休眠解除前后紫荆种子差异蛋白质组分析

孙永莲, 高云鹏, 侯静, 王文武, 吴雪莲, 李淑娴

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (3) : 137-143.

PDF(2123 KB)
PDF(2123 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (3) : 137-143. DOI: 10.12302/j.issn.1000-2006.202304028
研究论文

休眠解除前后紫荆种子差异蛋白质组分析

作者信息 +

Differential proteomic analysis on dormant and dormancy releasing seeds of Cercis chinensis

Author information +
文章历史 +

摘要

【目的】探究紫荆(Cercis chinensis)种子休眠解除前后蛋白质组的变化,进一步了解紫荆种子休眠与萌发的内在机制。【方法】以成熟紫荆种子为材料,基于非标记(label-free)定量技术和液相色谱-串联质谱(LC-MS/MS)技术,分别对休眠种子和经过45 d低温层积后解除休眠的种子进行蛋白质组定量和定性分析,利用生物信息学分析紫荆种子休眠解除前后差异蛋白质的功能。【结果】筛选获得1 031个差异表达蛋白,其中显著上调的779个,显著下调的252个。差异表达蛋白被GO功能注释到生物进程、细胞组分和分子功能3大类49个亚类,注释的差异蛋白与代谢过程、酶催化活性、细胞组分合成、应激反应等密切相关。KEGG代谢通路注释结果表明,共有1 012个差异蛋白被注释,涉及264条通路,差异蛋白主要集中在碳代谢、多糖分解、蛋白质过程等,显著富集在7条通路,主要参与激素合成、次生代谢产物合成、脂质代谢等。差异倍数较高的蛋白质中,可能与紫荆种子休眠解除相关的有β-葡萄糖苷酶活性相关蛋白、泛醌和其他萜醌生物等次生代谢相关蛋白、乙醛酸循环相关蛋白等。【结论】紫荆种子休眠解除是较为复杂的生物学过程,涉及细胞形态变化、酶的催化、多糖分解及激素信号转导等,多条代谢途径相互作用构成了较为复杂的休眠解除调控机制。

Abstract

【Objective】This study investigated proteom-level changes between dormant and broken dormancy seeds of Cercis chinensis to get a better understanding of the intrinsic mechanisms underlying seed dormancy and germination.【Method】The mature seeds were soaked in hot water until they reached a constant weight, and then subjected to stratification treatment mixed with moisture sand in a 4 ℃ environment until dormancy was released and germination occurred. Label-free quantitative proteomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to perform proteome quantitative and qualitative analysis on dormant and dormancy-broken seeds after 45 days of cold stratification were performed based on, respectively. Bioinformatics analysis was also conducted to explore the expression and function mechanism of differentially expressed proteins (DEPs) between dormant and dormancy-broken seeds, and to discuss the proteins and its mechanisms related to the dormancy release.【Result】A total of 3 928 proteins were identified in this study, with 3 122 proteins were detected in dormant samples and 3 758 proteins were detected in dormancy-broken samples. After screening the proteins based on the standard of fold changes greater than 2.0 and P<0.05, we filtered 1 031 DEPs. Among these, 779 proteins were up-regulated and 252 proteins were down-regulated. The DEPs were annotated using GO annotation into three categories and 49 subcategories of biological processes, cellular components and molecular functions. The annotated DEPs were closely related to metabolic processes, enzyme catalytic activity, synthesis of cellular components, and stress response. In addition, the KEGG metabolic pathway annotation results showed that 1 012 DEPs were annotated, involving 264 pathways. The DEGs were mainly associated with carbon metabolism, polysaccharide decomposition, and protein processing. The significant enrichment results revealed seven pathways, mainly involving the hormone synthesis, secondary metabolite synthesis, and lipid metabolism. The highly abundant DEPs that may be linked to dormancy breaking are proteins related to β-glucosidase activity, ubiquinone, terpene quinone organisms related proteins, and glyoxylic acid cycle-related proteins. 【Conclusion】This study demonstrates that the dormancy release of C. chinensis seeds is a complex biological process that involves cell morphological changes, enzyme catalysis, polysaccharide decomposition and hormone signal transduction. The release of dormancy is regulated by the interaction of multiple metabolic pathways. Further research is needed to study the molecular mechanism of dormancy release using molecular biological methods such as transcriptomics and metabonomics.

