[1] |
MORISON J I L, BAKER N R, MULLINEAUX P M, et al. Improving water use in crop production[J]. Phil Trans R Soc B, 2008, 363(1491):639-658.DOI: 10.1098/rstb.2007.2175.
|
[2] |
赵风华, 于贵瑞. 陆地生态系统碳—水耦合机制初探[J]. 地理科学进展, 2008, 27(1):32-38.
|
|
ZHAO F H, YU G R. A review on the coupled carbon and water cycles in the terrestrial ecosystems[J]. Prog Geogr, 2008, 27(1):32-38.DOI: 10.11820/dlkxjz.2008.01.005.
|
[3] |
胡中民, 于贵瑞, 王秋凤, 等. 生态系统水分利用效率研究进展[J]. 生态学报, 2009, 29(3):1498-1507.
|
|
HU Z M, YU G R, WANG Q F, et al. Ecosystem level water use efficiency:a review[J]. Acta Ecol Sin, 2009, 29(3):1498-1507.DOI: 10.3321/j.issn:1000-0933.2009.03.048.
|
[4] |
TIAN H Q, CHEN G S, LIU M L, et al. Model estimates of net primary productivity,evapotranspiration,and water use efficiency in the terrestrial ecosystems of the southern United States during 1895-2007[J]. For Ecol Manag, 2010, 259(7):1311-1327.DOI: 10.1016/j.foreco.2009.10.009.
|
[5] |
HEILMAN K A, TROUET V M, BELMECHERI S, et al. Increased water use efficiency leads to decreased precipitation sensitivity of tree growth,but is offset by high temperatures[J]. Oecologia, 2021, 197(4):1095-1110.DOI: 10.1007/s00442-021-04892-0.
|
[6] |
常娟, 张增信, 田佳西, 等. 西北地区草地水分利用效率时空特征及其对气候变化的响应[J]. 南京林业大学学报(自然科学版), 2020, 44(3):119-125.
|
|
CHANG J, ZHANG Z X, TIAN J X, et al. Spatio-temporal characteristics of grassland water use efficiency and its response to climate change in northwest China[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):119-125.DOI: 10.3969/j.issn.1000-2006.201904012.
|
[7] |
赵聚宝, 梅旭荣, 薛军红, 等. 秸秆覆盖对旱地作物水分利用效率的影响[J]. 中国农业科学, 1996, 29(2):59-66.
|
|
ZHAO J B, MEI X R, XUE J H, et al. The effect of straw mulch on crop water use efficiency in dryland[J]. Sci Agric Sin, 1996, 29(2):59-66.
|
[8] |
ZHAO J X, XU T R, XIAO J F, et al. Responses of water use efficiency to drought in southwest China[J]. Remote Sens, 2020, 12(1):199.DOI: 10.3390/rs12010199.
|
[9] |
ADIREDJO A L, NAVAUD O, LAMAZE T, et al. Leaf carbon isotope discrimination as an accurate indicator of water-use efficiency in sunflower genotypes subjected to five stable soil water contents[J]. J Agronomy Crop Science, 2014, 200(6):416-424.DOI: 10.1111/jac.12079.
|
[10] |
王玉才, 张恒嘉, 邓浩亮, 等. 调亏灌溉对菘蓝水分利用及产量的影响[J]. 植物学报, 2018, 53(3):322-333.
|
|
WANG Y C, ZHANG H J, DENG H L, et al. Effect of regulated deficit irrigation on water use and yield of Isatis indigotica[J]. Chin Bull Bot, 2018, 53(3):322-333.DOI: 10.11983/CBB17030.
|
[11] |
胡化广, 张振铭, 吴生才, 等. 植物水分利用效率及其机理研究进展[J]. 节水灌溉, 2013(3):11-15.
|
|
HU H G, ZHANG Z M, WU S C, et al. Advance of research on water use efficiency of plant and its mechanism[J]. Water Sav Irrig, 2013(3):11-15.DOI: 10.3969/j.issn.1007-4929.2013.03.004.
|
[12] |
ZHANG Y P, ZHANG Y H, WANG Z M, et al. Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions[J]. Field Crops Res, 2011, 123(3):187-195.DOI: 10.1016/j.fcr.2011.04.014.
