南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1): 28-36.doi: 10.12302/j.issn.1000-2006.202304018
• 专题报道:松材线虫病绿色防控研究(执行主编 叶建仁 骆有庆) • 上一篇 下一篇
李子纯(), 郝德君*(
), 李慧, 李长燕, 许丹雯仪, 杨华磊, 赵培渊
收稿日期:
2023-04-10
修回日期:
2024-02-02
出版日期:
2025-01-30
发布日期:
2025-01-21
通讯作者:
* 郝德君(dejunhao@163.com),教授。作者简介:
李子纯(leezichun@njfu.edu.cn)。
基金资助:
LI Zichun(), HAO Dejun*(
), LI Hui, LI Changyan, XU Danwenyi, YANG Hualei, ZHAO Peiyuan
Received:
2023-04-10
Revised:
2024-02-02
Online:
2025-01-30
Published:
2025-01-21
摘要:
【目的】克隆松墨天牛(Monochamus alternatus)谷胱甘肽S转移酶(glutathione S-transferases, GST)相关基因,明确GST基因在松墨天牛响应高温胁迫中的效用,为探究亚热带地区松墨天牛的耐热分子机制提供理论依据。【方法】克隆3条松墨天牛GST基因,结合DNAMAN 9.0、I-TASSER等软件分析松墨天牛GST基因的结构特征;利用qRT-PCR技术测定分析松墨天牛成虫和4龄幼虫在不同高温、不同处理时长后GST基因的相对表达量;通过纸盘扩散法验证3条松墨天牛GST基因在保护机体免受氧化应激中的作用。【结果】克隆3条松墨天牛GST基因的cDNA序列,分别命名为MaltGSTe1、MaltGSTe2和MaltGSTt1。MaltGSTe1与MaltGSTe2均属于GST的Epsilon家族,MaltGSTt1属于GST的Theta家族。3条GST基因三维蛋白结构具有指示性结构特征,属于胞质型GST。松墨天牛4龄幼虫在高温胁迫下MaltGSTe1、MaltGSTe2和MaltGSTt1的相对表达量均出现显著变化,MaltGSTe2相对表达水平上调幅度最大;MaltGSTt1在松墨天牛雄虫体内相对表达量出现明显下调;异源表达3条GST基因蛋白的大肠杆菌表现出较强的抗氧化能力,其中,MaltGSTe2具有更强的抗氧化能力。【结论】克隆获得3条松墨天牛GST基因,发现高温胁迫可诱导GST基因表达量上调;纸盘扩散分析结果表明异源表达GST基因蛋白具有抗氧化能力,推测GST基因具有通过保护机体免受氧化应激来参与松墨天牛幼虫的高温胁迫响应机制。
中图分类号:
李子纯,郝德君,李慧,等. 松墨天牛GST基因克隆及高温胁迫下的表达特性分析[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 28-36.
LI Zichun, HAO Dejun, LI Hui, LI Changyan, XU Danwenyi, YANG Hualei, ZHAO Peiyuan. Cloning of glutathione S-transferases gene from Monochamus alternatus and its expression characteristics under heat stress[J].Journal of Nanjing Forestry University (Natural Science Edition), 2025, 49(1): 28-36.DOI: 10.12302/j.issn.1000-2006.202304018.
