红蓝光质对银杏苗木生长生理特性及黄酮积累的影响

王改萍, 章雷, 曹福亮, 丁延朋, 赵群, 赵慧琴, 王峥

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (2) : 105-112.

PDF(2032 KB)
PDF(2032 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (2) : 105-112. DOI: 10.12302/j.issn.1000-2006.202303030
研究论文

红蓝光质对银杏苗木生长生理特性及黄酮积累的影响

作者信息 +

Effect of red and blue light quality on growth physiological and flavonoid content of Ginkgo biloba seedlings

Author information +
文章历史 +

摘要

【目的】 探究红、蓝光质对银杏(Ginkgo biloba) 苗木生长特征、形态建成和次生代谢物积累的影响,为银杏苗木选择适宜光环境,提高叶用品质研究提供理论依据。【方法】 选择1年生银杏幼苗为材料,采用发光二极管(LED)调制光源,设置红光(R)、蓝光(B)和红蓝光度比1∶1的混光(M)3个处理,以白光(W)为对照,研究红光和蓝光对银杏幼苗生长生理、光合效能及黄酮等积累的影响。【结果】 B处理可显著提高银杏苗高(P<0.05),R、M处理下苗高低于W;R、B、M处理下,银杏苗木叶生物量、总生物量及叶质量比均低于W处理;R、M处理有利于银杏生物量向根部分配,B处理则有利于生物量向茎部分配。R、B、M处理对银杏叶片形态建成作用显著,叶宽、叶面积均低于W处理;R处理促进银杏苗木叶柄显著性伸长(P<0.05)。M、B处理可显著提高银杏总叶绿素及类胡萝卜素含量,且随着光质处理时间延长,叶片叶绿素含量呈增加趋势,R处理对光合色素积累起抑制作用;R、B、M处理下,银杏苗木净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)均在84 d时达到最大值,胞间CO2浓度(Ci)在不同处理下变化幅度较小。R、B、M处理下,银杏Pn、Tr显著低于W处理(P<0.05);Gs也在M、B处理下低于W处理。银杏叶中总黄酮含量从大到小在不同处理时期均表现为:B>M>W>R,且B、M显著高于W,R则相反(P<0.05);对银杏单株黄酮产量的测定,也发现B处理下黄酮产量相对W的提高了75.65%。【结论】 光质处理影响银杏生长,显著提高黄酮积累,蓝、红蓝混光是较为理想的光质。研究结果可为光质在叶用银杏栽培上的推广应用提供理论依据。

Abstract

【Objective】 This research aims to explore the effects of red and blue light quality on growth characteristics, morphogenesis and accumulation of secondary metabolites of Ginkgo biloba seedlings, in order to provide theoretical basis for selecting suitable light environment and improving leaf quality of G. biloba seedlings.【Method】 Taking 1-year-old seedlings of G. biloba as materials, under LED conditions,three different light qualities were set, namely red light(R), multiple light (light intensity ratio of red to blue is 1∶1, M) and blue light(B),and white light(W) was used as control to explore the dynamic change rule of growth physiology, photosynthetic capacity and flavonoids accumulation.【Result】 B treatment significantly increased the seedling height(P<0.05), and which of the R and M treatment was lower than W(CK). The leaves biomass, total biomass and leaves mass ratio of G. biloba seedlings under different light quality were lower than W(CK). R and M treatment were beneficial to the distribution of the biomass to the root, while B treatment was beneficial to the distribution of biomass to the stem. The leaves morphogenesis was significantly affected by different light quality, and the leaves width and area were lower than W(CK). R treatment significantly extended the petiole (P<0.05). M and B treatment significantly increased the contents of total chlorophyll and carotenoid, while R treatment had the opposite effect, and chlorophyll content increased with the extension of light treatment time. Under different light quality, net photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (Gs) of G.boloba seedling reached the maximum value at 84 days, and intercellular CO2 concentration(Ci) changed little under different treatments.In the same treatment group,Pn and Tr were significantly lower than W(P<0.05), Gs under M and B treatment is also lower than that under W treatment.The contents of total flavonoids in G. biloba leaves were B, M, W, R treatment from high to low,and contents of total flavonoids under B and M treatment were significantly higher than that under W treatment, while contents under R treatment were on the contrary(P<0.05). The flavonoid yield of G. biloba single plant was also determined, and it was found that the falvonoid yield under B treatment was increased 75.65% than that under W treatment.【Conclusion】 Light quality treatment affects the growth and significant increase the accumulation of flavonoids of G. biloba, B and M treatment are ideal light quality. The results can provide theoretical basis for the application of light quality in the cultivation of G. biloba.

