松墨天牛GST基因克隆及高温胁迫下的表达特性分析

李子纯, 郝德君, 李慧, 李长燕, 许丹雯仪, 杨华磊, 赵培渊

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1) : 28-36.

PDF(13858 KB)
PDF(13858 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1) : 28-36. DOI: 10.12302/j.issn.1000-2006.202304018
专题报道:松材线虫病绿色防控研究(执行主编 叶建仁 骆有庆)

松墨天牛GST基因克隆及高温胁迫下的表达特性分析

作者信息 +

Cloning of glutathione S-transferases gene from Monochamus alternatus and its expression characteristics under heat stress

Author information +
文章历史 +

摘要

【目的】克隆松墨天牛(Monochamus alternatus)谷胱甘肽S转移酶(glutathione S-transferases, GST)相关基因,明确GST基因在松墨天牛响应高温胁迫中的效用,为探究亚热带地区松墨天牛的耐热分子机制提供理论依据。【方法】克隆3条松墨天牛GST基因,结合DNAMAN 9.0、I-TASSER等软件分析松墨天牛GST基因的结构特征;利用qRT-PCR技术测定分析松墨天牛成虫和4龄幼虫在不同高温、不同处理时长后GST基因的相对表达量;通过纸盘扩散法验证3条松墨天牛GST基因在保护机体免受氧化应激中的作用。【结果】克隆3条松墨天牛GST基因的cDNA序列,分别命名为MaltGSTe1MaltGSTe2MaltGSTt1MaltGSTe1MaltGSTe2均属于GST的Epsilon家族,MaltGSTt1属于GST的Theta家族。3条GST基因三维蛋白结构具有指示性结构特征,属于胞质型GST。松墨天牛4龄幼虫在高温胁迫下MaltGSTe1MaltGSTe2MaltGSTt1的相对表达量均出现显著变化,MaltGSTe2相对表达水平上调幅度最大;MaltGSTt1在松墨天牛雄虫体内相对表达量出现明显下调;异源表达3条GST基因蛋白的大肠杆菌表现出较强的抗氧化能力,其中,MaltGSTe2具有更强的抗氧化能力。【结论】克隆获得3条松墨天牛GST基因,发现高温胁迫可诱导GST基因表达量上调;纸盘扩散分析结果表明异源表达GST基因蛋白具有抗氧化能力,推测GST基因具有通过保护机体免受氧化应激来参与松墨天牛幼虫的高温胁迫响应机制。

Abstract

【Objective】To clone the glutathione S-transferases (GST) genes of Monochamus alternatus (Coleoptera: Cerambycidae) and to determine the expression levels of these genes under heat stress in adult males and females, as well as at different developmental stages of M. alternatus, we used molecular biology and bioinformatics methods. 【Method】 Three GST cDNA sequences were cloned, and their structural characteristics were analyzed using DNAMAN 9.0 and I-TASSER software. qRT-PCR was employed to measure the relative expression levels of GST genes in adult and fourth instar larvae of M. alternatus under varying temperatures and treatment durations. The role of these GST genes in protecting the organism from oxidative stress was assessed through disc diffusion assays. 【Result】Three GST cDNA sequences were cloned and named MaltGSTe1, MaltGSTe2, and MaltGSTt1. MaltGSTe1 and MaltGSTe2 belong to the Epsilon family, while MaltGSTt1 belongs to the Theta family. Analysis of three-dimensional protein structures indicated that these GST are cytoplasmic. The relative expression levels of MaltGSTe1, MaltGSTe2 and MaltGSTt1 in fourth instar larvae significantly changed under heat stress, with MaltGSTe2 showing the greatest change. In males, the expression level of MaltGSTt1 was significantly down-regulated. Escherichia coli expressing the GST genes demonstrated enhanced antioxidant capacity, with MaltGSTe2 exhibiting the strongest activity. 【Conclusion】We successfully cloned three GST genes and investigated their expression characteristics under high temperature stress in M. alternatus. High temperature stress was found to induce up-regulation of GST gene expression. Disc diffusion assays confirmed that heterogeneously expressed GST proteins have antioxidant capabilities. These findings suggest that GST genes play a role in the response mechanism to high temperature stress by protecting against oxidative stress, providing a theoretical foundation for exploring the heat resistance mechanisms of M. alternatus in subtropical regions.

