6-BA对太子参生长后期的生理调节作用

马菊林, 邱玲玲, 谢寅峰, 闾倩, 马迎莉, 梁文超

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1) : 137-144.

PDF(1712 KB)
PDF(1712 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1) : 137-144. DOI: 10.12302/j.issn.1000-2006.202303007
研究论文

6-BA对太子参生长后期的生理调节作用

作者信息 +

Physiological regulation of 6-BA on late growth of Pseudostellaria heterophylla

Author information +
文章历史 +

摘要

【目的】探究外源生长调节剂6-BA对太子参生长后期生长及生理的影响,为太子参高效栽培提供理论依据。【方法】采用不同质量浓度(0、20、40、60 mg/L)的6-BA于5月中旬进行叶面喷施处理,测定其对太子参块根生长、抗氧化酶系统及光合特性的影响。【结果】①与对照相比,各6-BA处理组太子参块根长、块根直径、鲜根产量、单株生物量、地上部分干质量、地下部分干质量均显著增加;以60 mg/L处理效果最佳,其中,鲜根产量和单株生物量分别比CK提高35.41%和41.60%,均与CK差异显著(P<0.05)。②适当质量浓度的6-BA处理显著提高了试验期间太子参叶片SOD、POD活性以及叶绿素和类胡萝卜素含量,有效缓解MDA含量上升和光合色素下降的趋势。③各6-BA处理组均不同程度提高了太子参的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr),降低了胞间二氧化碳浓度(Ci),有效缓解了主要由非气孔限制导致的光合“午休”现象;以60 mg/L处理效果最佳,Pn日均值、峰值和谷值分别比对照增加51.76%、41.24%和64.47%。④与对照相比,各6-BA处理组均不同程度提高了试验期间太子参叶绿素荧光参数Fv/FmFv'/Fm'、ΦPSⅡ和qP,降低了NPQ值。⑤适宜质量浓度(60 mg/L)的6-BA处理显著提升了φPoψoφEoEABS/CSmETRo/CSmEETo/CSmcPIabs,降低了φDoEDIo/CSm,说明6-BA处理增强了PSⅡ光能吸收与分配利用效率及叶片比活性,缓解了过剩激发能导致的光抑制。【结论】适宜质量浓度的6-BA处理可以有效增强太子参生长后期叶片抗氧化活性和光合性能,促进生长,提高块根产量。光合性能的改善与叶片抗氧化活性及PSⅡ光化学活性的增强有关。

Abstract

【Objective】This research aims to investigate the effects of exogenous growth regulator 6-BA on the growth and physiology of Pseudostellaria heterophylla at the late growth stage and to provide a theoretical basis for efficient cultivation of P. heterophylla.【Method】 Different concentrations of 6-BA (0, 20, 40, 60 mg/L) were applied to the leaves in mid-May to determine the effects of 6-BA on root tuber growth, the antioxidant enzyme system, and the photosynthetic characteristics of P. heterophylla. 【Result】 (1) Compared to the control (CK), the root length, root diameter, fresh root yield, biomass per plant, dry weight of the aboveground part, and dry weight of the underground part of P. heterophylla in each 6-BA treatment group were significantly increased, with the 60 mg/L treatment showing the most pronounced effect. The fresh root yield and biomass per plant increased by 35.41% and 41.60%, respectively, compared to the CK, and these differences were statistically significant (P < 0.05). (2) The 6-BA treatment with an appropriate mass concentration significantly increased the activities of SOD and POD, as well as the chlorophyll and carotenoid contents in P. heterophylla leaves during the experiment. It also effectively mitigated the rising trend of MDA content and the declining trend of photosynthetic pigments. (3) The Pn, Gs, and Tr of P. heterophylla increased to varying degrees while Ci decreased, effectively alleviating the "nap" phenomenon of photosynthesis caused by non-stomatal restriction. The 60 mg/L treatment had the most significant effect. The daily mean, peak, and trough values of Pn increased by 51.76%, 41.24%, and 64.47%, respectively. (4) Compared to the control, the chlorophyll fluorescence parameters Fv/Fm, Fv'/Fm', ΦPSⅡ, and qP in each 6-BA treatment group increased to varying degrees during the experiment, while the NPQ value decreased. (5) The φPo, ψo, φEo, EABS/CSm, ETRo/CSm, EETo/CSm, and cPIabs significantly increased, while φDo and EDIo/CSm decreased with 6-BA treatment at an appropriate mass concentration (60 mg/L). These results indicated that the 6-BA treatment enhances the efficiency of PSⅡ light energy absorption, allocation, and utilization, as well as leaf-specific activity, alleviating the photoinhibition caused by excess excitation energy. 【Conclusion】 The 6-BA treatment at an appropriate mass concentration effectively enhances the antioxidant activity and photosynthetic performance of P. heterophylla leaves at the late growth stage, promoting growth and increasing root yield. The improvement in photosynthetic performance is related to enhancing antioxidant activity and PSⅡ photochemical activity in the leaves.