表1
qPCR引物的扩增效率"
引物名称 primer name | 引物序列(5'-3') primer sequence | 相关 系数(R2) correlation coefficient | 扩增效率/% amplification efficiency |
---|---|---|---|
GAPDH-qF | TCGAACGCTTCATGCACAAC | 0.99 | 1.09 |
GAPDH-qR | CCATCACGCCACAAATTTTCC | ||
MaltGSTe-1-qF | AACGTACTAGTGCCCATCGC | 0.99 | 1.10 |
MaltGSTe-1-qR | AGCCTACTTGATTGGCCTCG | ||
MaltGSTe-2-qF | ATACCAGCCCTGGACGACAA | 0.99 | 1.03 |
MaltGSTe-2-qR | GCTTTTCAACATCGGCAGGA | ||
MaltGSTt-1-qF | ATATGCTGCCGGAGATCACG | 1.00 | 1.09 |
MaltGSTt-1-qR | ACCAGCTTTGGACAAGAGGAT |
表2
松墨天牛基因克隆所有引物"
引物名称 primer name | 引物序列(5'-3') primer sequence |
---|---|
MaltGSTe-1-F① | ATGGCGCCTAAATTACACTACG |
MaltGSTe-1-R① | TCAACCAAGCTTGCTCTTGAC |
MaltGSTe-2-F① | ATGGCTCCAAAGTTATATATGACA |
MaltGSTe-2-R① | TTACGTGGATAATGCATTTTGAACT |
MaltGSTt-1-F① | ATGCCACTAACATTATATGCTGT |
MaltGSTt-1-R① | TTATTTTCTAATGGGGTGAATGGGA |
MaltGSTe-1-tF② | cagcaaatgggtcgcggatccATGGCGCCTAAATTACACTACGC |
MaltGSTe-1-tR② | ctcgagtgcggccgcaagcttACCAAGCTTGCTCTTGACCATT |
MaltGSTe-2-tF② | cagcaaatgggtcgcggatccATGGCTCCAAAGTTATATATGACAATAA |
MaltGSTe-2-tR② | ctcgagtgcggccgcaagcttCGTGGATAATGCATTTTGAACTAGT |
MaltGSTt-1-tF② | cagcaaatgggtcgcggatccATGCCACTAACATTATATGCTGTATCTG |
MaltGSTt-1-tR② | ctcgagtgcggccgcaagcttTTTTCTAATGGGGTGAATGGGA |
图3
松墨天牛GST基因的多序列比对 深蓝色背景碱基相似度为100%;灰色背景碱基相似度为75%~100%。预测的α-螺旋和β-折叠标记在序列的顶部,丝氨酸残基用倒三角符号标注,底物结合位点用黄色方块标记。Amino acids conserved in all GST and over 75% of GST are shaded in dark blue and grey, the predicted α-helices and β-sheets are marked on the top of the sequences, and the key serine residues are are labeled with triangular symbols. The substrate binding sites are marked with yellow squares. consensus.相同氨基酸 same amino acid."
图8
MaltGSTe1、MaltGSTe2、MaltGSTt1基因诱导表达纯化的SDS-PAGE 分析 L1. 蛋白分子量标准 protein molecular standard;L2. IPTG诱导后的pET-28a(+) the sonicated pET-28a(+) vector;L3和L4. IPTG诱导后MaltGSTe1上清液和沉淀 supernatant and pellet of the sonicated MaltGSTe1 after induction;L5和L6. IPTG诱导后MaltGSTe2上清液和沉淀 supernatant and pellet of the sonicated MaltGSTe2 after induction;L7和L8. IPTG诱导后MaltGSTt1上清液和沉淀 supernatant and pellet of the sonicated MaltGSTt1 after induction。"
[1] | GARRAD R, BOOTH D T, FURLONG M J. The effect of rearing temperature on development, body size, energetics and fecundity of the diamondback moth[J]. Bull Entomol Res, 2016, 106(2): 175-181. DOI: 10.1017/S000748531500098X. |
[2] | 钱雪, 王月莹, 谢欢欢, 等. 温度对西伯利亚蝗呼吸代谢关键酶活性的影响[J]. 昆虫学报, 2017, 60(5): 499-504. |
QIAN X, WANG Y Y, XIE H H, et al. Effects of temperature on the activities of key enzymes related to respiratory metabolism in adults of Gomphocerus sibiricus (Orthoptera: Acrididae)[J]. Acta Entomol Sin, 2017, 60(5): 499-504. DOI: 10.16380/j.kcxb.2017.05.001. | |
[3] | TURRENS J F. Mitochondrial formation of reactive oxygen species[J]. J Physiol, 2003, 552(2): 335-344. DOI: 10.1113/jphysiol.2003.049478. |
[4] | HALLIWELL B. Antioxidants: the basics, what they are and how to evaluate them[J]. Adv Pharmacol, 1996, 38: 3-20. DOI: 10.1016/s1054-3589(08)60976-x. |
