马尾松胚性愈伤组织对松材线虫的抗性评价

陈友梅, 夏馨蕊, 叶建仁, 朱丽华

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1) : 37-45.

PDF(51573 KB)
PDF(51573 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1) : 37-45. DOI: 10.12302/j.issn.1000-2006.202303049
专题报道:松材线虫病绿色防控研究(执行主编 叶建仁 骆有庆)

马尾松胚性愈伤组织对松材线虫的抗性评价

作者信息 +

An in vitro evaluation of the resistance traits to pine wood nematode (Bursaphelenchus xylophilus) in Pinus massoniana embryogenic callus

Author information +
文章历史 +

摘要

【目的】建立马尾松(Pinus massoniana)愈伤组织抗松材线虫(Bursaphelenchus xylophilus)病评价体系,筛选抗性马尾松细胞系。【方法】以马尾松不同胚性愈伤组织为试验材料,以黑松(P. thunbergii)和湿地松(P. elliottii)胚性愈伤组织作对照,接种无菌松材线虫,从接种线虫后愈伤组织外观形态、细胞结构和细胞活力变化以及线虫繁殖量4个方面探讨马尾松胚性愈伤组织对松材线虫的抗性。【结果】马尾松不同细胞系胚性愈伤组织之间抗病性差异显著。细胞系GX19-1-2和GX20-3-3显示出最高的抗性,接种无菌松材线虫10 d后外观轻微黄化,TTC染色结果为红色,显示其细胞保持较好活力;再分离线虫数量分别为(4 200±306)条和(5 933±1 392)条,显著低于湿地松2个细胞系(1907-9和1927-1),抗病性高于湿地松的1907-9和1927-1;GX20-3-8次之,线虫数量为(11 133±2 728)条;细胞系GX20-1-1接种无菌松材线虫后严重褐化、水渍化,TTC染色结果显示其细胞已完全失去活力,再分离线虫数量为(24 800±2 411)条,易感程度介于黑松细胞系1337和36-2之间。【结论】构建了基于愈伤组织的松树抗松材线虫评估体系,并筛选出2个具有较高抗性水平的马尾松细胞系GX19-1-2和GX20-3-3。这不仅为大规模筛选抗松材线虫病新种质奠定了基础,还为深入探究寄主松树-病原松材线虫之间相互作用的机制提供了新的研究平台。

Abstract

【Objective】Pinus massoniana, a predominant tree species in Chinese forests, is highly susceptible to pine wood nematode (PWN), Bursaphelenchus xylophilus, which causes pine wilt disease and can lead to severe economic and ecological damage. This study aimed to develop an evaluation system for assessing the resistance of P. massoniana embryogenic callus to PWN and to screen for cell lines that exhibit enhanced resistance.【Method】The embryogenic callus induced from immature embryos of P. massoniana, sourced from Guangyun Forest Farm in Pingle County, Guilin City, Guangxi Zhuang Autonomous Region, China, was used as the experimental material, and the embryogenic callus of P. thunbergii and P. elliottii was used as the control group. The strongly virulent PWN strain AMA3c28, maintained at Nanjing Forestry University, China, was utilized for inoculation. Bacterial-free PWNs were obtained by sterilizing nematode eggs with 15% H2O2 for 50 min followed by rinsing in sterile water three times. The sterilized eggs were then inoculated onto pine callus, where they hatched and proliferated. The bacterial-free PWNs were collected and each callus piece from different cell lines was inoculated with 50 μL of a nematode suspension containing approximately 500 nematodes. Control groups were inoculated with an equal amount of sterile water. Post-inoculation, the cultures were incubated at 25 ℃ in the dark, and morphological changes were observed after 10 d, followed by the microscopic examination of cellular morphology. The cell viability was assessed using the 2,3,5-triphenyltetrazolium chloride (TTC) staining method. The population dynamics of PWN within the callus were evaluated by re-isolating the nematodes using the Baermann funnel technique. 【Result】The study revealed a marked variation in PWN resistance among the P. massoniana cell lines. The cell lines GX19-1-2 and GX20-3-3 exhibited the highest resistance and minimal morphological changes, maintaining an cell structural integrity after inoculation with bacterial-free PWNs for 10 days. In contrast, cell lines GX20-4-4, GX20-1-10, GX20-3-5, GX20-1-1 and GX20-1-7 exhibited severe browning, tortured cell structure, and significant growth inhibition, indicating weaker resistance. TTC staining confirmed these observations, with resistant cell lines showing vibrant red staining similar to the control groups, while susceptible lines turned pink and white, indicating reduced cell viability. Microscopic examination of cell structures post-inoculation further validated the resistance profiles, with resistant lines maintaining clear embryonic head-stem structures, and susceptible lines showing disrupted cellular integrity and a leakage of cellular contents. The population dynamics of PWN within the callus varied significantly among cell lines. Notably, the P. thunbergii cell line 36-2 exhibited the highest reproduction of PWN (107 333 ± 9 333), indicating a high susceptibility. In contrast, the P. massoniana cell lines GX19-1-2 and GX20-3-3 showed lower PWN levels, which were significantly lower than that of the two P. elliottii cell lines 1907-9 and 1927-1, suggesting a strong inhibitory effect on nematode reproduction and strong resistance. Cell line GX20-3-8 had similar resistance compared to that of P. elliotti cell lines. 【Conclusion】This study successfully developed an in vitro evaluation system for assessing the resistance of P. massoniana to PWN, revealing that cell lines GX19-1-2 and GX20-3-3 exhibit promising levels of resistance. The results act as a basis for future research, contribute to the development of resistant P. massoniana varieties, and can be employed to establish a new research platform for enhancing our understanding of the interactions between host pine trees and the PWN.