关键词

松墨天牛 / 高温胁迫 / 谷胱甘肽S转移酶 / GST基因 / 氧化应激 / 基因克隆 / 表达分析 / 生物信息学

Key words

Monochamus alternatus / heat stress / glutathione S-transferases / GST gene / oxidative stress / gene clone / express analysis / bioinformatics

引用本文

导出引用
李子纯, 郝德君, 李慧, . 松墨天牛GST基因克隆及高温胁迫下的表达特性分析[J]. 南京林业大学学报(自然科学版). 2025, 49(1): 28-36 https://doi.org/10.12302/j.issn.1000-2006.202304018
LI Zichun, HAO Dejun, LI Hui, et al. Cloning of glutathione S-transferases gene from Monochamus alternatus and its expression characteristics under heat stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(1): 28-36 https://doi.org/10.12302/j.issn.1000-2006.202304018
中图分类号: S763.38   

参考文献

[1]
GARRAD R, BOOTH D T, FURLONG M J. The effect of rearing temperature on development, body size, energetics and fecundity of the diamondback moth[J]. Bull Entomol Res, 2016, 106(2): 175-181. DOI: 10.1017/S000748531500098X.
[2]
钱雪, 王月莹, 谢欢欢, 等. 温度对西伯利亚蝗呼吸代谢关键酶活性的影响[J]. 昆虫学报, 2017, 60(5): 499-504.
QIAN X, WANG Y Y, XIE H H, et al. Effects of temperature on the activities of key enzymes related to respiratory metabolism in adults of Gomphocerus sibiricus (Orthoptera: Acrididae)[J]. Acta Entomol Sin, 2017, 60(5): 499-504. DOI: 10.16380/j.kcxb.2017.05.001.
[3]
TURRENS J F. Mitochondrial formation of reactive oxygen species[J]. J Physiol, 2003, 552(2): 335-344. DOI: 10.1113/jphysiol.2003.049478.
[4]
HALLIWELL B. Antioxidants: the basics, what they are and how to evaluate them[J]. Adv Pharmacol, 1996, 38: 3-20. DOI: 10.1016/s1054-3589(08)60976-x.
[5]
SLIMEN I B, NAJAR T, GHRAM A, et al. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage: a review[J]. Int J Hyperthermia, 2014, 30(7): 513-523. DOI: 10.3109/02656736.2014.971446.
[6]
HABASHY W S, MILFORT M C, REKAYA R, et al. Cellular antioxidant enzyme activity and biomarkers for oxidative stress are affected by heat stress[J]. Int J Biometeorol, 2019, 63(12): 1569-1584. DOI: 10.1007/s00484-019-01769-z.
[7]
李慧, 郝德君, 徐天, 等. 高温胁迫对植食性昆虫影响研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 215-224.
LI H, HAO D J, XU T, et al. The effects of heat stress on herbivorous insects: an overview and future directions[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(6): 215-224. DOI: 10.12302/j.issn.1000-2006.202209041.
[8]
RIX R R, CUTLER G C. Review of molecular and biochemical responses during stress induced stimulation and hormesis in insects[J]. Sci Total Environ, 2022, 827: 154085. DOI: 10.1016/j.scitotenv.2022.154085.
[9]
ZHANG S Z, FU W Y, LI N, et al. Antioxidant responses of Propylaea japonica (Coleoptera: Coccinellidae) exposed to high temperature stress[J]. J Insect Physiol, 2015, 73: 47-52. DOI: 10.1016/j.jinsphys.2015.01.004.
[10]
KANG Z W, LIU F H, LIU X, et al. The potential coordination of the heat-shock proteins and antioxidant enzyme genes of Aphidius gifuensis in response to thermal stress[J]. Front Physiol, 2017, 8: 976. DOI: 10.3389/fphys.2017.00976.
[11]
MOREIRA D C, PAULA D P, HERMES-LIMA M. Changes in metabolism and antioxidant systems during tropical diapause in the sunflower caterpillar Chlosyne lacinia (Lepidoptera: Nymphalidae)[J]. Insect Biochem Mol Biol, 2021, 134: 103581. DOI: 10.1016/j.ibmb.2021.103581.
[12]
WANG Y J, QIU L, RANSON H, et al. Structure of an insect epsilon class glutathione S-transferase from the malaria vector Anopheles gambiae provides an explanation for the high DDT-detoxifying activity[J]. J Struct Biol, 2008, 164(2): 228-235. DOI: 10.1016/j.jsb.2008.08.003.
[13]
OAKLEY A. Glutathione transferases: a structural perspective[J]. Drug Metab Rev, 2011, 43(2): 138-151. DOI: 10.3109/03602532.2011.558093.
[14]
MANNERVIK B. Five decades with glutathione and the GSTome[J]. J Biol Chem, 2012, 287(9): 6072-6083. DOI: 10.1074/jbc.X112.342675.
[15]