[5] | SLIMEN I B, NAJAR T, GHRAM A, et al. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage: a review[J]. Int J Hyperthermia, 2014, 30(7): 513-523. DOI: 10.3109/02656736.2014.971446. |
[6] | HABASHY W S, MILFORT M C, REKAYA R, et al. Cellular antioxidant enzyme activity and biomarkers for oxidative stress are affected by heat stress[J]. Int J Biometeorol, 2019, 63(12): 1569-1584. DOI: 10.1007/s00484-019-01769-z. |
[7] | 李慧, 郝德君, 徐天, 等. 高温胁迫对植食性昆虫影响研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 215-224. |
LI H, HAO D J, XU T, et al. The effects of heat stress on herbivorous insects: an overview and future directions[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(6): 215-224. DOI: 10.12302/j.issn.1000-2006.202209041. | |
[8] | RIX R R, CUTLER G C. Review of molecular and biochemical responses during stress induced stimulation and hormesis in insects[J]. Sci Total Environ, 2022, 827: 154085. DOI: 10.1016/j.scitotenv.2022.154085. |
[9] | ZHANG S Z, FU W Y, LI N, et al. Antioxidant responses of Propylaea japonica (Coleoptera: Coccinellidae) exposed to high temperature stress[J]. J Insect Physiol, 2015, 73: 47-52. DOI: 10.1016/j.jinsphys.2015.01.004. |
[10] | KANG Z W, LIU F H, LIU X, et al. The potential coordination of the heat-shock proteins and antioxidant enzyme genes of Aphidius gifuensis in response to thermal stress[J]. Front Physiol, 2017, 8: 976. DOI: 10.3389/fphys.2017.00976. |
[11] | MOREIRA D C, PAULA D P, HERMES-LIMA M. Changes in metabolism and antioxidant systems during tropical diapause in the sunflower caterpillar Chlosyne lacinia (Lepidoptera: Nymphalidae)[J]. Insect Biochem Mol Biol, 2021, 134: 103581. DOI: 10.1016/j.ibmb.2021.103581. |
[12] | WANG Y J, QIU L, RANSON H, et al. Structure of an insect epsilon class glutathione S-transferase from the malaria vector Anopheles gambiae provides an explanation for the high DDT-detoxifying activity[J]. J Struct Biol, 2008, 164(2): 228-235. DOI: 10.1016/j.jsb.2008.08.003. |
[13] | OAKLEY A. Glutathione transferases: a structural perspective[J]. Drug Metab Rev, 2011, 43(2): 138-151. DOI: 10.3109/03602532.2011.558093. |
[14] | MANNERVIK B. Five decades with glutathione and the GSTome[J]. J Biol Chem, 2012, 287(9): 6072-6083. DOI: 10.1074/jbc.X112.342675. |
[15] | GALLÉ Á, BELA K, HAJNAL Á, et al. Crosstalk between the redox signalling and the detoxification:GSTs under redox control?[J]. Plant Physiol Biochem, 2021, 169: 149-159. DOI: 10.1016/j.plaphy.2021.11.009. |
[16] | HAYES J D, FLANAGAN J U, JOWSEY I R. Glutathione transferases[J]. Annu Rev Pharmacol Toxicol, 2005, 45: 51-88. DOI: 10.1146/annurev.pharmtox.45.120403.095857. |
[17] | RAZA H. Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease[J]. FEBS J, 2011, 278(22): 4243-4251. DOI: 10.1111/j.1742-4658.2011.08358.x. |