|
[13] |
ZHANG Y E, WANG D D, LIU Z Q, et al. Assessment of leaf water enrichment of Platycladus orientalis using numerical modeling with different isotopic models[J]. Ecol Indic, 2020, 111:105995.DOI: 10.1016/j.ecolind.2019.105995.
|
[14] |
KALKMAN J R, SIMONTON P, DORNBOS D L. Physiological competitiveness of common and glossy buckthorn compared with native woody shrubs in forest edge and understory habitats[J]. For Ecol Manag, 2019, 445:60-69.DOI: 10.1016/j.foreco.2019.05.007.
|
[15] |
武昱鑫, 张永娥, 贾国栋, 等. 基于多种同位素模型的侧柏林生态系统蒸散组分定量拆分[J]. 应用生态学报, 2021, 32(6):1971-1979.
|
|
WU Y X, ZHANG Y E, JIA G D, et al. Quantitative separation of evapotranspiration components of Platycladus orientalis ecosystem based on multiple isotope models[J]. Chin J Appl Ecol, 2021, 32(6):1971-1979.DOI: 10.13287/j.1001-9332.202106.023.
|
[16] |
SUN L, WANG S L, ZHANG Y J, et al. Conservation agriculture based on crop rotation and tillage in the semi-arid Loess Plateau,China: effects on crop yield and soil water use[J]. Agric Ecosyst Environ, 2018, 251:67-77.DOI: 10.1016/j.agee.2017.09.011.
|
[17] |
HU Y T, ZHAO P, HUANG Y Q, et al. Hydrologic balance,net primary productivity and water use efficiency of the introduced exotic Eucalyptus grandis × Eucalyptus urophylla plantation in south-western China[J]. J Plant Ecol, 2019, 12(6):982-992.DOI: 10.1093/jpe/rtz033.
|
[18] |
SHANGGUAN Z P, SHAO M A, DYCKMANS J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat[J]. Environ Exp Bot, 2000, 44(2):141-149.DOI: 10.1016/s0098-8472(00)00064-2.
|
[19] |
TOMÁS M, MEDRANO H, POU A, et al. Water-use efficiency in grapevine cultivars grown under controlled conditions: effects of water stress at the leaf and whole-plant level[J]. Aust J Grape Wine Res, 2012, 18(2):164-172.DOI: 10.1111/j.1755-0238.2012.00184.x.
|
[20] |
WANG Y S, ZHANG Y E, YU X X, et al. Grassland soil moisture fluctuation and its relationship with evapotranspiration[J]. Ecol Indic, 2021, 131:108196.DOI: 10.1016/j.ecolind.2021.108196.
|
[21] |
SCHULTZ H R, STOLL M. Some critical issues in environmental physiology of grapevines:future challenges and current limitations[J]. Aust J Grape Wine Res, 2010, 16:4-24.DOI: 10.1111/j.1755-0238.2009.00074.x.
|
[22] |
ESCALONA J M, TOMÀS M, MARTORELL S, et al. Carbon balance in grapevines under different soil water supply:importance of whole plant respiration[J]. Aust J Grape Wine Res, 2012, 18(3):308-318.DOI: 10.1111/j.1755-0238.2012.00193.x.
|
[23] |
CERNUSAK L A, ARANDA J, MARSHALL J D, et al. Large variation in whole-plant water-use efficiency among tropical tree species[J]. New Phytol, 2007, 173(2):294-305.DOI: 10.1111/j.1469-8137.2006.01913.x.
|
[24] |
CERNUSAK L A, WINTER K, ARANDA J, et al. Conifers,angiosperm trees,and lianas:growth,whole-plant water and nitrogen use efficiency,and stable isotope composition ({delta}13C and{delta}18O) of seedlings grown in a tropical environment[J]. Plant Physiol, 2008, 148(1):642-659.DOI: 10.1104/pp.108.123521.
|
[25] |
RAEINI-SARJAZ M, CHALAVI V. Effects of diverse microclimates and soil water contents on water-use efficiency and carbon isotope discrimination for bush bean[J]. J Agric Sci Technol, 2008, 10(1):43-53.
|
[26] |
XU Z Z, ZHOU G S. Responses of photosynthetic capacity to soil moisture gradient in perennial rhizome grass and perennial bunchgrass[J]. BMC Plant Biol, 2011, 11:21.DOI: 10.1186/1471-2229-11-21.