关键词

太子参 / 6-BA / 抗氧化系统 / 光合作用 / 叶绿素荧光

Key words

Pseudostellaria heterophylla / 6-BA / antioxidant system / photosynthesis / chlorophyll fluorescence

引用本文

导出引用
马菊林, 邱玲玲, 谢寅峰, . 6-BA对太子参生长后期的生理调节作用[J]. 南京林业大学学报(自然科学版). 2025, 49(1): 137-144 https://doi.org/10.12302/j.issn.1000-2006.202303007
MA Julin, QIU Lingling, XIE Yinfeng, et al. Physiological regulation of 6-BA on late growth of Pseudostellaria heterophylla[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(1): 137-144 https://doi.org/10.12302/j.issn.1000-2006.202303007
中图分类号: S718   

参考文献

[1]
WU L K, CHEN J, WU H M, et al. Insights into the regulation of rhizosphere bacterial communities by application of bio-organic fertilizer in Pseudostellaria heterophylla monoculture regime[J]. Front Microbiol, 2016, 7:1788.DOI: 10.3389/fmicb.2016.01788.
[2]
PANG W S, LIN S D, DAI Q W, et al. Antitussive activity of Pseudostellaria heterophylla (Miq.) Pax extracts and improvement in lung function via adjustment of multi-cytokine levels[J]. Molecules, 2011, 16(4):3360-3370.DOI: 10.3390/molecules16043360.
[3]
WU M, CHEN L J, HUANG X M, et al. Rapid authentication of Pseudostellaria heterophylla (Taizishen) from different regions by Raman spectroscopy coupled with chemometric methods[J]. J Lumin, 2018, 202:239-245.DOI: 10.1016/j.jlumin.2018.05.036.
[4]
ZHANG L Y, GUO Z W, GAO H F, et al. Interaction of Pseudostellaria heterophylla with quorum sensing and quorum quenching bacteria mediated by root exudates in a consecutive monoculture system[J]. J Microbiol Biotechnol, 2016, 26(12):2159-2170.DOI: 10.4014/jmb.1607.07073
[5]
NG C W W, WANG Y C, NI J J, et al. Quality and yield of Pseudostellaria heterophylla treated with GGBS as pH adjuster against the toxicity of Cd and Cu[J]. Ecotoxicol Environ Saf, 2021, 216:112188.DOI: 10.1016/j.ecoenv.2021.112188.
[6]
康传志, 周涛, 郭兰萍, 等. 全国栽培太子参生态适宜性区划分析[J]. 生态学报, 2016, 36(10):2934-2944.
KANG C Z, ZHOU T, GUO L P, et al. Ecological suitability and regionalization of Pseudostellaria heterophylla(Miq.) Pax ex Pax et Hoffm.in China[J]. Acta Ecol Sin, 2016, 36(10):2934-2944.DOI: 10.5846/stxb201409231880.
[7]
邵彩虹, 唐秀英, 李明心, 等. 6-苄基腺嘌呤延缓水稻衰亡效应的蛋白质组学分析[J]. 华北农学报, 2014, 29(1):14-19.
SHAO C H, TANG X Y, LI M X, et al. Proteomics analysis of mechanism of 6-benzyl adenine deferring contabescence of rice[J]. Acta Agric Boreali Sin, 2014, 29(1):14-19.DOI: 10.7668/hbnxb.2014.01.003.
[8]
杨东清, 王振林, 尹燕枰, 等. 外源ABA和6-BA对不同持绿型小麦旗叶衰老的影响及其生理机制[J]. 作物学报, 2013, 39(6):1096-1104.
YANG D Q, WANG Z L, YIN Y P, et al. Effects of exogenous ABA and 6-BA on flag leaf senescence in different types of stay-green wheat and relevant physiological mechanisms[J]. Acta Agron Sin, 2013, 39(6):1096-1104.DOI: 10.3724/SP.J.1006.2013.01096.
[9]
李玲, 李俊, 张春雷, 等. 外源ABA和BR在提高油菜幼苗耐渍性中的作用[J]. 中国油料作物学报, 2012, 34(5):489-495.