关键词

马尾松 / 松材线虫 / 胚性细胞系 / 细胞活力 / 线虫繁殖量 / 抗性评价

Key words

Pinus massoniana / Bursaphelenchus xylophilus / embryogenic cell lines / cell viability / nematode reproduction / resistance evaluation

引用本文

导出引用
陈友梅, 夏馨蕊, 叶建仁, . 马尾松胚性愈伤组织对松材线虫的抗性评价[J]. 南京林业大学学报(自然科学版). 2025, 49(1): 37-45 https://doi.org/10.12302/j.issn.1000-2006.202303049
CHEN Youmei, XIA Xinrui, YE Jianren, et al. An in vitro evaluation of the resistance traits to pine wood nematode (Bursaphelenchus xylophilus) in Pinus massoniana embryogenic callus[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(1): 37-45 https://doi.org/10.12302/j.issn.1000-2006.202303049
中图分类号: S763   

参考文献

[1]
理永霞, 张星耀. 松材线虫入侵扩张趋势分析[J]. 中国森林病虫, 2018, 37(5):1-4.
LI Y X, ZHANG X Y. Analysis on the trend of invasion and expansion of Bursaphelenchus xylophilus[J]. For Pest Dis, 2018, 37(5):1-4.DOI: 10.3969/j.issn.1671-0886.2018.05.001.
[2]
胡龙娇, 吴小芹. 松树抗松材线虫病机制研究进展[J]. 生命科学, 2018, 30(6):659-666.
HU L J, WU X Q. Research progress on the mechanism of pine response to the infection of Bursaphelenchus xylophilus[J]. Chin Bull Life Sci, 2018, 30(6):659-666.DOI: 10.13376/j.cbls/20180601.
[3]
张旭, 赵京京, 闫峻, 等. 2017年中国大陆松材线虫病灾害经济损失评估[J]. 北京林业大学学报, 2020, 42(10):96-106.
ZHANG X, ZHAO J J, YAN J, et al. Economic loss assessment of pine wilt disease in mainland China in 2017[J]. Journal of Beijing Forestry University, 2020, 42(10):96-106.
[4]
叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析[J]. 林业科学, 2019, 55(9):1-10.
YE J R. Epidemic status of pine wilt disease in China and its prevention and control techniques and counter measures[J]. Sci Silvae Sin, 2019, 55(9):1-10.DOI: 10.11707/j.1001-7488.20190901.
[5]
李计顺, 潘佳亮, 刘超, 等. 2020年全国松材线虫病疫情流行情况分析[J]. 中国森林病虫, 2021, 40(4):1-4.
LI J S, PAN J L, LIU C, et al. Analysis of the epidemic situation of pine wilt disease in China in 2020[J]. For Pest Dis, 2021, 40(4):1-4.DOI: 10.19688/j.cnki.issn1671-0886.20210017.
[6]
徐六一, 章健, 高景斌, 等. 安徽省松材线虫病抗性育种研究进展[J]. 安徽林业科技, 2013, 39(2):8-10,14.
XU L Y, ZHANG J, GAO J B, et al. Research progress on resistance breeding to pinewood nematodiasis in Anhui Province[J]. Anhui For Sci Technol, 2013, 39(2):8-10,14.DOI: 10.3969/j.issn.2095-0152.2013.02.002.
[7]
MORI Y, MIYAHARA F, TSUTSUMI Y, et al. Relationship between resistance to pine wilt disease and the migration or proliferation of pine wood nematodes[J]. Eur J Plant Pathol, 2008, 122(4):529-538.DOI: 10.1007/s10658-008-9321-2.
[8]
郝焰平, 姜春武, 陈雪莲, 等. “皖抗6号” 等六个抗松材线虫病马尾松无性系选育[J]. 中国森林病虫, 2021, 40(3):14-20.
HAO Y P, JIANG C W, CHEN X L, et al. Breeding of six clones of Pinus massoniana resistant to pine wilt disease including “Wankang No.6”[J]. For Pest Dis, 2021, 40(3):14-20.DOI: 10.19688/j.cnki.issn1671-0886.20210009.
