基于叶绿素荧光的叶绿素含量估算

王琬钧, 于颖, 杨曦光

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6) : 157-165.

PDF(2571 KB)
PDF(2571 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6) : 157-165. DOI: 10.12302/j.issn.1000-2006.202305008
研究论文

基于叶绿素荧光的叶绿素含量估算

作者信息 +

Chlorophyll content estimation based on chlorophyll fluorescence

Author information +
文章历史 +

摘要

【目的】叶绿素是植物生理状态的重要指示因子,研究基于实测叶绿素荧光数据和Fluspect-B模型模拟数据,探讨叶片叶绿素含量的估算方法。【方法】以黑龙江尚志市帽儿山林场11个典型树种不同冠层高度位置叶片为对象测定其叶绿素荧光光谱与叶绿素含量,结合通过机理模型模拟的不同树种叶绿素荧光光谱与叶绿素含量关系数据库,分别构建基于实测数据的统计模型(多元线性回归模型、人工神经网络模型、随机森林模型)、基于模拟数据的混合模型以及基于实测与模拟数据驱动的混合模型,估算叶片叶绿素含量,并分析不同树种、不同冠层高度处叶片叶绿素含量分布特征。【结果】随机森林模型的模拟效果最佳,叶片叶绿素含量估算精度决定系数(R2)达到0.830 5,均方根误差(RMSE)为7.109 8 μg/cm2;基于实测与模拟数据驱动的混合模型精度优于统计模型,R2和RMSE分别为0.913 3、6.374 9 μg/cm2。阔叶树种叶绿素含量拟合效果普遍优于针叶树种,不同冠层位置处上层叶片数据集拟合效果优于中层,下层的最差。【结论】基于实测与模拟混合数据的混合模型优于基于实测数据的统计模型,混合模型整体拟合效果较好,能较准确估测叶绿素含量。基于叶绿素荧光光谱数据,运用混合模型方法反演森林植被叶绿素含量具有可行性,可为林分叶绿素含量估算及森林生态系统碳汇估测研究提供数据基础。

Abstract

【Objective】Chlorophyll is a crucial indicator of plant physiological status. This study explores methods for estimating leaf chlorophyll content using measured chlorophyll fluorescence and Fluspect-B model simulation data.【Method】The study analyzes the measured data of chlorophyll fluorescence spectrum and chlorophyll content of leaves at various canopy heights of 11 typical tree species in Maoershan Forest Farm. Additionally, it utilizes a database that simulates the relationship between chlorophyll fluorescence spectrum and chlorophyll content across different tree species. Statistical models are developed using multiple linear regression, artificial neural networks, and random forest modeling techniques based on the measured data. A hybrid model that integrates simulated data and a hybrid model combining measured and simulated data are employed to estimate leaf chlorophyll content. Additionally, the distribution characteristics of leaf chlorophyll content across different tree species and canopy heights are analyzed.【Result】Among the statistical models, random forest exhibits the highest effectiveness, achieving an estimation accuracy of coefficient of determination (R2) was 0.830 5 and root mean square error (RMSE) was 7.109 8 for leaf chlorophyll content (μg/cm2). The hybrid model incorporating both measured and simulated data demonstrates superior accuracy compared to the statistical models, yielding R2 of 0.913 3 and RMSE of 6.374 9 μg/cm2, respectively. The fitting accuracy for chlorophyll content of broad-leaved trees generally surpasses that of coniferous trees, particularly for upper leaf datasets at different canopy positions, which show better fitting effects than middle and lower layers.【Conclusion】The mixed model utilizing both measured and simulated data outperforms the purely statistical model based only on measured data. The mixed model exhibits good fitting accuracy, enabling precise estimation of chlorophyll content. The method based on chlorophyll fluorescence spectrum data proves viable for estimating forest vegetation chlorophyll content, laying a foundational dataset for large-scale chlorophyll content estimation and forest ecosystem carbon sink research.