关键词

紫荆 / 种子休眠 / 蛋白质组 / 代谢通路

Key words

Cercis chinensis / seed dormancy / proteome / metabolic pathway

引用本文

导出引用
孙永莲, 高云鹏, 侯静, . 休眠解除前后紫荆种子差异蛋白质组分析[J]. 南京林业大学学报(自然科学版). 2025, 49(3): 137-143 https://doi.org/10.12302/j.issn.1000-2006.202304028
SUN Yonglian, GAO Yunpeng, HOU Jing, et al. Differential proteomic analysis on dormant and dormancy releasing seeds of Cercis chinensis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(3): 137-143 https://doi.org/10.12302/j.issn.1000-2006.202304028
中图分类号: S722.1   

参考文献

[1]
VLEESHOUWERS L M, BOUWMEESTER H J. A simulation model for seasonal changes in dormancy and germination of weed seeds[J]. Seed Science Research, 2001, 11(1):77-92.DOI: 10.1079/ssr200062.
[2]
兰海, 冷亦峰, 周树峰, 等. 强休眠玉米种子休眠前后的蛋白差异表达[J]. 植物遗传资源学报, 2015, 16(1):23-28.
LAN H, LENG Y F, ZHOU S F, et al. Proteomic analysis of storage substances during after-ripening of dormant seeds with dry ripening process in maize inbred line 08-641[J]. Journal of Plant Genetic Resources, 2015, 16(1):23-28.DOI: 10.13430/j.cnki.jpgr.2015.01.004.
[3]
李佳, 陆秀君, 梅梅, 等. 种子发育和萌发过程的蛋白质组学研究[J]. 种子, 2016, 35(5):59-64.
LI J, LU X J, MEI M, et al. Proteomics of seed development and germination process[J]. Seed, 2016, 35(5):59-64.DOI: 10.16590/j.cnki.1001-4705.2016.05.059.
[4]
ZHAO B, ZHANG H, CHEN T X, et al. Sdr4 dominates pre-harvest sprouting and facilitates adaptation to local climatic condition in Asian cultivated rice[J]. Journal of Integrative Plant Biology, 2022, 64(6):1246-1263.DOI: 10.1111/jipb.13266.
[5]
BENTSINK L, JOWETT J, HANHART C J, et al. Cloning of DOG1,a quantitative trait locus controlling seed dormancy in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(45):17042-17047.DOI: 10.1073/pnas.0607877103.
[6]
LIU F, ZHANG H, DING L, et al. REVERSAL OF RDO5 1,a homolog of rice seed Dormancy4,interacts with bHLH57 and controls ABA biosynthesis and seed dormancy in Arabidopsis[J]. The Plant Cell, 2020, 32(6):1933-1948.DOI: 10.1105/tpc.20.00026.
[7]
SONG S, HE H Z, GUHL K, et al. DELAY OF GERMINATION 6,encoding the ANAC060 transcription factor,inhibits seed dormancy[EB/OL].[2023-04-03]. https://api.semanticscholar.org/CorpusID:233745357.
[8]
GALLARDO K, JOB C, GROOT S P, et al. Proteomic analysis of Arabidopsis seed germination and priming[J]. Plant Physiology, 2001, 126(2):835-848.DOI: 10.1104/pp.126.2.835.
[9]
HAN C, HE D L, LI M, et al. In-depth proteomic analysis of rice embryo reveals its important roles in seed germination[J]. Plant & Cell Physiology, 2014, 55(10):1826-1847.DOI: 10.1093/pcp/pcu114.
[10]
GHOSH S, PAL A. Identification of differential proteins of mungbean cotyledons during seed germination:a proteomic approach[J]. Acta Physiologiae Plantarum, 2012, 34(6):2379-2391.DOI: 10.1007/s11738-012-1042-7.
[11]
LEE C S, CHIEN C T, LIN C H, et al. Protein changes between dormant and dormancy-broken seeds of Prunus campanulata Maxim[J]. Proteomics, 2006, 6(14):4147-4154.DOI: 10.1002/pmic.200500118.
[12]
ZHANG P, LIU D, SHEN H L, et al. Proteome analysis of dormancy-released seeds of Fraxinus mandshurica Rupr.in response to redehydration under different conditions[J]. International Journal of Molecular Sciences, 2015, 16(3):4713-4730.DOI: 10.3390/ijms16034713.