[9]
刘进平, 郑成木. 体外选择与体细胞无性系变异在抗病育种中的应用[J]. 遗传, 2002, 24(5):617-630.
LIU J P, ZHENG C M. Application of in vitro selection and somaclonal varation in improvement of disease resistance[J]. Hereditas(Beijing), 2002, 24(5):617-630.DOI: 10.3321/j.issn:0253-9772.2002.05.023.
[10]
XIA X R, YANG F, KE X, et al. Somatic embryogenesis of Masson pine (Pinus massoniana):initiation,maturation and genetic stability analysis at SSR loci[J]. Plant Cell Tissue Organ Cult, 2021, 145(3):667-677.DOI: 10.1007/s11240-021-02036-z.
[11]
YANG F, XIA X R, KE X, et al. Somatic embryogenesis in slash pine (Pinus elliottii Engelm):improving initiation of embryogenic tissues and maturation of somatic embryos[J]. Plant Cell Tissue Organ Cult (PCTOC), 2020, 143(1):159-171.DOI: 10.1007/s11240-020-01905-3.
[12]
陈婷婷, 叶建仁, 吴小芹, 等. 抗松材线虫病马尾松体胚发生与植株再生条件的优化[J]. 南京林业大学学报(自然科学版), 2019, 43(3):1-8.
CHEN T T, YE J R, WU X Q, et al. Somatic embryogenesis and plantlet regeneration of disease-resistant Pinus massoniana Lamb[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(3):1-8.DOI: 10.3969/j.issn.1000-2006.201806005.
[13]
季孔庶, 王潘潘, 王金铃, 等. 松科树种的离体培养研究进展[J]. 南京林业大学学报(自然科学版), 2015, 39(1):142-148.
JI K S, WANG P P, WANG J L, et al. Review on in vitro culture of tree species in Pinaceae[J]. J Nanjing For Univ (Nat Sci Ed), 2015, 39(1):142-148.DOI: 10.3969/j.issn.1000-2006.2015.01.001.
[14]
吴静, 朱丽华, 许建秀, 等. 抗松材线虫病赤松胚性愈伤组织的诱导及增殖[J]. 南京林业大学学报(自然科学版), 2015, 39(1):17-21.
WU J, ZHU L H, XU J X, et al. Induction and proliferation of embryogenic callus in nematode-resistant Pinus densiflora[J]. J Nanjing For Univ (Nat Sci Ed), 2015, 39(1):17-21.DOI: 10.3969/j.issn.1000-2006.2015.01.001.
[15]
李淼, 檀根甲, 承河元, 等. 植物抗病性研究现状与前景展望[J]. 江西农业大学学报(自然科学版), 2002, 24(5):731-736.
LI M, TAN G J, CHENG H Y, et al. Present condition and prospect of research on plant disease resistance[J]. Acta Agric Univ Jiangxiensis, 2002, 24(5):731-736.DOI: 10.3969/j.issn.1000-2286.2002.05.038.
[16]
张立钦, 李传道. 用组织培养方法鉴别植物的抗病性[J]. 浙江林学院学报, 1989, 6(3):88-95.
ZHANG L Q, LI C D. Expression of plant disease resistance in tissue culture[J]. Journal of Zhejiang A & F University, 1989, 6(3):88-95.
[17]
THORPE T A. History of plant tissue culture[J]. Mol Biotechnol, 2007, 37(2):169-180.DOI: 10.1007/s12033-007-0031-3.
[18]
LIN P, ZHANG M Y, WANG M Y, et al. Inoculation with arbuscular mycorrhizal fungus modulates defense-related genes expression in banana seedlings susceptible to wilt disease[J]. Plant Signal Behav, 2021, 16(5):1884782.DOI: 10.1080/15592324.2021.1884782.
