CO2和水分胁迫下北京山区侧柏个体尺度水碳耦合过程研究

张龙齐, 张永娥, 贾国栋, 吕相融, 张潇, 雷自然, 刘锐

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1) : 128-136.

PDF(1590 KB)
PDF(1590 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1) : 128-136. DOI: 10.12302/j.issn.1000-2006.202303031
研究论文

CO2和水分胁迫下北京山区侧柏个体尺度水碳耦合过程研究

作者信息 +

The individual scale water-carbon coupling process of Platycladus orientalis under CO2 and water stress in Beijing mountainous area

Author information +
文章历史 +

摘要

【目的】研究不同CO2和水分胁迫情况下,北京山区侧柏的水碳耦合过程,为侧柏的个体尺度研究提供理论依据。【方法】选取北京山区的主要造林树种侧柏(Platycladus orientalis)为研究对象,通过为期6个月的室内盆栽模拟试验,测定不同CO2浓度和土壤水分交互处理下侧柏个体尺度蒸腾耗水和固碳、呼吸速率,以水分利用效率为水碳耦合指标,分析侧柏个体尺度水、碳耦合变化特征。【结果】①侧柏个体昼夜蒸腾速率受土壤含水率影响显著,在70%~80%田间持水率时达到最大值,随后略微递减。②土壤含水率和CO2浓度都对侧柏个体尺度碳过程和水碳耦合过程产生显著的影响。除重度干旱外,二者都随CO2浓度的增加而不断升高。③在二氧化碳浓度为600和800 μmol/mol,个体瞬时和短期水分利用效率都在50%~60%田间持水率条件下达到最大值。④个体昼夜累计固碳量与耗水量呈显著线性相关(P < 0.05),二者比值也在二氧化碳浓度为800 μmol/mol、田间持水率50%~60%时达到最大值(阈值24.35 mmol/mol)。【结论】二氧化碳浓度升高有利于缓解个体尺度的干旱胁迫,土壤含水率显著影响侧柏的水碳耦合过程。

Abstract

【Objective】In arid and semiarid regions, efficient water use for vegetation construction and restoration to maximize functional diversity has become a key research focus due to scarce precipitation. The study of plant water-carbon coupling processes is crucial in this context.【Method】This research focused on Platycladus orientalis, the main afforestation species in Beijing mountainous areas. An indoor pot simulation experiment was conducted over six months to measure the individual transpiration water consumption, carbon sequestration, and respiration rate of P. orientalis under different CO2 concentrations and soil moisture levels. Water use efficiency was used as the water-carbon coupling index to analyze these processes and their influencing factors. 【Result】(1)The transpiration rate of P. orientalis was significantly affected by soil water content, peaking at 70%-80% field water capacity and then slightly decreased. (2) Both soil water content and CO2 concentration significantly influenced individual carbon processes and water-carbon coupling. (3) Instantaneous and short-term water use efficiency reached maximum at CO2 concentrations of 600 and 800 μmol/mol with 50%-60% field water capacity. (4) There was a significant linear correlation between cumulative carbon sequestration and water consumption (P < 0.05), with a maximum ratio of 24.35 mmol/mol at a CO2 concentration of 800 μmol/mol and 50%-60% field water capacity. 【Conclusion】The increase of carbon dioxide concentration was conducive to alleviating the individual scale drought stress, and soil water content significantly affected the water-carbon process of P. orientalis.

关键词

水碳耦合 / 植被 / 水分利用效率 / 二氧化碳 / 水分胁迫 / 侧柏

Key words

water-carbon coupling / vegetation / water use efficiency / carbon dioxide / water stress / Platycladus orientalis

引用本文

导出引用
张龙齐, 张永娥, 贾国栋, . CO2和水分胁迫下北京山区侧柏个体尺度水碳耦合过程研究[J]. 南京林业大学学报(自然科学版). 2025, 49(1): 128-136 https://doi.org/10.12302/j.issn.1000-2006.202303031
ZHANG Longqi, ZHANG Yong’e, JIA Guodong, et al. The individual scale water-carbon coupling process of Platycladus orientalis under CO2 and water stress in Beijing mountainous area[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(1): 128-136 https://doi.org/10.12302/j.issn.1000-2006.202303031
中图分类号: S715   