GALLÉ Á, BELA K, HAJNAL Á, et al. Crosstalk between the redox signalling and the detoxification:GSTs under redox control?[J]. Plant Physiol Biochem, 2021, 169: 149-159. DOI: 10.1016/j.plaphy.2021.11.009.
[16]
HAYES J D, FLANAGAN J U, JOWSEY I R. Glutathione transferases[J]. Annu Rev Pharmacol Toxicol, 2005, 45: 51-88. DOI: 10.1146/annurev.pharmtox.45.120403.095857.
[17]
RAZA H. Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease[J]. FEBS J, 2011, 278(22): 4243-4251. DOI: 10.1111/j.1742-4658.2011.08358.x.
[18]
LABORDE E. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death[J]. Cell Death Differ, 2010, 17(9): 1373-1380. DOI: 10.1038/cdd.2010.80.
[19]
ZHU G D, XUE M, LUO Y, et al. Effects of short-term heat shock and physiological responses to heat stress in two Bradysia adults, Bradysia odoriphaga and Bradysia difformis[J]. Sci Rep, 2017, 7(1): 13381. DOI: 10.1038/s41598-017-13560-4.
[20]
ZHAO Y, LI Y Y, HE M, et al. Antioxidant responses of the pest natural enemy Hylyphantes graminicola (Araneae: Linyphiidae) exposed to short-term heat stress[J]. J Therm Biol, 2020, 87: 102477. DOI: 10.1016/j.jtherbio.2019.102477.
[21]
ALVES M, PEREIRA A, MATOS P, et al. Bacterial community associated to the pine wilt disease insect vectors Monochamus galloprovincialis and Monochamus alternatus[J]. Sci Rep, 2016, 6: 23908. DOI: 10.1038/srep23908.
[22]
TOGASHI K. Population density of Monochamus alternatus adults (Coleoptera: Cerambycidae) and incidence of pine wilt disease caused by Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae)[J]. Res Popul Ecol, 1988, 30(2): 177-192. DOI: 10.1007/BF02513243.
[23]
王立超, 陈凤毛, 董晓燕, 等. 松墨天牛取食和产卵特性研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 219-224.
WANG L C, CHEN F M, DONG X Y, et al. A study on feeding and oviposition characteristics of Monochamus alternatus[J]. J Nanjing For Univ (Nat Sci Ed), 2023, 47(2): 219-224. DOI: 10.12302/j.issn.1000-2006.202103022.
[24]
陈宏健, 郝德君, 田敏, 等. 室内饲养松墨天牛幼虫不同肠段细菌的群落结构及功能分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 143-151.
CHEN H J, HAO D J, TIAN M, et al. The community structure and functional analysis of intestinal bacteria in Monochamus alternatus larvae reared indoors[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(3): 143-151. DOI: 10.12302/j.issn.1000-2006.202004009.
[25]
田开慧, 陈怡帆, 周宏威. 湖南湘西州马尾松毛虫和松材线虫病发生非线性建模与预测[J]. 森林工程, 2022, 38 (6): 38-44.
TIAN K H, CHEN Y F, ZHOU H W. Prediction of occurrence trend of Dendrolimus punctatus and pine wilt disease in Xiangxi Prefecture[J]. For Eng, 2022, 38 (6): 38-44.
[26]
王洋, 陈军, 陈凤毛, 等. 松墨天牛取食期间传播松材线虫的特性[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 1-10.
WANG Y, CHEN J, CHEN F M, et al. Transmission of Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) through feeding activity of Monochamus alternatus (Coleoptera: Cerambycidae)[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(6): 1-10. DOI: 10.3969/j.issn.1000-2006.201903001.
[27]
ZHAO L L, ZHANG S, WEI W, et al. Chemical signals synchronize the life cycles of a plant-parasitic nematode and its vector beetle[J]. Curr Biol, 2013, 23(20): 2038-2043. DOI: 10.1016/j.cub.2013.08.041.
[28]
OHSAWA M, AKIBA M. Possible altitude and temperature limits on pine wilt disease: the reproduction of vector sawyer beetles(Monochamus alternatus), survival of causal nematode (Bursaphelenchus xylophilus), and occurrence of damage caused by the disease[J]. Eur J For Res, 2014, 133(2): 225-233. DOI: 10.1007/s10342-013-0742-x.
[29]
吴佳雯, 尹艳楠, 谈家金, 等. 蜡样芽孢杆菌NJSZ-13菌株诱导马尾松抗松材线虫病研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 53-58.
WU J W, YIN Y N, TAN J J, et al. A preliminary study on resistance of Pinus massoniana induced by Bacillus cereus NJSZ-13 strain to Bursaphelenchus xylophilus[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(4): 53-58. DOI: 10.12302/j.issn.1000-2006.202006051.