LI L, LI J, ZHANG C L, et al. Effects of exogenous ABA and BR on waterlogging resistance of juvenile rapeseed[J]. Chin J Oil Crop Sci, 2012, 34(5):489-495.
[10]
管宏友, 张思兰, 郭涛. 基于31P核磁共振分析的植物体内磷分级研究[J]. 中国土壤与肥料, 2017(3):15-19.
GUAN H Y, ZHANG S L, GUO T. Characterization of plant derived phosphorus with phosphorus 31 nuclear magnetic resonance study[J]. Soil Fertil Sci China, 2017(3):15-19.DOI: 10.11838/sfsc.20170304.
[11]
魏鑫, 高春燕, 常纯皓, 等. 外源肌醇缓解长春花低温伤害的代谢调控特征[J]. 植物生理学报, 2021, 57(12):2247-2257.
WEI X, GAO C Y, CHANG C H, et al. Metabolic regulation characteristics of exogenous inositol alleviating low temperature injury of Catharanthus roseus[J]. Plant Physiol J, 2021, 57(12):2247-2257.DOI: 10.13592/j.cnki.ppj.2021.0256.
[12]
何乐韵, 周后珍, 谭周亮, 等. 活性污泥中超氧化物歧化酶(SOD)活性测定影响因素[J]. 环境科学与技术, 2012, 35(12):146-149.
HE L Y, ZHOU H Z, TAN Z L, et al. Interferential factors in determination of SOD activity of activated sludge[J]. Environ Sci Technol, 2012, 35(12):146-149.
[13]
侯林欣, 吕强, 黄明, 等. 不同温度水杨酸引发对干旱胁迫下玉米种子发芽及幼苗生理特性的影响[J]. 中国农学通报, 2021, 37(19):13-21.
HOU L X, LYU Q, HUANG M, et al. SA priming of maize seeds at different temperature under drought stress:effects on seed germination and seedling physiological characteristics[J]. Chin Agric Sci Bull, 2021, 37(19):13-21.DOI: 10.11924/j.issn.1000-6850.casb2020-0504.
[14]
韩文学, 江皓, 卞健, 等. 10个观赏海棠品种叶片春季色彩变化及其与色素含量的相关性[J]. 浙江大学学报(农业与生命科学版), 2020, 46(5):562-570.
HAN W X, JIANG H, BIAN J, et al. Leaf color change and its correlation with pigment content in 10 ornamental crabapple varieties in spring[J]. J Zhejiang Univ (Agric Life Sci), 2020, 46(5):562-570.DOI: 10.3785/j.issn.1008-9209.2019.09.161.
[15]
马迎莉, 谷慧, 张雨峰, 等. 稀土铈对太子参生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(4):71-79.
MA Y L, GU H, ZHANG Y F, et al. Effects of cerium nitrate on growth and photosynthetic characteristics of Pseudostellaria heterophylla[J]. J Nanjing For Univ (Nat Sci Ed), 2017, 41(4):71-79.DOI: 10.3969/j.issn.1000-2006.201608009.
[16]
王文银, 高小刚, 司晓林, 等. 外源钙盐对盐胁迫下沙拐枣渗透调节和膜脂过氧化的影响[J]. 环境科学研究, 2017, 30(8):1230-1237.
WANG W Y, GAO X G, SI X L, et al. Effects of exogenous calcium on osmotic adjustment and peroxidation of Calligonum mongolicum membrane under salt stress[J]. Res Environ Sci, 2017, 30(8):1230-1237.DOI: 10.13198/j.issn.1001-6929.2017.02.58.
[17]
刘凯歌, 朱月林, 郝婷, 等. 叶面喷施6-BA对高温胁迫下甜椒幼苗生长和叶片生理生化指标的影响[J]. 西北植物学报, 2014, 34(12):2508-2514.
LIU K G, ZHU Y L, HAO T, et al. Effect of foliar-spraying 6-BA on the growth and physiological and biochemical indexes of sweet pepper seedlings under high temperature stress[J]. Acta Bot Boreali Occidentalia Sin, 2014, 34(12):2508-2514.DOI: 10.7606/j.issn.1000-4025.2014.12.2508.
[18]
李颖, 赵继浩, 李金融, 等. 外源6-BA对不同生育时期淹水花生根系生长和荚果产量的影响[J]. 中国农业科学, 2020, 53(18):3665-3678.