[13]
米建华, 孙雪霞, 娄秋莲, 等. 打破紫荆种子休眠方法研究[J]. 河南农业科学, 2016, 45(11):100-104.
MI J H, SUN X X, LOU Q L, et al. Research on method of breaking seed dormancy in Cercis chinensis[J]. Journal of Henan Agricultural Sciences, 2016, 45(11):100-104.DOI: 10.15933/j.cnki.1004-3268.2016.11.020.
[14]
王浩宇, 高云鹏, 朱铭玮, 等. 内源抑制物对加拿大紫荆种子萌发的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5):104-112.
WANG H Y, GAO Y P, ZHU M W, et al. Effects of endogenous inhibitors on seed germination of Cercis canadensis[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(5):104-112.DOI:10.12302/j.issn.1000-2006.202106015.
[15]
LI S, SHI T, KONG F, et al. Methods for breaking the dormancy of eastern redbud (Cercis canadensis) seeds[J]. Seed Science and Technology, 2013, 41(1):27-35.DOI: 10.15258/sst.2013.41.1.03.
[16]
曹晓林, 巩佳第, 陈铭学, 等. 新型亲和去垢小柱净化-液相色谱-串联质谱法分析水稻叶片蛋白质组[J]. 色谱, 2014, 32(11):1181-1186.
CAO X L, GONG J D, CHEN M X, et al. Analysis of rice leaves proteomes by liquid chromatography-tandem mass spectrometry based on the purification using a novel affinity detergent removal spin column[J]. Chinese Journal of Chromatography, 2014, 32(11):1181-1186.DOI: 10.3724/SP.J.1123.2014.06035.
[17]
曹运梅, 张建, 向云, 等. 铜钱树种子休眠特性及破眠技术研究[J]. 种子, 2019, 38(8):73-76.
CAO Y M, ZHANG J, XIANG Y, et al. Study on the dormancy characteristics and dormancy breaking techniques of Paliurus hemsleyanus rehder seed[J]. Seed, 2019, 38(8):73-76.DOI: 10.16590/j.cnki.1001-4705.2019.08.073.
[18]
ZHANG X L, LIU G L, LI T L, et al. Differential proteome analysis of mature and germinated seeds of Magnolia sieboldii K.Koch[J]. Trees, 2014, 28(3):859-870.DOI: 10.1007/s00468-014-0998-x.
[19]
董艳, 张正海, 王宁, 等. 基于Label-free技术的汉麻籽不同发芽时期蛋白质组学分析[J]. 食品科学, 2020, 41(14):190-194.
DONG Y, ZHANG Z H, WANG N, et al. Label-free differential proteomics analysis of hemp seeds at different germination stages[J]. Food Science, 2020, 41(14):190-194.DOI: 10.7506/spkx1002-6630-20190619-217.
[20]
苏小霞. 基于转录组和miRNA测序的细叶百合鳞茎休眠解除的分子机理[D]. 哈尔滨: 东北林业大学, 2018.
SU X X. Molecular mechanism of dormancy release of Lilium pumilum bulbs based on transcriptome and miRNA sequencing[D]. Harbin: Northeast Forestry University, 2018.
[21]
郑蕊, 徐晓燕, 李春梅, 等. 大豆种子发育过程中差异表达蛋白的蛋白质组分析[J]. 大豆科学, 2008, 27(4):556-563.
ZHENG R, XU X Y, LI C M, et al. Protein group analysis of differentially expressed proteins during soybean seed development[J]. Soybean Science, 2008, 27(4):556-563.DOI: 10.3969/j.issn.1005-9369.2010.12.028.
[22]
CHEN S Y, CHOU S H, TSAI C C, et al. Effects of moist cold stratification on germination,plant growth regulators,metabolites and embryo ultrastructure in seeds of Acer morrisonense (Sapindaceae)[J]. Plant Physiology and Biochemistry, 2015, 94:165-173.DOI: 10.1016/j.plaphy.2015.06.004.
[23]
BIAN F Y, SU J R, LIU W D, et al. Dormancy release and germination of Taxus yunnanensis seeds during wet sand storage[J]. Scientific Reports, 2018, 8(1):3205.DOI: 10.1038/s41598-018-21469-9

基金

国家自然科学基金项目(31901331)
江苏高校优势学科建设工程资助项目(PAPD)

编辑: 吴祝华
PDF(2123 KB)

Accesses

Citation

Detail

段落导航
相关文章

/