|
[27] |
JASONI R, KANE C, GREEN C, et al. Altered leaf and root emissions from onion (Allium cepa L.) grown under elevated CO2 conditions[J]. Environ Exp Bot, 2004, 51(3):273-280.DOI: 10.1016/j.envexpbot.2003.11.006.
|
[28] |
ZHANG Y E, YU X X, CHEN L H, et al. Whole-plant instantaneous and short-term water-use efficiency in response to soil water content and CO2 concentration[J]. Plant Soil, 2019, 444(1):281-298.DOI: 10.1007/s11104-019-04277-6.
|
[29] |
王淑庆, 张岁岐, 王小林. 黄土塬区不同栽培模式下玉米蒸腾耗水规律的研究[J]. 中国生态农业学报, 2013, 21(4):432-439.
|
|
WANG S Q, ZHANG S Q, WANG X L. Transpiration of maize under different cultivation patterns in the Loess Tableland[J]. Chin J Eco Agric, 2013, 21(4):432-439. DOI:10.3724/SP.J.1011.2013.00432.
|
[30] |
赵丹丹, 马红媛, 李阳, 等. 水分和养分添加对羊草功能性状和地上生物量的影响[J]. 植物生态学报, 2019, 43(6):501-511.
|
|
ZHAO D D, MA H Y, LI Y, et al. Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis[J]. Chin J Plant Ecol, 2019, 43(6):501-511.DOI: 10.17521/cjpe.2019.0041.
|
[31] |
张富仓, 康绍忠, 马清林. 大气CO2浓度升高对棉花生理特性和生长的影响[J]. 应用基础与工程科学学报, 1999, 7(3):267-272.
|
|
ZHANG F C, KANG S Z, MA Q L. The effects of the atmospheric CO2 concentration increase on physiological characters and growth of cotton[J]. J Basic Sci Eng, 1999, 7(3):267-272. DOI:10.3969/j.issn.1005-0930.1999.03.006.
|
[32] |
田静. 大气CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8):826-835.
|
|
TIAN J. Effects of atmospheric CO2 concentration on vegetation transpiration over China[J]. Adv Earth Sci, 2021, 36(8):826-835.
|
[33] |
FLEXAS J, BARÓN M, BOTA J, et al. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V.berlandieri×V.rupestris)[J]. J Exp Bot, 2009, 60(8):2361-2377.DOI: 10.1093/jxb/erp069.
|
[34] |
BABLA M H, TISSUE D T, CAZZONELLI C I, et al. Effect of high light on canopy-level photosynthesis and leaf mesophyll ion flux in tomato[J]. Planta, 2020, 252(5):80.DOI: 10.1007/s00425-020-03493-0.
|
[35] |
SINGH S P, SINGH R P, TIWARI A K. Evaluation of sugarcane varieties based on stomatal behavior under water stress condition[J]. Sugar Tech, 2019, 21(4):678-681.DOI: 10.1007/s12355-018-0680-5.
|
[36] |
LEI Z Y, HAN J M, YI X P, et al. Coordinated variation between veins and stomata in cotton and its relationship with water-use efficiency under drought stress[J]. Photosynthetica, 2018, 56(4):1326-1335.DOI: 10.1007/s11099-018-0847-z.
|
[37] |
HETHERINGTON A M, WOODWARD F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6951):901-908.DOI: 10.1038/nature01843.
|
[38] |
JASECHKO S, SHARP Z D, GIBSON J J, et al. Terrestrial water fluxes dominated by transpiration[J]. Nature, 2013, 496(7445):347-350.DOI: 10.1038/nature11983.
|
[39] |
PAPANATSIOU M, PETERSEN J, HENDERSON L, et al. Optogenetic manipulation of stomatal kinetics improves carbon assimilation,water use,and growth[J]. Science, 2019, 363(6434):1456-1459.DOI: 10.1126/science.aaw0046.
|
[40] |
KHATAAR M, MOHAMMADI M H, SHABANI F. Soil salinity and matric potential interaction on water use,water use efficiency and yield response factor of bean and wheat[J]. Sci Rep, 2018, 8(1):2679.DOI: 10.1038/s41598-018-20968-z.
|
[41] |
DIAO H J, KARDOL P, DONG K H, et al. Effects of nitrogen addition and mowing on nitrogen-and water-use efficiency of Artemisia frigida in a grassland restored from an abandoned cropland[J]. J Plant Ecol, 2021, 14(3):515-526.DOI: 10.1093/jpe/rtab006.
|