[19]
KUMAR P, CHAND R, SINGH V, et al. In vitro screening of calli of mungbean to cercosporin,a photoactivated toxin[J]. Indian J Exp Biol, 2017, 55(2):113-121.
[20]
STROUD E A, RIKKERINK E H A, JAYARAMAN J, et al. ActigardTM induces a defence response to limit Pseudomonas syringae pv.actinidiae in Actinidia chinensis var.chinensis ‘Hort16A’ tissue culture plants[J]. Sci Hortic, 2022, 295:110806.DOI: 10.1016/j.scienta.2021.110806.
[21]
MURAKISHI H H, HARTMANN J X, BEACHY R N, et al. Growth curve and yield of tobacco mosaic virus in tobacco callus cells[J]. Virology, 1971,43(1):62-68.DOI: 10.1016/0042-6822(71)90224-8.
[22]
张立钦, 李传道, 黄敏仁. 杨树组织培养愈伤组织对水泡型溃疡病的抗性[J]. 南京林业大学学报, 1989, 13(4):9.
ZHANG L Q, LI C D, HUANG M R. A study on the resistance to botryosphaeria dothidea in callus tissues of poplar clones[J]. J Nanjing For Univ (Nat Sci Ed), 1989, 13(4):9.
[23]
CHAND R, SEN D, PRASAD K D, et al. Screening for disease resistance in barley cultivars against Bipolaris sorokiniana using callus culture method[J]. Indian J Exp Biol, 2008, 46(4):249-253.
[24]
林雪坚, 吴光金, 程淑华, 等. 桉树愈伤组织抗病性的测定及其快速繁殖研究[J]. 中南林学院学报, 2003, 23(6):117-120.
LIN X J, WU G J, CHENG S H, et al. Studies of the quick-propagation of Eucalyptus and the determination of its callus disease resistance[J]. J Cent South Univ For Technol, 2003, 23(6):117-120.DOI: 10.3969/j.issn.1673-923X.2003.06.029.
[25]
高立宏, 汉丽萍, 辛树权. 稻瘟病菌粗毒素对水稻成熟胚愈伤组织诱导的影响及抗性筛选[J]. 长春师范学院学报(自然科学版), 2007, 26(5):72-76.
GAO L H, HAN L P, XIN S Q. The infention of mature embryo callus’s induction by the crude toxin of phyricularis oryzae.cav and blast-resistant mutant-screening[J]. J Changchun Norm Univ, 2007, 26(5):72-76.DOI: 10.3969/j.issn.1008-178X-B.2007.05.022.
[26]
CARLSON P S, MURAKISHI H H. Evidence on the clonal versus non-clonal origin of dark green islands in virus infected tobacco leaves[J]. Plant Sci Lett, 1978,13(4):377-381.10.1016/0304-4211(78)90215-8.
[27]
DIEZ J, GIL L. Influence of Ophiostoma novo-ulmi culture filtrates on callus of elms with different susceptibility to Dutch Elm Disease[J]. For Syst, 2002, 11(1):67-76.DOI: 10.5424/759.
[28]
JANG J C, TAINTER F H. Optimum tissue culture conditions for selection of resistance to Phytophtora cinnamomi in pine callus tissue[J]. Plant Cell Rep, 1991, 9(9):488-491.DOI: 10.1007/BF00232102.
[29]
OSTRY M E, WARD K T. Field performance of Populus expressing somaclonal variation in resistance to Septoria musiva[J]. Plant Sci, 2003, 164(1):1-8.DOI: 10.1016/s0168-9452(02)00282-0.
[30]
BAIRU M W, AREMU A O, VAN STADEN J. Somaclonal variation in plants:causes and detection methods[J]. Plant Growth Regul, 2011, 63(2):147-173.DOI: 10.1007/s10725-010-9554-x.