关键词

银杏 / 光质 / 生长特征 / 形态建成 / 光合特性 / 总黄酮

Key words

Ginkgo biloba / light quality / growth characteristics / morphogenesis / photosynthetic characteristics / total flavonoid

引用本文

导出引用
王改萍, 章雷, 曹福亮, . 红蓝光质对银杏苗木生长生理特性及黄酮积累的影响[J]. 南京林业大学学报(自然科学版). 2024, 48(2): 105-112 https://doi.org/10.12302/j.issn.1000-2006.202303030
WANG Gaiping, ZHANG Lei, CAO Fuliang, et al. Effect of red and blue light quality on growth physiological and flavonoid content of Ginkgo biloba seedlings[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(2): 105-112 https://doi.org/10.12302/j.issn.1000-2006.202303030
中图分类号: S722;Q945   

参考文献

[1]
MARMIROLI M, IMPERIALE D, PAGANO L, et al. The proteomic response of Arabidopsis thaliana to cadmium sulfide quantum dots,and its correlation with the transcriptomic response[J]. Front Plant Sci, 2015, 6:1104.DOI:10.3389/fpls.2015.01104.
[2]
YANG Z C, KUBOTA C, CHIA P L, et al. Effect of end-of-day far-red light from a movable LED fixture on squash rootstock hypocotyl elongation[J]. Sci Hortic, 2012, 136:81-86.DOI: 10.1016/j.scienta.2011.12.023.
[3]
王小娟, 李国强, 苗洪利. 单色光对小麦草生长速率的影响研究[J]. 激光生物学报, 2015, 24(2):165-169.
WANG X J, LI G Q, MIAO H L. Effect of the monochromatic light on the growth rate of wheatgrass[J]. Acta Laser Biol Sin, 2015, 24(2):165-169.DOI: 10.3969/j.issn.1007-7146.2015.02.009.
[4]
LI Y, LIU C, SHI Q H, et al. Mixed red and blue light promotes ripening and improves quality of tomato fruit by influencing melatonin content[J]. Environ Exp Bot, 2021, 185:104407.DOI: 10.1016/j.envexpbot.2021.104407.
[5]
LI Y, XIN G F, WEI M, et al. Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities[J]. Sci Hortic, 2017, 225:490-497.DOI: 10.1016/j.scienta.2017.07.053.
[6]
MASSA G D, KIM H H, WHEELER R M, et al. Plant productivity in response to LED lighting[J]. Hort Science, 2008, 43(7):1951-1956.DOI: 10.21273/hortsci.43.7.1951.
[7]
LI Y, LIU Z L, SHI Q H, et al. Mixed red and blue light promotes tomato seedlings growth by influencing leaf anatomy,photosynthesis,CO2 assimilation and endogenous hormones[J]. Sci Hortic, 2021, 290:110500.DOI: 10.1016/j.scienta.2021.110500.
[8]
屈成, 刘芬, 陈光辉, 等. LED红蓝光质对水稻幼苗生长及生理特性的影响[J]. 核农学报, 2020, 34(9):2095-2102.
QU C, LIU F, CHEN G H, et al. Effects of LED red and blue light ratio on growth and physiological characteristics of rice seedlings[J]. J Nucl Agric Sci, 2020, 34(9):2095-2102.DOI: 10.11869/j.issn.100-8551.2020.09.2095.
[9]
任海英, 甘振, 戚行江, 等. 补光对设施栽培杨梅营养生长和果实品质的影响[J]. 果树学报, 2022, 39(6):1072-1080.
