issn.1000-3142.2014.06.001.

基金

浙江省科技计划项目(2021C02038)
中央级公益性科研院所基本科研业务费专项资金项目(CAFYBB2020SY015)
浙江省省院合作林业科技项目(2021SY04)

编辑: 吴祝华
PDF(2963 KB)

Accesses

Citation

Detail

段落导航
相关文章

/