[18] | LABORDE E. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death[J]. Cell Death Differ, 2010, 17(9): 1373-1380. DOI: 10.1038/cdd.2010.80. |
[19] | ZHU G D, XUE M, LUO Y, et al. Effects of short-term heat shock and physiological responses to heat stress in two Bradysia adults, Bradysia odoriphaga and Bradysia difformis[J]. Sci Rep, 2017, 7(1): 13381. DOI: 10.1038/s41598-017-13560-4. |
[20] | ZHAO Y, LI Y Y, HE M, et al. Antioxidant responses of the pest natural enemy Hylyphantes graminicola (Araneae: Linyphiidae) exposed to short-term heat stress[J]. J Therm Biol, 2020, 87: 102477. DOI: 10.1016/j.jtherbio.2019.102477. |
[21] | ALVES M, PEREIRA A, MATOS P, et al. Bacterial community associated to the pine wilt disease insect vectors Monochamus galloprovincialis and Monochamus alternatus[J]. Sci Rep, 2016, 6: 23908. DOI: 10.1038/srep23908. |
[22] | TOGASHI K. Population density of Monochamus alternatus adults (Coleoptera: Cerambycidae) and incidence of pine wilt disease caused by Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae)[J]. Res Popul Ecol, 1988, 30(2): 177-192. DOI: 10.1007/BF02513243. |
[23] | 王立超, 陈凤毛, 董晓燕, 等. 松墨天牛取食和产卵特性研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 219-224. |
WANG L C, CHEN F M, DONG X Y, et al. A study on feeding and oviposition characteristics of Monochamus alternatus[J]. J Nanjing For Univ (Nat Sci Ed), 2023, 47(2): 219-224. DOI: 10.12302/j.issn.1000-2006.202103022. | |
[24] | 陈宏健, 郝德君, 田敏, 等. 室内饲养松墨天牛幼虫不同肠段细菌的群落结构及功能分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 143-151. |
CHEN H J, HAO D J, TIAN M, et al. The community structure and functional analysis of intestinal bacteria in Monochamus alternatus larvae reared indoors[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(3): 143-151. DOI: 10.12302/j.issn.1000-2006.202004009. | |
[25] | 田开慧, 陈怡帆, 周宏威. 湖南湘西州马尾松毛虫和松材线虫病发生非线性建模与预测[J]. 森林工程, 2022, 38 (6): 38-44. |
TIAN K H, CHEN Y F, ZHOU H W. Prediction of occurrence trend of Dendrolimus punctatus and pine wilt disease in Xiangxi Prefecture[J]. For Eng, 2022, 38 (6): 38-44. | |
[26] | 王洋, 陈军, 陈凤毛, 等. 松墨天牛取食期间传播松材线虫的特性[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 1-10. |
WANG Y, CHEN J, CHEN F M, et al. Transmission of Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) through feeding activity of Monochamus alternatus (Coleoptera: Cerambycidae)[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(6): 1-10. DOI: 10.3969/j.issn.1000-2006.201903001. | |
[27] | ZHAO L L, ZHANG S, WEI W, et al. Chemical signals synchronize the life cycles of a plant-parasitic nematode and its vector beetle[J]. Curr Biol, 2013, 23(20): 2038-2043. DOI: 10.1016/j.cub.2013.08.041. |
[28] | OHSAWA M, AKIBA M. Possible altitude and temperature limits on pine wilt disease: the reproduction of vector sawyer beetles(Monochamus alternatus), survival of causal nematode (Bursaphelenchus xylophilus), and occurrence of damage caused by the disease[J]. Eur J For Res, 2014, 133(2): 225-233. DOI: 10.1007/s10342-013-0742-x. |