REN H Y, GAN Z, QI X J, et al. Effects of light supplement on vegetative growth and fruit quality of bayberry(Myrica rubra) in facility cultivation[J]. J Fruit Sci, 2022, 39(6):1072-1080.DOI: 10.13925/j.cnki.gsxb.20210453.
[10]
王改萍, 丁延朋, 曹福亮, 等. 金叶银杏杂交F1代苗木生长和叶色变化分析[J]. 植物资源与环境学报, 2023, 32(4):1-11.
WANG G P, DING Y P, CAO F L, et al. Analysis on growth and leaf color variation of hybrid F1 generation seedlings of Ginkgo biloba ‘Golden leaves’[J]. J Plant Resour Environ, 2023, 32(4):1-11.DOI: 10.3969/j.issn.1674-7895.2023.04.01.
[11]
ZHANG W W, XU F, CHENG H A, et al. Effect of chlorocholine chloride on chlorophyll,photosynthesis,soluble sugar and flavonoids of Ginkgo biloba[J]. Not Bot Hort Agrobot Cluj, 2013, 41(1):97.DOI: 10.15835/nbha4118294.
[12]
王孟珂, 国颖, 汪贵斌, 等. 不同生境对银杏雌、雄株嫁接苗叶中聚戊烯醇等成分积累的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1):121-128.
WANG M K, GUO Y, WANG G B, et al. Effects of habitat on the synthesis and accumulation of primary metabolites in Ginkgo biloba leaves[J]. J Nanjing For Univ (Nat Sci Ed), 2023, 47(1):121-128.DOI: 10.12302/j.issn.1000-2006.202104037.
[13]
PEREIRA E, BARROS L, DUEÑAS M, et al. Gamma irradiation improves the extractability of phenolic compounds in Ginkgo biloba L.[J]. Ind Crops Prod, 2015, 74:144-149.DOI: 10.1016/j.indcrop.2015.04.039.
[14]
钱龙梁, 李佳佳, 曹福亮, 等. 生物遮阴对银杏幼苗次生代谢的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(3):189-194.
QIAN L L, LI J J, CAO F L, et al. Effect of biological shading on secondary metabolism of ginkgo seedlings[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(3):189-194.DOI: 10.3969/j.issn.1000-2006.201809029.
[15]
谢宝东, 王华田. 光质和光照时间对银杏叶片黄酮、内酯含量的影响[J]. 南京林业大学学报(自然科学版), 2006, 30(2):51-54.
XIE B D, WANG H T. Effects of light spectrum and photoperiod on contents of flavonoid and terpene in leaves of Ginkgo biloba L.[J]. J Nanjing For Univ (Nat Sci Ed), 2006, 30(2):51-54.DOI: 10.3969/j.issn.1000-2006.2006.02.012.
[16]
付志高, 李莲芳, 王凯, 等. 缓释肥及氮和磷肥配施对滇油杉野生移栽苗木生长和生物量的影响[J]. 四川农业大学学报, 2021, 39(2):212-219.
FU Z G, LI L F, WANG K, et al. Effects of slow-release fertilizer matching N and P fertilizer on growth and biomass for wild transplanted seedlings of Keteleeria evelyniana[J]. J Sichuan Agric Univ, 2021, 39(2):212-219.DOI: 10.16036/j.issn.1000-2650.2021.02.011.
[17]
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
LI H S. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000.
[18]
叶威, 李强, 陈颖, 等. 雌、雄株和金叶银杏光合生理及黄酮成分年动态变化研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4):77-86.
YE W, LI Q, CHEN Y, et al. Annual dynamic changes in photosynthetic physiology and flavonoid components in female,male and golden-leaf Ginkgo biloba trees[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(4):77-86.DOI: 10.12302/j.issn.1000-2006.202112011.