关键词

叶绿素荧光 / 叶绿素含量 / 混合模型 / 遥感反演模型 / 森林植被 / 碳汇估测

Key words

chlorophyll fluorescence / chlorophyll content / hybrid models / remote sensing inversion model / forest vegetation / carbon sink estimation

引用本文

导出引用
王琬钧, 于颖, 杨曦光. 基于叶绿素荧光的叶绿素含量估算[J]. 南京林业大学学报(自然科学版). 2024, 48(6): 157-165 https://doi.org/10.12302/j.issn.1000-2006.202305008
WANG Wanjun, YU Ying, YANG Xiguang. Chlorophyll content estimation based on chlorophyll fluorescence[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(6): 157-165 https://doi.org/10.12302/j.issn.1000-2006.202305008
中图分类号: S757.2   

参考文献

[1]
王邵军, 阮宏华. 全球变化背景下森林生态系统碳循环及其管理[J]. 南京林业大学学报(自然科学版), 2011, 35(2):113-116.
WANG S J, RUAN H H. Review on carbon cycle of forestry ecosystem and its management under the global changes[J]. J Nanjing For Univ (Nat Sci Ed), 2011, 35(2):113-116.DOI: 10.3969/j.issn.1000-2006.2011.02.024.
[2]
邹晓明, 王国兵, 葛之葳, 等. 林业碳汇提升的主要原理和途径[J]. 南京林业大学学报(自然科学版), 2022, 46(6):167-176.
ZOU X M, WANG G B, GE Z W, et al. Mechanisms and methods for augmenting carbon sink in forestry[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(6):167-176.DOI: 10.12302/j.issn.1000-2006.202209008.
[3]
李建贵, 黄俊华, 王强, 等. 梭梭叶内激素与渗透调节物质对高温胁迫的响应[J]. 南京林业大学学报(自然科学版), 2005, 29(6):45-48.
LI J G, HUANG J H, WANG Q, et al. The response of content of endogenous hormones and osmotic regulaters in Haloxylon ammodendron leaves to high temperature stress[J]. J Nanjing For Univ (Nat Sci Ed), 2005, 29(6):45-48.DOI: 10.3969/j.issn.1000-2006.2005.06.011.
[4]
PIERRAT Z A, BORTNIK J, JOHNSON B, et al. Forests for forests:combining vegetation indices with solar-induced chlorophyll fluorescence in random forest models improves gross primary productivity prediction in the boreal forest[J]. Environ Res Lett, 2022, 17(12):125006.DOI: 10.1088/1748-9326/aca5a0.
[5]
LIAO W, WEI Y, HUANG S, et al. Association analysis of the spatial and temporal changes in vegetation photosynthesis levels with land cover changes in China based on solar-induced fluorescence[J]. Sustainability, 2024, 16(12).5107-5107.DOI: 10.3390/SU16125107.
[6]
刘良云, 张永江, 王纪华, 等. 利用夫琅和费暗线探测自然光条件下的植被光合作用荧光研究[J]. 遥感学报, 2006, 10(1):130-137.
LIU L Y, ZHANG Y J, WANG J H, et al. Detecting photosynthesis fluorescence under natural sunlight based on Fraunhofer line[J]. J Remote Sens, 2006, 10(1):130-137.DOI: 10.3321/j.issn:1007-4619.2006.01.020.
[7]
VILFAN N, VAN DER TOL C, VERHOEF W. Estimating photosynthetic capacity from leaf reflectance and Chl fluorescence by coupling radiative transfer to a model for photosynthesis[J]. New Phytol, 2019, 223(1):487-500.DOI: 10.1111/nph.15782.
[8]
PORCAR-CASTELL A, TYYSTJÄRVI E, ATHERTON J, et al. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications:mechanisms and challenges[J]. J Exp Bot, 2014, 65(15):4065-4095.DOI: 10.1093/jxb/eru191.