[31]
林丽, 周蕾, 潘珺, 等. 无菌和带菌松材线虫对赤松的致病性[J]. 林业科学, 2017, 53(5):82-87.
LIN L, ZHOU L, PAN J, et al. Pathogenicity of aseptic and germ-carrying Bursaphelenchus xylophilus on Pinus densiflora[J]. Sci Silvae Sin, 2017, 53(5):82-87.DOI: 10.11707/j.1001-7488.20170510.
[32]
朱丽华, 季锦衣, 吴小芹, 等. 一种制备无菌松材线虫的方法[J]. 东北林业大学学报, 2011, 39(6):65-67,71.
ZHU L H, JI J Y, WU X Q, et al. A method for obtaining aseptic pine wood nematode[J]. J Northeast For Univ, 2011, 39(6):65-67,71.DOI: 10.3969/j.issn.1000-5382.2011.06.021.
[33]
刘华, 梅兴国. TTC法测定红豆杉细胞活力[J]. 植物生理学通讯, 2001, 37(6):537-539.
LIU H, MEI X G. Examining cell viability of Taxus chinensis with TTC (2,3,5-triphenyl-2H-tetrazolium chloride)[J]. Plant Physiol J, 2001, 37(6):537-539.
[34]
理永霞, 王璇, 刘振凯, 等. 松材线虫致病机理研究进展[J]. 中国森林病虫, 2022, 41(3):11-20.
LI Y X, WANG X, LIU Z K, et al. Research advance of pathogenic mechanism of pine wood nematode[J]. For Pest Dis, 2022, 41(3):11-20.DOI: 10.19688/j.cnki.issn1671-0886.20220015.
[35]
叶建仁, 吴小芹. 松材线虫病研究进展[J]. 中国森林病虫, 2022, 41(3):1-10.
YE J R, WU X Q. Research progress of pine wilt disease[J]. For Pest Dis, 2022, 41(3):1-10.
[36]
ZHU L H, YE J R, NEGI S, et al. Pathogenicity of aseptic Bursaphelenchus xylophilus[J]. PLoS One, 2012, 7(5):e38095.DOI: 10.1371/journal.pone.0038095.
[37]
TAMURA H. Pathogenicity of aseptic Bursaphelenchus xylophilus and associated bacteria to pine seedlings[J]. Jpn J Nematol, 1983, 13:1-5.DOI: 10.14855/JJN1972.13.1.
[38]
ZHAO H, CHEN C, LIU S, et al. Aseptic Bursaphelenchus xylophilus does not reduce the mortality of young pine tree[J]. For Pathol, 2013, 43(6):444-454.DOI: 10.1111/efp.12052.
[39]
FARIA J M S, SENA I, VIEIRA DA SILVA I, et al. In vitro co-cultures of Pinus pinaster with Bursaphelenchus xylophilus:a biotechnological approach to study pine wilt disease[J]. Planta, 2015, 241(6):1325-1336.DOI: 10.1007/s00425-015-2257-9.
[40]
KAWAZU K, KANEKO N. Asepsis of the pine wood nematode isolate OKD-3 causes it to lose its pathogenicity[J]. Jpn J Nematol, 1997, 27(2):76-80.DOI: 10.3725/jjn1993.27.2_76.
[41]
HAN Z M, HONG Y D, ZHAO B G. A study on pathogenicity of bacteria carried by pine wood nematodes[J]. J Phytopathol, 2003, 151(11/12):683-689.DOI: 10.1046/j.1439-0434.2003.00790.x.
[42]
朱丽华, 章欣月, 夏馨蕊, 等. 无细菌松材线虫对马尾松的致病性[J]. 林业科学, 2020, 56(7):63-69.
ZHU L H, ZHANG X Y, XIA X R, et al. Pathogenicity of aseptic Bursaphelenchus xylophilus on Pinus massoniana[J]. Sci Silvae Sin, 2020, 56(7):63-69.DOI: 10.11707/j.1001-7488.20200707.
[43]
王华光, 李良, 巨云为, 等. 鞭毛蛋白毒素导致的黑松超微结构病理学变化[J]. 南京林业大学学报(自然科学版), 2018, 42(6):137-144.