参考文献

[1]
MORISON J I L, BAKER N R, MULLINEAUX P M, et al. Improving water use in crop production[J]. Phil Trans R Soc B, 2008, 363(1491):639-658.DOI: 10.1098/rstb.2007.2175.
[2]
赵风华, 于贵瑞. 陆地生态系统碳—水耦合机制初探[J]. 地理科学进展, 2008, 27(1):32-38.
ZHAO F H, YU G R. A review on the coupled carbon and water cycles in the terrestrial ecosystems[J]. Prog Geogr, 2008, 27(1):32-38.DOI: 10.11820/dlkxjz.2008.01.005.
[3]
胡中民, 于贵瑞, 王秋凤, 等. 生态系统水分利用效率研究进展[J]. 生态学报, 2009, 29(3):1498-1507.
HU Z M, YU G R, WANG Q F, et al. Ecosystem level water use efficiency:a review[J]. Acta Ecol Sin, 2009, 29(3):1498-1507.DOI: 10.3321/j.issn:1000-0933.2009.03.048.
[4]
TIAN H Q, CHEN G S, LIU M L, et al. Model estimates of net primary productivity,evapotranspiration,and water use efficiency in the terrestrial ecosystems of the southern United States during 1895-2007[J]. For Ecol Manag, 2010, 259(7):1311-1327.DOI: 10.1016/j.foreco.2009.10.009.
[5]
HEILMAN K A, TROUET V M, BELMECHERI S, et al. Increased water use efficiency leads to decreased precipitation sensitivity of tree growth,but is offset by high temperatures[J]. Oecologia, 2021, 197(4):1095-1110.DOI: 10.1007/s00442-021-04892-0.
[6]
常娟, 张增信, 田佳西, 等. 西北地区草地水分利用效率时空特征及其对气候变化的响应[J]. 南京林业大学学报(自然科学版), 2020, 44(3):119-125.
CHANG J, ZHANG Z X, TIAN J X, et al. Spatio-temporal characteristics of grassland water use efficiency and its response to climate change in northwest China[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):119-125.DOI: 10.3969/j.issn.1000-2006.201904012.
[7]
赵聚宝, 梅旭荣, 薛军红, 等. 秸秆覆盖对旱地作物水分利用效率的影响[J]. 中国农业科学, 1996, 29(2):59-66.
ZHAO J B, MEI X R, XUE J H, et al. The effect of straw mulch on crop water use efficiency in dryland[J]. Sci Agric Sin, 1996, 29(2):59-66.
[8]
ZHAO J X, XU T R, XIAO J F, et al. Responses of water use efficiency to drought in southwest China[J]. Remote Sens, 2020, 12(1):199.DOI: 10.3390/rs12010199.
[9]
ADIREDJO A L, NAVAUD O, LAMAZE T, et al. Leaf carbon isotope discrimination as an accurate indicator of water-use efficiency in sunflower genotypes subjected to five stable soil water contents[J]. J Agronomy Crop Science, 2014, 200(6):416-424.DOI: 10.1111/jac.12079.
[10]
王玉才, 张恒嘉, 邓浩亮, 等. 调亏灌溉对菘蓝水分利用及产量的影响[J]. 植物学报, 2018, 53(3):322-333.
WANG Y C, ZHANG H J, DENG H L, et al. Effect of regulated deficit irrigation on water use and yield of Isatis indigotica[J]. Chin Bull Bot, 2018, 53(3):322-333.DOI: 10.11983/CBB17030.
[11]
胡化广, 张振铭, 吴生才, 等. 植物水分利用效率及其机理研究进展[J]. 节水灌溉, 2013(3):11-15.
HU H G, ZHANG Z M, WU S C, et al. Advance of research on water use efficiency of plant and its mechanism[J]. Water Sav Irrig, 2013(3):11-15.DOI: 10.3969/j.issn.1007-4929.2013.03.004.
[12]
ZHANG Y P, ZHANG Y H, WANG Z M, et al. Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions[J]. Field Crops Res, 2011, 123(3):187-195.DOI: 10.1016/j.fcr.2011.04.014.
[13]
ZHANG Y E, WANG D D, LIU Z Q, et al. Assessment of leaf water enrichment of Platycladus orientalis using numerical modeling with different isotopic models[J]. Ecol Indic, 2020, 111:105995.DOI: 10.1016/j.ecolind.2019.105995.
[14]