LI Y, ZHAO J H, LI J R, et al. Effects of exogenous 6-BA on root growth and pod yield of flooded peanut at different growth stages[J]. Sci Agric Sin, 2020, 53(18):3665-3678.DOI: 10.3864/j.issn.0578-1752.2020.18.004.
[19]
曾秀存, 许耀照, 孙万仓, 等. 白菜型冬油菜光合日变化特性研究[J]. 西南农业学报, 2017, 30(11):2490-2496.
ZENG X C, XU Y Z, SUN W C, et al. Study on diurnal variation of photosynthesis for winter rapeseed (Brassica rapes L.)[J]. Southwest China J Agric Sci, 2017, 30(11):2490-2496.DOI: 10.16213/j.cnki.scjas.2017.11.017.
[20]
姬慧娟, 贾会霞, 章小铃, 等. 干旱胁迫对红皮柳光合特性日变化及生长的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(6):41-46.
JI H J, JIA H X, ZHANG X L, et al. Effect of drought stress on photosynthetic diurnal course and growth of Salix purpurea[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(6):41-46.DOI: 10.3969/j.issn.1000-2006.2016.06.007.
[21]
KUMAR D, SINGH H, RAJ S, et al. Chlorophyll a fluorescence kinetics of mung bean (Vigna radiata L.) grown under artificial continuous light[J]. Biochem Biophys Rep, 2020, 24:100813.DOI: 10.1016/j.bbrep.2020.100813.
[22]
LI Y T, XU W W, REN B Z, et al. High temperature reduces photosynthesis in maize leaves by damaging chloroplast ultrastructure and photosystem II[J]. J Agronomy Crop Science, 2020, 206(5):548-564.DOI: 10.1111/jac.12401.
[23]
南吉斌, 林玲. 西藏3种沙棘属植物光合生理特性的比较[J]. 经济林研究, 2019, 37(4):96-103,111.
NAN J B, LIN L. Comparisons of photosynthetic physiological characteristics of three species of Hippophae in Tibet[J]. Non Wood For Res, 2019, 37(4):96-103,111.DOI: 10.14067/j.cnki.1003-8981.2019.04.013.
[24]
张弦, 王志博, 聂雅婷, 等. 茉莉酸甲酯和油菜素内酯减轻苹果叶片光抑制的生理机制研究[J]. 西北农业学报, 2017, 26(6):906-915.
ZHANG X, WANG Z B, NIE Y T, et al. Alleviation of photoinhibition by methyl jasmonate and brassinolide under strong light in apple leaves[J]. Acta Agric Boreali Occidentalis Sin, 2017, 26(6):906-915.DOI: 10.7606/j.issn.1004-1389.2017.06.014.
[25]
朱成刚, 陈亚宁, 李卫红, 等. 干旱胁迫对胡杨PSⅡ光化学效率和激能耗散的影响[J]. 植物学报, 2011, 46(4):413-424.
ZHU C G, CHEN Y N, LI W H, et al. Effect of drought stress on photochemical efficiency and dissipation of excited energy in photosystem Ⅱ of Populus euphratica[J]. Chin Bull Bot, 2011, 46(4):413-424.DOI: 10.3724/SP.J.1259.2011.00413.
[26]
张金玲, 陈海鹏, 程达, 等. 毛乌素沙地臭柏(Sabina vulgaris Ant.)光抑制响应机制研究意义[J]. 干旱区研究, 2018, 35(4):882-890.
ZHANG J L, CHEN H P, CHENG D, et al. Significance of photoinhibition response mechanism of Sabina vulgaris Ant.in the Muus sandland[J]. Arid Zone Res, 2018, 35(4):882-890.DOI: 10.13866/j.azr.2018.04.16.
[27]
吴思佳, 李仁英, 谢晓金, 等. 抽穗期高温对水稻叶片光合特性、叶绿素荧光特性和产量构成因素的影响[J]. 南方农业学报, 2021, 52(1):20-27.
WU S J, LI R Y, XIE X J, et al. Effects of high temperature on characteristics of photosynthesis and chlorophyll fluorescence and yield components of rice at heading stage[J]. J South Agric, 2021, 52(1):20-27.DOI: 10.3969/j.issn.2095-1191.2021.01.003.

基金

江苏高校优势学科建设工程资助项目(PAPD)

编辑: 郑琰燚
PDF(1712 KB)

Accesses

Citation

Detail

段落导航
相关文章

/