[1] |
王邵军, 阮宏华. 全球变化背景下森林生态系统碳循环及其管理[J]. 南京林业大学学报(自然科学版), 2011, 35(2):113-116.
|
|
WANG S J, RUAN H H. Review on carbon cycle of forestry ecosystem and its management under the global changes[J]. J Nanjing For Univ (Nat Sci Ed), 2011, 35(2):113-116.DOI: 10.3969/j.issn.1000-2006.2011.02.024.
|
[2] |
邹晓明, 王国兵, 葛之葳, 等. 林业碳汇提升的主要原理和途径[J]. 南京林业大学学报(自然科学版), 2022, 46(6):167-176.
|
|
ZOU X M, WANG G B, GE Z W, et al. Mechanisms and methods for augmenting carbon sink in forestry[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(6):167-176.DOI: 10.12302/j.issn.1000-2006.202209008.
|
[3] |
李建贵, 黄俊华, 王强, 等. 梭梭叶内激素与渗透调节物质对高温胁迫的响应[J]. 南京林业大学学报(自然科学版), 2005, 29(6):45-48.
|
|
LI J G, HUANG J H, WANG Q, et al. The response of content of endogenous hormones and osmotic regulaters in Haloxylon ammodendron leaves to high temperature stress[J]. J Nanjing For Univ (Nat Sci Ed), 2005, 29(6):45-48.DOI: 10.3969/j.issn.1000-2006.2005.06.011.
|
[4] |
PIERRAT Z A, BORTNIK J, JOHNSON B, et al. Forests for forests:combining vegetation indices with solar-induced chlorophyll fluorescence in random forest models improves gross primary productivity prediction in the boreal forest[J]. Environ Res Lett, 2022, 17(12):125006.DOI: 10.1088/1748-9326/aca5a0.
|
[5] |
LIAO W, WEI Y, HUANG S, et al. Association analysis of the spatial and temporal changes in vegetation photosynthesis levels with land cover changes in China based on solar-induced fluorescence[J]. Sustainability, 2024, 16(12).5107-5107.DOI: 10.3390/SU16125107.
|
[6] |
刘良云, 张永江, 王纪华, 等. 利用夫琅和费暗线探测自然光条件下的植被光合作用荧光研究[J]. 遥感学报, 2006, 10(1):130-137.
|
|
LIU L Y, ZHANG Y J, WANG J H, et al. Detecting photosynthesis fluorescence under natural sunlight based on Fraunhofer line[J]. J Remote Sens, 2006, 10(1):130-137.DOI: 10.3321/j.issn:1007-4619.2006.01.020.
|
[7] |
VILFAN N, VAN DER TOL C, VERHOEF W. Estimating photosynthetic capacity from leaf reflectance and Chl fluorescence by coupling radiative transfer to a model for photosynthesis[J]. New Phytol, 2019, 223(1):487-500.DOI: 10.1111/nph.15782.
|
[8] |
PORCAR-CASTELL A, TYYSTJÄRVI E, ATHERTON J, et al. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications:mechanisms and challenges[J]. J Exp Bot, 2014, 65(15):4065-4095.DOI: 10.1093/jxb/eru191.
|
[9] |
张永江, 刘良云, 侯名语, 等. 植物叶绿素荧光遥感研究进展[J]. 遥感学报, 2009, 13(5):963-978.
|
|
ZHANG Y J, LIU L Y, HOU M Y, et al. Progress in remote sensing of vegetation chlorophyll fluorescence[J]. J Remote Sens, 2009, 13(5):963-978.DOI: 10.3321/j.issn:1007-4619.2009.05.015.
|
[10] |
AGARWAL V, CHÁVEZ-CASILLAS J, INOMURA K, et al. Patterns in the temporal complexity of global chlorophyll concentration[J]. Nat Commun, 2024,15:1522.DOI: 10.1038/s41467-024-45976-8.
|
[11] |
MA H P, CUI T X, CAO L. Monitoring of drought stress in Chinese forests based on satellite solar-induced chlorophyll fluorescence and multi-source remote sensing indices[J]. Remote Sens, 2023, 15(4):879.DOI: 10.3390/rs15040879.
|
[12] |
纪梦豪, 唐伯惠, 李召良. 太阳诱导叶绿素荧光的卫星遥感反演方法研究进展[J]. 遥感技术与应用, 2019, 34(3):455-466.
|
|
JI M H, TANG B H, LI Z L. Review of solar-induced chlorophyll fluorescence retrieval methods from satellite data[J]. Remote Sens Technol Appl, 2019, 34(3):455-466.DOI: 10.11873/j.issn.1004-0323.2019.3.0455.
|
[13] |
杨曦光, 范文义, 于颖. 森林叶绿素含量的高光谱遥感估算模型的建立[J]. 森林工程, 2010, 26(2):8-11.
|
|
YANG X G, FAN W Y, YU Y. Establishment of hyperspectral remote sensing model for estimating forest chlorophyll content in Daxing’anling Mountain[J]. For Eng, 2010, 26(2):8-11.DOI: 10.16270/j.cnki.slgc.2010.02.025.
|
[14] |
陈思媛, 竞霞, 董莹莹, 等. 基于日光诱导叶绿素荧光与反射率光谱的小麦条锈病探测研究[J]. 遥感技术与应用, 2019, 34(3):511-520.
|
|
CHEN S Y, JING X, DONG Y Y, et al. Detection of wheat stripe rust using solar-induced chlorophyll fluorescence and reflectance spectral indices[J]. Remote Sens Technol Appl, 2019, 34(3):511-520.DOI: 10.11873/j.issn.1004-0323.2019.3.0511.