KALKMAN J R, SIMONTON P, DORNBOS D L. Physiological competitiveness of common and glossy buckthorn compared with native woody shrubs in forest edge and understory habitats[J]. For Ecol Manag, 2019, 445:60-69.DOI: 10.1016/j.foreco.2019.05.007.
[15]
武昱鑫, 张永娥, 贾国栋, 等. 基于多种同位素模型的侧柏林生态系统蒸散组分定量拆分[J]. 应用生态学报, 2021, 32(6):1971-1979.
WU Y X, ZHANG Y E, JIA G D, et al. Quantitative separation of evapotranspiration components of Platycladus orientalis ecosystem based on multiple isotope models[J]. Chin J Appl Ecol, 2021, 32(6):1971-1979.DOI: 10.13287/j.1001-9332.202106.023.
[16]
SUN L, WANG S L, ZHANG Y J, et al. Conservation agriculture based on crop rotation and tillage in the semi-arid Loess Plateau,China: effects on crop yield and soil water use[J]. Agric Ecosyst Environ, 2018, 251:67-77.DOI: 10.1016/j.agee.2017.09.011.
[17]
HU Y T, ZHAO P, HUANG Y Q, et al. Hydrologic balance,net primary productivity and water use efficiency of the introduced exotic Eucalyptus grandis × Eucalyptus urophylla plantation in south-western China[J]. J Plant Ecol, 2019, 12(6):982-992.DOI: 10.1093/jpe/rtz033.
[18]
SHANGGUAN Z P, SHAO M A, DYCKMANS J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat[J]. Environ Exp Bot, 2000, 44(2):141-149.DOI: 10.1016/s0098-8472(00)00064-2.
[19]
TOMÁS M, MEDRANO H, POU A, et al. Water-use efficiency in grapevine cultivars grown under controlled conditions: effects of water stress at the leaf and whole-plant level[J]. Aust J Grape Wine Res, 2012, 18(2):164-172.DOI: 10.1111/j.1755-0238.2012.00184.x.
[20]
WANG Y S, ZHANG Y E, YU X X, et al. Grassland soil moisture fluctuation and its relationship with evapotranspiration[J]. Ecol Indic, 2021, 131:108196.DOI: 10.1016/j.ecolind.2021.108196.
[21]
SCHULTZ H R, STOLL M. Some critical issues in environmental physiology of grapevines:future challenges and current limitations[J]. Aust J Grape Wine Res, 2010, 16:4-24.DOI: 10.1111/j.1755-0238.2009.00074.x.
[22]
ESCALONA J M, TOMÀS M, MARTORELL S, et al. Carbon balance in grapevines under different soil water supply:importance of whole plant respiration[J]. Aust J Grape Wine Res, 2012, 18(3):308-318.DOI: 10.1111/j.1755-0238.2012.00193.x.
[23]
CERNUSAK L A, ARANDA J, MARSHALL J D, et al. Large variation in whole-plant water-use efficiency among tropical tree species[J]. New Phytol, 2007, 173(2):294-305.DOI: 10.1111/j.1469-8137.2006.01913.x.
[24]
CERNUSAK L A, WINTER K, ARANDA J, et al. Conifers,angiosperm trees,and lianas:growth,whole-plant water and nitrogen use efficiency,and stable isotope composition ({delta}13C and{delta}18O) of seedlings grown in a tropical environment[J]. Plant Physiol, 2008, 148(1):642-659.DOI: 10.1104/pp.108.123521.
[25]
RAEINI-SARJAZ M, CHALAVI V. Effects of diverse microclimates and soil water contents on water-use efficiency and carbon isotope discrimination for bush bean[J]. J Agric Sci Technol, 2008, 10(1):43-53.
[26]
XU Z Z, ZHOU G S. Responses of photosynthetic capacity to soil moisture gradient in perennial rhizome grass and perennial bunchgrass[J]. BMC Plant Biol, 2011, 11:21.DOI: 10.1186/1471-2229-11-21.
[27]
JASONI R, KANE C, GREEN C, et al. Altered leaf and root emissions from onion (Allium cepa L.) grown under elevated CO2 conditions[J]. Environ Exp Bot, 2004, 51(3):273-280.DOI: 10.1016/j.envexpbot.2003.11.006.