[29] | 吴佳雯, 尹艳楠, 谈家金, 等. 蜡样芽孢杆菌NJSZ-13菌株诱导马尾松抗松材线虫病研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 53-58. |
WU J W, YIN Y N, TAN J J, et al. A preliminary study on resistance of Pinus massoniana induced by Bacillus cereus NJSZ-13 strain to Bursaphelenchus xylophilus[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(4): 53-58. DOI: 10.12302/j.issn.1000-2006.202006051. | |
[30] | 杨帆, 零雅茗, 舒红, 等. 松材线虫Bx-TIMP克隆及功能研究[J]. 森林工程, 2022, 38 (2): 14-19. |
YANG F, LING Y M, SHU H, et al. Cloning and functional analysis of Bursaphelenchus xylophilus Bx-TIMP[J]. For Eng, 2022, 38 (2): 14-19. | |
[31] | 李慧, 何玄玉, 陶蓉, 等. 松墨天牛小热激蛋白基因的克隆、表达谱及对温度胁迫的响应[J]. 昆虫学报, 2018, 61(7): 749-760. |
LI H, HE X Y, TAO R, et al. cDNA cloning and expression profiling of small heat shock protein genes and their response to temperature stress in Monochamus alternatus(Coleoptera: Cerambycidae)[J]. Acta Entomol Sin, 2018, 61(7): 749-760. DOI: 10.16380/j.kcxb.2018.07.001. | |
[32] | LI H, QIAO H, LIU Y J, et al. Characterization, expression profiling, and thermal tolerance analysis of heat shock protein 70 in pine sawyer beetle,Monochamus alternatus Hope (Coleoptera: Cerambycidae)[J]. Bull Entomol Res, 2021, 111(2): 217-228. DOI: 10.1017/S0007485320000541. |
[33] | CAI Z L, CHEN J X, CHENG J, et al. Overexpression of three heat shock proteins protects Monochamus alternatus (Coleoptera: Cerambycidae) from thermal stress[J]. J Insect Sci, 2017, 17(6): 113. DOI: 10.1093/jisesa/iex082. |
[34] | 李慧. 热激蛋白在松墨天牛响应高温胁迫中的功能研究[D]. 南京: 南京林业大学, 2021. |
LI H. Function analysis of heat shock protein in Monochamus alternatus response to high temperature[D]. Nanjing: Nanjing For Univ, 2021. DOI: 10.27242/d.cnki.gnjlu.2021.000015. | |
[35] | LI H, ZHAO X Y, QIAO H, et al. Comparative transcriptome analysis of the heat stress response in Monochamus alternatus Hope (Coleoptera: Cerambycidae)[J]. Front Physiol, 2020, 10: 1568. DOI: 10.3389/fphys.2019.01568. |
[36] | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR[J]. Methods, 2002, 25(4): 402-408. DOI: 10.1006/meth.2001.1262. |
[37] | RAJARAPU S P, MAMIDALA P, HERMS D A, et al. Antioxidant genes of the emerald ash borer(Agrilus planipennis): gene characterization and expression profiles[J]. J Insect Physiol, 2011, 57(6): 819-824. DOI: 10.1016/j.jinsphys.2011.03.017. |
[38] | SANDAMALIKA W M G, PRIYATHILAKA T T, LEE S, et al. Immune and xenobiotic responses of glutathione S-Transferase theta (GST-θ) from marine invertebrate disk abalone (Haliotis discus discus): with molecular characterization and functional analysis[J]. Fish Shellfish Immunol, 2019, 91: 159-171. DOI: 10.1016/j.fsi.2019.04.004. |
[39] | SUN L L, YIN J J, DU H, et al. Characterisation of GST genes from the Hyphantria cunea and their response to the oxidative stress caused by the infection of Hyphantria cunea nucleopolyhedrovirus (HcNPV)[J]. Pestic Biochem Physiol, 2020, 163: 254-262. DOI: 10.1016/j.pestbp.2019.11.019. |