WANG H G, LI L, JU Y W, et al. Pathological changes in ultrastructure of the Pinus thunbergii due to flagellin toxin[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(6):137-144.DOI: 10.3969/j.issn.1000-2006.201803047.
[44]
THAKUR M, SHARMA D, SHARMA S. In vitro selection and regeneration of carnation (Dianthus caryophyllus L.) plants resistant to culture filtrate of Fusarium oxysporum f.sp.dianthi[J]. Plant Cell Rep, 2002, 20(9):825-828.DOI: 10.1007/s00299-001-0412-1.
[45]
YERZHEBAYEVA R S, ABEKOVA A M, BERSIMBAEVA G H, et al. In vitro cell selection of sugar beet for resistance to culture filtrate of the fungus Fusarium oxysporum[J]. Cytol Genet, 2019, 53(4):307-314.DOI: 10.3103/S0095452719040042.
[46]
ZHU L H, CHU X F, SUN T Y, et al. Micropropagation of Pinus densiflora and the evaluation of nematode resistance of regenerated microshoots in vitro[J]. J For Res, 2019, 30(2):519-528.DOI: 10.1007/s11676-018-0681-y.
[47]
张艺, 吴小芹, 王钰, 等. 抗松材线虫病赤松家系的抗性测定及组织病理学观察[J]. 南京林业大学学报(自然科学版), 2007, 31(4):110-114.
ZHANG Y, WU X Q, WANG Y, et al. Resistance determination and histopathological observation of induced Pinus densiflora families from Japan to Bursaphelenchus xylophilus[J]. J Nanjing For Univ (Nat Sci Ed), 2007, 31(4):110-114.DOI: 10.3969/j.issn.1000-2006.2007.04.025.
[48]
李清清, 叶建仁, 朱丽华, 等. 抗松材线虫病赤松组培苗的抗病性测定1)[J]. 东北林业大学学报, 2013, 41(7):45-47.
LI Q Q, YE J R, ZHU L H, et al. Resistance determination of wilt-resistant Pinus densiflora tissue culture seedling to Bursaphelenchus xylophilus[J]. J Northeast For Univ, 2013, 41(7):45-47.DOI: 10.3969/j.issn.1000-5382.2013.07.011.
[49]
吴小芹, 张艺, 陈蔚诗, 等. 黑松13个抗病家系对松材线虫的抗性反应及组织病理学观察[J]. 植物病理学报, 2008, 38(1):44-50.
WU X Q, ZHANG Y, CHEN W S, et al. Resistance and histopathological observation of wilt-resistant Pinus thunbergii families from Japan to Bursaphelenchus xylophilus[J]. Acta Phytopathol Sin, 2008, 38(1):44-50.DOI: 10.3321/j.issn:0412-0914.2008.01.008.
[50]
DIEZ J, GIL L. Effects of Ophiostoma ulmi and Ophiostoma novo-ulmi culture filtrates on elm cultures from genotypes with different susceptibility to Dutch elm disease[J]. Eur J For Pathol, 1998, 28(6):399-407.DOI: 10.1111/j.1439-0329.1998.tb01194.x.
[51]
徐福元, 葛明宏, 张培, 等. 不同马尾松种源对松材线虫病的抗病性[J]. 南京林业大学学报(自然科学版), 2000, 24(4):85-88.
XU F Y, GE M H, ZHANG P, et al. Studies on resistance mechanisms of Masson pine provenance resistance to pine wood nematode (PWN)[J]. J Nanjing For Univ (Nat Sci Ed), 2000, 24(4):85-88.DOI: 10.3969/j.issn.1000-2006.2000.04.021.

基金

国家自然科学基金项目(31971659)
科技创新2030-重大项目(52022ZD04016)

编辑: 吴祝华
PDF(51573 KB)

Accesses

Citation

Detail

段落导航
相关文章

/