[30]
杨帆, 零雅茗, 舒红, 等. 松材线虫Bx-TIMP克隆及功能研究[J]. 森林工程, 2022, 38 (2): 14-19.
YANG F, LING Y M, SHU H, et al. Cloning and functional analysis of Bursaphelenchus xylophilus Bx-TIMP[J]. For Eng, 2022, 38 (2): 14-19.
[31]
李慧, 何玄玉, 陶蓉, 等. 松墨天牛小热激蛋白基因的克隆、表达谱及对温度胁迫的响应[J]. 昆虫学报, 2018, 61(7): 749-760.
LI H, HE X Y, TAO R, et al. cDNA cloning and expression profiling of small heat shock protein genes and their response to temperature stress in Monochamus alternatus(Coleoptera: Cerambycidae)[J]. Acta Entomol Sin, 2018, 61(7): 749-760. DOI: 10.16380/j.kcxb.2018.07.001.
[32]
LI H, QIAO H, LIU Y J, et al. Characterization, expression profiling, and thermal tolerance analysis of heat shock protein 70 in pine sawyer beetle,Monochamus alternatus Hope (Coleoptera: Cerambycidae)[J]. Bull Entomol Res, 2021, 111(2): 217-228. DOI: 10.1017/S0007485320000541.
[33]
CAI Z L, CHEN J X, CHENG J, et al. Overexpression of three heat shock proteins protects Monochamus alternatus (Coleoptera: Cerambycidae) from thermal stress[J]. J Insect Sci, 2017, 17(6): 113. DOI: 10.1093/jisesa/iex082.
[34]
李慧. 热激蛋白在松墨天牛响应高温胁迫中的功能研究[D]. 南京: 南京林业大学, 2021.
LI H. Function analysis of heat shock protein in Monochamus alternatus response to high temperature[D]. Nanjing: Nanjing For Univ, 2021. DOI: 10.27242/d.cnki.gnjlu.2021.000015.
[35]
LI H, ZHAO X Y, QIAO H, et al. Comparative transcriptome analysis of the heat stress response in Monochamus alternatus Hope (Coleoptera: Cerambycidae)[J]. Front Physiol, 2020, 10: 1568. DOI: 10.3389/fphys.2019.01568.
[36]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR[J]. Methods, 2002, 25(4): 402-408. DOI: 10.1006/meth.2001.1262.
[37]
RAJARAPU S P, MAMIDALA P, HERMS D A, et al. Antioxidant genes of the emerald ash borer(Agrilus planipennis): gene characterization and expression profiles[J]. J Insect Physiol, 2011, 57(6): 819-824. DOI: 10.1016/j.jinsphys.2011.03.017.
[38]
SANDAMALIKA W M G, PRIYATHILAKA T T, LEE S, et al. Immune and xenobiotic responses of glutathione S-Transferase theta (GST-θ) from marine invertebrate disk abalone (Haliotis discus discus): with molecular characterization and functional analysis[J]. Fish Shellfish Immunol, 2019, 91: 159-171. DOI: 10.1016/j.fsi.2019.04.004.
[39]
SUN L L, YIN J J, DU H, et al. Characterisation of GST genes from the Hyphantria cunea and their response to the oxidative stress caused by the infection of Hyphantria cunea nucleopolyhedrovirus (HcNPV)[J]. Pestic Biochem Physiol, 2020, 163: 254-262. DOI: 10.1016/j.pestbp.2019.11.019.
[40]
李长春, 宁青, 戴余军, 等. 拟环纹豹蛛谷胱甘肽S-转移酶基因的克隆及表达分析[J]. 江苏农业学报, 2019, 35(5): 1068-1074.
LI C C, NING Q, DAI Y J, et al. Cloning and expression analysis of glutathione S-transferase gene in Pardosa pseudoannulata[J]. Jiangsu J Agri Sci, 2019, 35(5): 1068-1074. DOI: 10.3969/j.issn.1000-4440.2019.05.010.
[41]
YANG Q, LIU J P, WYCKHUYS K A G, et al. Impact of heat stress on the predatory ladybugs Hippodamia variegata and Propylaea quatuordecimpunctata[J]. Insects, 2022, 13(3): 306. DOI: 10.3390/insects13030306.
[42]
YANG X J, ZHENG H L, LIU Y Y, et al. Selection of reference genes for quantitative real-time PCR in Aquatica leii (Coleoptera: Lampyridae) under five different experimental conditions[J]. Front Physiol, 2020, 11: 555233. DOI: 10.3389/fphys.2020.555233.
[43]
张媛英. 中华蜜蜂谷胱甘肽S-转移酶和小分子热激蛋白基因的生物学功能分析[D]. 泰安: 山东农业大学, 2014.
ZHANG Y Y. Biological analysis of glutathione S-transferase and small heat shock protein genes in Apis cerana cerana[D]. Tai’an: Shandong Agricul Univ, 2014. DOI: 10.7666/d.Y2587648.

基金

国家自然科学基金项目(32201562)
江苏省自然科学基金项目(BK20220412)
江苏省大学生创新训练计划重点项目(202310298002Z)

编辑: 王国栋
PDF(13858 KB)

Accesses

Citation

Detail

段落导航
相关文章

/