[28]
ZHANG Y E, YU X X, CHEN L H, et al. Whole-plant instantaneous and short-term water-use efficiency in response to soil water content and CO2 concentration[J]. Plant Soil, 2019, 444(1):281-298.DOI: 10.1007/s11104-019-04277-6.
[29]
王淑庆, 张岁岐, 王小林. 黄土塬区不同栽培模式下玉米蒸腾耗水规律的研究[J]. 中国生态农业学报, 2013, 21(4):432-439.
WANG S Q, ZHANG S Q, WANG X L. Transpiration of maize under different cultivation patterns in the Loess Tableland[J]. Chin J Eco Agric, 2013, 21(4):432-439. DOI:10.3724/SP.J.1011.2013.00432.
[30]
赵丹丹, 马红媛, 李阳, 等. 水分和养分添加对羊草功能性状和地上生物量的影响[J]. 植物生态学报, 2019, 43(6):501-511.
ZHAO D D, MA H Y, LI Y, et al. Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis[J]. Chin J Plant Ecol, 2019, 43(6):501-511.DOI: 10.17521/cjpe.2019.0041.
[31]
张富仓, 康绍忠, 马清林. 大气CO2浓度升高对棉花生理特性和生长的影响[J]. 应用基础与工程科学学报, 1999, 7(3):267-272.
ZHANG F C, KANG S Z, MA Q L. The effects of the atmospheric CO2 concentration increase on physiological characters and growth of cotton[J]. J Basic Sci Eng, 1999, 7(3):267-272. DOI:10.3969/j.issn.1005-0930.1999.03.006.
[32]
田静. 大气CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8):826-835.
TIAN J. Effects of atmospheric CO2 concentration on vegetation transpiration over China[J]. Adv Earth Sci, 2021, 36(8):826-835.
[33]
FLEXAS J, BARÓN M, BOTA J, et al. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V.berlandieri×V.rupestris)[J]. J Exp Bot, 2009, 60(8):2361-2377.DOI: 10.1093/jxb/erp069.
[34]
BABLA M H, TISSUE D T, CAZZONELLI C I, et al. Effect of high light on canopy-level photosynthesis and leaf mesophyll ion flux in tomato[J]. Planta, 2020, 252(5):80.DOI: 10.1007/s00425-020-03493-0.
[35]
SINGH S P, SINGH R P, TIWARI A K. Evaluation of sugarcane varieties based on stomatal behavior under water stress condition[J]. Sugar Tech, 2019, 21(4):678-681.DOI: 10.1007/s12355-018-0680-5.
[36]
LEI Z Y, HAN J M, YI X P, et al. Coordinated variation between veins and stomata in cotton and its relationship with water-use efficiency under drought stress[J]. Photosynthetica, 2018, 56(4):1326-1335.DOI: 10.1007/s11099-018-0847-z.
[37]
HETHERINGTON A M, WOODWARD F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6951):901-908.DOI: 10.1038/nature01843.
[38]
JASECHKO S, SHARP Z D, GIBSON J J, et al. Terrestrial water fluxes dominated by transpiration[J]. Nature, 2013, 496(7445):347-350.DOI: 10.1038/nature11983.
[39]
PAPANATSIOU M, PETERSEN J, HENDERSON L, et al. Optogenetic manipulation of stomatal kinetics improves carbon assimilation,water use,and growth[J]. Science, 2019, 363(6434):1456-1459.DOI: 10.1126/science.aaw0046.
[40]
KHATAAR M, MOHAMMADI M H, SHABANI F. Soil salinity and matric potential interaction on water use,water use efficiency and yield response factor of bean and wheat[J]. Sci Rep, 2018, 8(1):2679.DOI: 10.1038/s41598-018-20968-z.
[41]
DIAO H J, KARDOL P, DONG K H, et al. Effects of nitrogen addition and mowing on nitrogen-and water-use efficiency of Artemisia frigida in a grassland restored from an abandoned cropland[J]. J Plant Ecol, 2021, 14(3):515-526.DOI: 10.1093/jpe/rtab006.

基金

国家自然科学基金面上项目(42277062)
国家自然科学基金项目(U2243202)
国家自然科学基金项目(42230714)

编辑: 孟苗婧
PDF(1590 KB)

Accesses

Citation

Detail

段落导航
相关文章

/