[9]
张永江, 刘良云, 侯名语, 等. 植物叶绿素荧光遥感研究进展[J]. 遥感学报, 2009, 13(5):963-978.
ZHANG Y J, LIU L Y, HOU M Y, et al. Progress in remote sensing of vegetation chlorophyll fluorescence[J]. J Remote Sens, 2009, 13(5):963-978.DOI: 10.3321/j.issn:1007-4619.2009.05.015.
[10]
AGARWAL V, CHÁVEZ-CASILLAS J, INOMURA K, et al. Patterns in the temporal complexity of global chlorophyll concentration[J]. Nat Commun, 2024,15:1522.DOI: 10.1038/s41467-024-45976-8.
[11]
MA H P, CUI T X, CAO L. Monitoring of drought stress in Chinese forests based on satellite solar-induced chlorophyll fluorescence and multi-source remote sensing indices[J]. Remote Sens, 2023, 15(4):879.DOI: 10.3390/rs15040879.
[12]
纪梦豪, 唐伯惠, 李召良. 太阳诱导叶绿素荧光的卫星遥感反演方法研究进展[J]. 遥感技术与应用, 2019, 34(3):455-466.
JI M H, TANG B H, LI Z L. Review of solar-induced chlorophyll fluorescence retrieval methods from satellite data[J]. Remote Sens Technol Appl, 2019, 34(3):455-466.DOI: 10.11873/j.issn.1004-0323.2019.3.0455.
[13]
杨曦光, 范文义, 于颖. 森林叶绿素含量的高光谱遥感估算模型的建立[J]. 森林工程, 2010, 26(2):8-11.
YANG X G, FAN W Y, YU Y. Establishment of hyperspectral remote sensing model for estimating forest chlorophyll content in Daxing’anling Mountain[J]. For Eng, 2010, 26(2):8-11.DOI: 10.16270/j.cnki.slgc.2010.02.025.
[14]
陈思媛, 竞霞, 董莹莹, 等. 基于日光诱导叶绿素荧光与反射率光谱的小麦条锈病探测研究[J]. 遥感技术与应用, 2019, 34(3):511-520.
CHEN S Y, JING X, DONG Y Y, et al. Detection of wheat stripe rust using solar-induced chlorophyll fluorescence and reflectance spectral indices[J]. Remote Sens Technol Appl, 2019, 34(3):511-520.DOI: 10.11873/j.issn.1004-0323.2019.3.0511.
[15]
TUBUXIN B, RAHIMZADEH-BAJGIRAN P, GINNAN Y, et al. Estimating chlorophyll content and photochemical yield of photosystem Ⅱ (ΦPSⅡ) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves[J]. J Exp Bot, 2015, 66(18):5595-5603.DOI: 10.1093/jxb/erv272.
[16]
印玉明, 王永清, 马春晨, 等. 利用日光诱导叶绿素荧光监测水稻叶片叶绿素含量[J]. 农业工程学报, 2021, 37(12):169-180.
YIN Y M, WANG Y Q, MA C C, et al. Monitoring of chlorophyll content in rice canopy and single leaf using sun-induced chlorophyll fluorescence[J]. Trans Chin Soc Agric Eng, 2021, 37(12):169-180.DOI: 10.11975/j.issn.1002-6819.2021.12.020.
[17]
HABOUDANE D, MILLER J R, TREMBLAY N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sens Environ, 2002, 81(2/3):416-426.DOI: 10.1016/S0034-4257(02)00018-4.
[18]
李栋. 多尺度作物叶绿素与氮含量高光谱监测研究[D]. 南京: 南京农业大学, 2020.DOI:10.27244/d.cnki.gnjnu.2020.002296.
LI D. Multiscale hyperspectral monitoring of chlorophyll and nitrogen content in crops[D]. Nanjing: Nanjing Agricultural University, 2020.
[19]
王立冬, 陈艳艳, 汤行昊, 等. 3种珍贵树种幼苗光合特性及日进程研究[J]. 山地农业生物学报, 2022, 41(4):8-17.