[19]
METALLO R M, KOPSELL D A, SAMS C E, et al. Influence of blue/red vs.white LED light treatments on biomass,shoot morphology,and quality parameters of hydroponically grown kale[J]. Sci Hortic, 2018, 235:189-197.DOI: 10.1016/j.scienta.2018.02.061.
[20]
刘晓英, 张珂, 束胜, 等. 设施栽培光照关联温度调控的潜在优势和理论基础[J]. 南京农业大学学报, 2023, 46(5):823-832.
LIU X Y, ZHANG K, SHU S, et al. Potential advantages and theoretical basis of light associated temperature regulation in protected cultivation[J]. J Nanjing Agric Univ, 2023, 46(5):823-832.DOI: 10.7685/jnau.202210007.
[21]
施杰, 杨海燕, 吴文龙, 等. 不同光质对蓝莓生长发育及生理特性的影响[J]. 北方园艺, 2022(6):15-23.
SHI J, YANG H Y, WU W L, et al. Effects of different light quality on the growth and physiological characteristics of blueberry[J]. North Hortic, 2022(6):15-23.DOI: 10.11937/bfyy.20213160.
[22]
苏建荣, 臧传富, 刘万德, 等. 光质对云南红豆杉生长及紫杉烷含量影响的研究[J]. 林业科学研究, 2012, 25(4):419-424.
SU J R, ZANG C F, LIU W D, et al. Effect of light quality on growth and taxanes contents of Taxus yunnanensis[J]. For Res, 2012, 25(4):419-424.DOI: 10.13275/j.cnki.lykxyj.2012.04.008.
[23]
胡举伟, 代欣, 宋涛, 等. 不同光质对桑树幼苗生长和光合特性的影响[J]. 植物研究, 2019, 39(4):481-489.
HU J W, DAI X, SONG T, et al. Effects of different light qualities on growth and photosynthetic characteristics of mulberry seedlings[J]. Bull Bot Res, 2019, 39(4):481-489.DOI: 10.7525/j.issn.1673-5102.2019.04.001.
[24]
邸秀茹, 崔瑾, 徐志刚, 等. 不同光谱能量分布对冬青试管苗生长的影响[J]. 园艺学报, 2008, 35(9):1339-1344.
DI X R, CUI J, XU Z G, et al. Effects of light spectral energy distribution on growth of Ilex chinensis sims plantlets in vitro[J]. Acta Hortic Sin, 2008, 35(9):1339-1344.DOI: 10.16420/j.issn.0513-353x.2008.09.016.
[25]
LEE H, HAN G, CHEONG E J. Effect of different treatments and light quality on Ulmus pumila L.germination and seedling growth[J]. For Sci Technol, 2021, 17(3):162-168.DOI: 10.1080/21580103.2021.1968960.
[26]
杨超, 刘敏竹, 李强, 等. 发光二极管(LED)光质对金秋砂糖橘幼苗生长发育和光合特性的影响[J]. 浙江农业学报, 2022, 34(1):89-97.
YANG C, LIU M Z, LI Q, et al. Effects of different light-emitting diode (LED) light quality on growth,development and photosynthetic characteristics of Jinqiu Shatangju seedlings[J]. Acta Agric Zhejiangensis, 2022, 34(1):89-97.DOI: 10.3969/j.issn.1004-1524.2022.01.11.
[27]
吴芳兰, 李书玲, 杨梅, 等. LED光质及光周期对香子含笑幼苗生长和光合特性的影响[J]. 广西植物, 2022, 42(12):2167-2177.
WU F L, LI S L, YANG M, et al. Effects of LED light qualities and photoperiods on growth and photosynthetic characteristics of Michelia gioii[J]. Guihaia, 2022, 42(12):2167-2177.DOI: 10.11931/guihaia.gxzw202106035.
[28]