|
[15] |
TUBUXIN B, RAHIMZADEH-BAJGIRAN P, GINNAN Y, et al. Estimating chlorophyll content and photochemical yield of photosystem Ⅱ (ΦPSⅡ) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves[J]. J Exp Bot, 2015, 66(18):5595-5603.DOI: 10.1093/jxb/erv272.
|
[16] |
印玉明, 王永清, 马春晨, 等. 利用日光诱导叶绿素荧光监测水稻叶片叶绿素含量[J]. 农业工程学报, 2021, 37(12):169-180.
|
|
YIN Y M, WANG Y Q, MA C C, et al. Monitoring of chlorophyll content in rice canopy and single leaf using sun-induced chlorophyll fluorescence[J]. Trans Chin Soc Agric Eng, 2021, 37(12):169-180.DOI: 10.11975/j.issn.1002-6819.2021.12.020.
|
[17] |
HABOUDANE D, MILLER J R, TREMBLAY N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sens Environ, 2002, 81(2/3):416-426.DOI: 10.1016/S0034-4257(02)00018-4.
|
[18] |
李栋. 多尺度作物叶绿素与氮含量高光谱监测研究[D]. 南京: 南京农业大学, 2020.DOI:10.27244/d.cnki.gnjnu.2020.002296.
|
|
LI D. Multiscale hyperspectral monitoring of chlorophyll and nitrogen content in crops[D]. Nanjing: Nanjing Agricultural University, 2020.
|
[19] |
王立冬, 陈艳艳, 汤行昊, 等. 3种珍贵树种幼苗光合特性及日进程研究[J]. 山地农业生物学报, 2022, 41(4):8-17.
|
|
WANG L D, CHEN Y Y, TANG X H, et al. Research on photosynthetic characteristics and diurnal photosynthetic process of seedlings of three precious species[J]. J Mt Agric Biol, 2022, 41(4):8-17.DOI: 10.15958/j.cnki.sdnyswxb.2022.04.002.
|
[20] |
殷诗韵. 基于无人机多源遥感的银杏人工林冠层色素含量三维分布估测[D]. 南京: 南京林业大学, 2022.
|
|
YIN S Y. Estimating the horizontal and vertical distributions of pigments incanopies of ginkgo plantation based on UVA-borne lidar and hyperspectral data[D]. Nanjing: Nanjing Forestry University, 2022.DOI: 10.27242/d.cnki.gnjlu.2022.000184.
|
[21] |
王念一, 于丰华, 许童羽, 等. 基于机器学习的粳稻叶片叶绿素含量高光谱反演建模[J]. 浙江农业学报, 2020, 32(2):359-366.
|
|
WANG N Y, YU F H, XU T Y, et al. Hyperspectral retrieval modelling for chlorophyll contents of Japonica-rice leaves based on machine learning[J]. Acta Agric Zhejiangensis, 2020, 32(2):359-366.DOI: 10.3969/j.issn.1004-1524.2020.02.20.
|
[22] |
RAJEWICZ P A, ATHERTON J, ALONSO L, et al. Leaf-level spectral fluorescence measurements:comparing methodologies for broadleaves and needles[J]. Remote Sens, 2019, 11(5):532.DOI: 10.3390/rs11050532.
|
[23] |
HAN Z Y, ZHU X C, WANG Z Y, et al. Estimating chlorophyll content of apple leaves based on different scales in differential window[J]. Agric Sci, 2015, 6(9):1106-1114.DOI: 10.4236/as.2015.69106.
|
[24] |
范文义, 张海玉, 于颖, 等. 三种森林生物量估测模型的比较分析[J]. 植物生态学报, 2011, 35(4):402-410.
|
|
FAN W Y, ZHANG H Y, YU Y, et al. Comparison of three models of forest biomass estimation[J]. Chin J Plant Ecol, 2011, 35(4):402-410.DOI: 10.3724/SP.J.1258.2011.00402.
|
[25] |
GHORBANIAN A, ZAGHIAN S, ASIYABI R M, et al. Mangrove ecosystem mapping using sentinel-1 and sentinel-2 satellite images and random forest algorithm in google earth engine[J]. Remote Sens, 2021, 13(13):2565.DOI: 10.3390/rs13132565.
|
[26] |
VILFAN N, VAN DER TOL C, MULLER O, et al. Fluspect-B:a model for leaf fluorescence,reflectance and transmittance spectra[J]. Remote Sens Environ, 2016, 186:596-615.DOI: 10.1016/j.rse.2016.09.017.
|
[27] |
宋晓东, 江洪, 余树全, 等. 亚热带典型常绿阔叶树种叶片叶绿素含量与其高光谱特征间的关系[J]. 生态学报, 2008, 28(5):1959-1963.
|
|
SONG X D, JIANG H, YU S Q, et al. Relationship between chlorophyll concentrations and spectral reflectance feature of the typical evergreen hardwood species in subtropical region of China[J]. Acta Ecol Sin, 2008, 28(5):1959-1963.DOI: 10.3321/j.issn:1000-0933.2008.05.009.
|
[28] |
谷云鹏, 董灵波, 刘兆刚, 等. 近40年帽儿山林场森林景观格局的动态变化及影响因素[J]. 中南林业科技大学学报, 2023, 43(5):73-85.
|
|
GU Y P, DONG L B, LIU Z G, et al. Dynamic changes and driving factors of the forest landscape pattern in Mao’er Mountain Forest Farm in the recent 40 years[J]. J Cent South Univ For Technol, 2023, 43(5):73-85.DOI: 10.14067/j.cnki.1673-923x.2023.05.009.
|