WANG L D, CHEN Y Y, TANG X H, et al. Research on photosynthetic characteristics and diurnal photosynthetic process of seedlings of three precious species[J]. J Mt Agric Biol, 2022, 41(4):8-17.DOI: 10.15958/j.cnki.sdnyswxb.2022.04.002.
[20]
殷诗韵. 基于无人机多源遥感的银杏人工林冠层色素含量三维分布估测[D]. 南京: 南京林业大学, 2022.
YIN S Y. Estimating the horizontal and vertical distributions of pigments incanopies of ginkgo plantation based on UVA-borne lidar and hyperspectral data[D]. Nanjing: Nanjing Forestry University, 2022.DOI: 10.27242/d.cnki.gnjlu.2022.000184.
[21]
王念一, 于丰华, 许童羽, 等. 基于机器学习的粳稻叶片叶绿素含量高光谱反演建模[J]. 浙江农业学报, 2020, 32(2):359-366.
WANG N Y, YU F H, XU T Y, et al. Hyperspectral retrieval modelling for chlorophyll contents of Japonica-rice leaves based on machine learning[J]. Acta Agric Zhejiangensis, 2020, 32(2):359-366.DOI: 10.3969/j.issn.1004-1524.2020.02.20.
[22]
RAJEWICZ P A, ATHERTON J, ALONSO L, et al. Leaf-level spectral fluorescence measurements:comparing methodologies for broadleaves and needles[J]. Remote Sens, 2019, 11(5):532.DOI: 10.3390/rs11050532.
[23]
HAN Z Y, ZHU X C, WANG Z Y, et al. Estimating chlorophyll content of apple leaves based on different scales in differential window[J]. Agric Sci, 2015, 6(9):1106-1114.DOI: 10.4236/as.2015.69106.
[24]
范文义, 张海玉, 于颖, 等. 三种森林生物量估测模型的比较分析[J]. 植物生态学报, 2011, 35(4):402-410.
FAN W Y, ZHANG H Y, YU Y, et al. Comparison of three models of forest biomass estimation[J]. Chin J Plant Ecol, 2011, 35(4):402-410.DOI: 10.3724/SP.J.1258.2011.00402.
[25]
GHORBANIAN A, ZAGHIAN S, ASIYABI R M, et al. Mangrove ecosystem mapping using sentinel-1 and sentinel-2 satellite images and random forest algorithm in google earth engine[J]. Remote Sens, 2021, 13(13):2565.DOI: 10.3390/rs13132565.
[26]
VILFAN N, VAN DER TOL C, MULLER O, et al. Fluspect-B:a model for leaf fluorescence,reflectance and transmittance spectra[J]. Remote Sens Environ, 2016, 186:596-615.DOI: 10.1016/j.rse.2016.09.017.
[27]
宋晓东, 江洪, 余树全, 等. 亚热带典型常绿阔叶树种叶片叶绿素含量与其高光谱特征间的关系[J]. 生态学报, 2008, 28(5):1959-1963.
SONG X D, JIANG H, YU S Q, et al. Relationship between chlorophyll concentrations and spectral reflectance feature of the typical evergreen hardwood species in subtropical region of China[J]. Acta Ecol Sin, 2008, 28(5):1959-1963.DOI: 10.3321/j.issn:1000-0933.2008.05.009.
[28]
谷云鹏, 董灵波, 刘兆刚, 等. 近40年帽儿山林场森林景观格局的动态变化及影响因素[J]. 中南林业科技大学学报, 2023, 43(5):73-85.
GU Y P, DONG L B, LIU Z G, et al. Dynamic changes and driving factors of the forest landscape pattern in Mao’er Mountain Forest Farm in the recent 40 years[J]. J Cent South Univ For Technol, 2023, 43(5):73-85.DOI: 10.14067/j.cnki.1673-923x.2023.05.009.

基金

国家自然科学基金项目(31971580)

编辑: 郑琰燚
PDF(2571 KB)

Accesses

Citation

Detail

段落导航
相关文章

/