ZHOU H A, LIU S J, YANG Y F, et al. Effect of light quality on the growth and photosynthetic characteristics of Cinnamomum camphora rooted cuttings[J]. Scand J For Res, 2021, 36(7/8):532-538.DOI: 10.1080/02827581.2021.1996627.
[29]
汪凤林, 曹光球, 叶义全, 等. 不同光质下杉木幼苗叶片光合作用的光响应[J]. 森林与环境学报, 2017, 37(3):366-371.
WANG F L, CAO G Q, YE Y Q, et al. Light response of photosynthesis in Cunninghamia lanceolata under different light qualities[J]. J For Environ, 2017, 37(3):366-371.DOI: 10.13324/j.cnki.jfcf.2017.03.020.
[30]
龚洪恩, 丁怡飞, 姚小华, 等. LED光质对油茶苗生长和光合特性的影响[J]. 林业科学研究, 2018, 31(2):176-182.
GONG H E, DING Y F, YAO X H, et al. Effects of light qualities on growth and photosynthetic characteristics of Camellia oleifera cutting stocks[J]. For Res, 2018, 31(2):176-182.DOI: 10.13275/j.cnki.lykxyj.2018.02.025.
[31]
OUZOUNIS T, PARJIKOLAEI B R, FRETTÉ X, et al. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSⅡ and enhances the amount of phenolic acids,flavonoids,and pigments in Lactuca sativa[J]. Front Plant Sci, 2015, 6:19.DOI: 10.3389/fpls.2015.00019.
[32]
郭佩瑶, 邓斯颖, 张艺帆, 等. 不同光质对红花檵木愈伤组织生长及黄酮类物质含量的影响[J]. 西北植物学报, 2022, 42(1):118-126.
GUO P Y, DENG S Y, ZHANG Y F, et al. Effect of different light quality on callus growth and flavonoids content of two Loropetalum chinense plants[J]. Acta Bot Boreali Occidentalia Sin, 2022, 42(1):118-126.DOI: 10.7606/j.issn.1000-4025.2022.01.0118.
[33]
郭阿瑾, 杨凤玺, 王亚琴, 等. 不同光质LED对竹叶兰酚类物质及抗氧化性的影响[J]. 热带作物学报, 2018, 39(7):1318-1323.
GUO A J, YANG F X, WANG Y Q, et al. Effect of different LED light qualities on phenolic substances and oxygen metabolism of Arundina graminifolia[J]. Chin J Trop Crops, 2018, 39(7):1318-1323.DOI: 10.3969/j.issn.1000-2561.2018.07.009.
[34]
益莎, 杨波, 杨光, 等. 竹产品加工剩余物有效成分的生物活性及应用研究进展[J]. 生物加工过程, 2022, 20(3):244-250.
YI S, YANG B, YANG G, et al. Progress on bioactivity and application of effective components from processing residues of bamboo products[J]. Chi J Bio Eng, 2022, 20(3):244-250.DOI:10.3969/j.issn.1672-3678.2022.03.002.
[35]
WU W X, LUO X M, WANG Y, et al. Combined metabolomics and transcriptomics analysis reveals the mechanism underlying blue light-mediated promotion of flavones and flavonols accumulation in Ligusticum chuanxiong Hort.microgreens[J]. J Photochem Photobiol B, 2023, 242:112692.DOI: 10.1016/j.jphotobiol.2023.112692.
[36]
ZHENG L A, HE H M, SONG W T. Application of light-emitting diodes and the effect of light quality on horticultural crops:a review[J]. HortScience, 2019, 54(10):1656-1661.DOI: 10.21273/hortsci14109-19.

基金

江苏省科技计划(资金)项目(BE2021367)
江苏高校优势学科建设工程资助项目(PAPD)

编辑: 王国栋
PDF(2032 KB)

Accesses

Citation

Detail

段落导航
相关文章

/