[40] | 李长春, 宁青, 戴余军, 等. 拟环纹豹蛛谷胱甘肽S-转移酶基因的克隆及表达分析[J]. 江苏农业学报, 2019, 35(5): 1068-1074. |
LI C C, NING Q, DAI Y J, et al. Cloning and expression analysis of glutathione S-transferase gene in Pardosa pseudoannulata[J]. Jiangsu J Agri Sci, 2019, 35(5): 1068-1074. DOI: 10.3969/j.issn.1000-4440.2019.05.010. | |
[41] | YANG Q, LIU J P, WYCKHUYS K A G, et al. Impact of heat stress on the predatory ladybugs Hippodamia variegata and Propylaea quatuordecimpunctata[J]. Insects, 2022, 13(3): 306. DOI: 10.3390/insects13030306. |
[42] | YANG X J, ZHENG H L, LIU Y Y, et al. Selection of reference genes for quantitative real-time PCR in Aquatica leii (Coleoptera: Lampyridae) under five different experimental conditions[J]. Front Physiol, 2020, 11: 555233. DOI: 10.3389/fphys.2020.555233. |
[43] | 张媛英. 中华蜜蜂谷胱甘肽S-转移酶和小分子热激蛋白基因的生物学功能分析[D]. 泰安: 山东农业大学, 2014. |
ZHANG Y Y. Biological analysis of glutathione S-transferase and small heat shock protein genes in Apis cerana cerana[D]. Tai’an: Shandong Agricul Univ, 2014. DOI: 10.7666/d.Y2587648. |
[1] | 王露露, 耿兴敏, 宦智群, 许世达, 赵晖. 1-MCP预处理对杜鹃花高温胁迫下光合特性及相关基因表达的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 103-113. |
[2] | 刘增才, 王淑婷, 佟鑫宇, 邹莉. 暴马桑黄GPS基因克隆及响应茉莉酸甲酯诱导表达研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 123-130. |
[3] | 魏祯祯, 宋程威, 郭丽丽, 郭琪, 侯小改. ‘凤丹’PoERF4基因的克隆及表达分析[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 56-62. |
[4] | 王立超, 陈凤毛, 董晓燕, 田成连, 王洋. 松墨天牛取食和产卵特性研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 219-224. |
[5] | 李慧, 郝德君, 徐天, 代鲁鲁. 高温胁迫对植食性昆虫影响研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 215-224. |
[6] | 张婷, 柏杨, 亓希武, 于盱, 房海灵, 李莉, 刘冬梅, 梁呈元, 李维林. 薄荷MhWRKY57基因克隆及响应茉莉酸信号的表达分析[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 279-287. |
[7] | 贾展慧, 贾晓东, 许梦洋, 莫正海, 翟敏, 宣继萍, 张计育, 王刚, 王涛, 郭忠仁. 薄壳山核桃原花青素合成关键酶基因的克隆与表达分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 49-57. |
[8] | 王立超, 苏胜荣, 陈凤毛, 董晓燕, 田成连, 王洋. 黄山马尾松林天牛及携带线虫种类初步调查[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 29-35. |
[9] | 王磊, 叶建仁, 史丽娜. 利用腐生线虫加速替代疫木中松材线虫种群数量研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 36-44. |
[10] | 严志祥, 杨海燕, 樊苏帆, 吴文龙, 闾连飞, 李维林. 黑莓果实发育过程中蔗糖磷酸合成酶基因的表达分析[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 179-186. |
[11] | 林莉莉, 胡安琪, 陈钢, 张霁月, 曹光球, 曹世江. 杉木ClWRKY44基因克隆及其表达特性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 203-209. |
[12] | 陈宏健, 郝德君, 田敏, 周杨, 夏小洪, 赵欣怡, 乔恒, 谈家金. 室内饲养松墨天牛幼虫不同肠段细菌的群落结构及功能分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 143-151. |
[13] | 黎梦娟, 朱礼明, 霍俊男, 张景波, 施季森, 成铁龙. 唐古特白刺NtCBL1、NtCBL2基因克隆及表达分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 93-99. |
[14] | 张腾倩, 张伟溪, 丁昌俊, 张静, 胡赞民, 苏晓华. 欧美杨PdMODD基因克隆与表达特性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 43-50. |
[15] | 张馨, 马苗苗, 吕婉秋, LEE Joobin, 杨静莉. 大青杨PuZFP103基因的序列特征及逆境胁迫的表达分析[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 36-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||