植物干旱和盐胁迫响应相关miRNA研究进展

宋子荷, 甄艳

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (4) : 1-11.

PDF(1798 KB)
PDF(1798 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (4) : 1-11. DOI: 10.12302/j.issn.1000-2006.202305016
林学前沿(执行主编 施季森、尹佟明)

植物干旱和盐胁迫响应相关miRNA研究进展

作者信息 +

Advancements in the research of miRNAs associated with plant drought and salt stress responses

Author information +
文章历史 +

摘要

非编码RNA(non-coding RNA,ncRNA)是一类由生物基因组转录产生但不编码蛋白质的遗传信息分子,作为表观遗传学研究的主要内容,曾一度被视为基因组中的“暗物质”或“转录噪音”。最广为人知的微小RNA (microRNA,miRNA)是在进化上高度保守的一类长20~24个核苷酸的短链非编码小分子RNA,通过与靶位点碱基互补配对切割降解靶基因转录本或抑制其翻译,从而实现对生物体生长发育等过程的调控。随着小RNA测序和降解组测序等miRNA研究手段的发展,越来越多的miRNA及其生物学功能在动植物中被相继报道,揭示了miRNA在逆境响应过程中的重要调控作用。笔者较为系统地论述了植物miRNA的特征、合成过程、作用方式及其在抗旱耐盐方面的研究进展,以期揭示植物抗旱耐盐的miRNA调控机理,为创制抗旱耐盐新种质提供依据。

Abstract

China is a maritime power with a long coastline and abundant coastal resources. However, this long costline brings vast areas of saline-alkali land. Additionally, global warming has led to more frequent seasonal drought. Under such extreme conditions, the survival rate of most plants is very low. Therefore, research on the molecular mechanisms of drought resistance and salt tolerance is particularly important. Improving the survival rate of plants in arid and saline-alkali areas can bring significant ecological benefits and economic value. Non-coding RNA (ncRNA) is a class of genetic information molecules transcribed from the genome that do not encode proteins. As a major focus of epigenetic research, ncRNAs were once considered the “dark matter” or “transcriptional noise” of the genome. The most well-known type of ncRNA is microRNA (miRNA), a highly conserved class of short non-coding small RNA molecules that are 20-24 nucleotides in length. They regulate the growth and development of organisms by cleaving and degrading target gene transcripts or inhibiting the translation of target genes through complementary base pairing with target sites. With the development of miRNA research methods such as small RNA sequencing and degradome sequencing, an increasing number of miRNAs and their target genes has been reported in animals and plants. Their biological synthesis, processing, maturation, and functional effects have been elucidated. Plant miRNAs complementarily pair with their target genes mostly in the open reading frame, with a full or nearly full complementarity to the target sequences. These characteristics stimulated the rapid development in plant miRNA research, and a large amount of research has revealed important regulatory roles of miRNAs in plant growth, development, and stress responses. This article provides a systematic review of the features, synthesis process, mode of action, and research progress of plant miRNAs in drought and salt resistance. We summarizes the main techniques and strategies for plant miRNA research in recent years, discuss the existing problems and prospects, and reveals the regulatory mechanisms of miRNA in plant drought and salt resistance, providing a basis for generating new varieties of drought and salt resistance.

关键词

非编码RNA / 盐胁迫 / 干旱胁迫 / 小RNA测序 / 降解组

Key words

non-coding RNA / salt stress / drought stress / small RNA-Seq / degradome

引用本文

导出引用
宋子荷, 甄艳. 植物干旱和盐胁迫响应相关miRNA研究进展[J]. 南京林业大学学报(自然科学版). 2024, 48(4): 1-11 https://doi.org/10.12302/j.issn.1000-2006.202305016
SONG Zihe, ZHEN Yan. Advancements in the research of miRNAs associated with plant drought and salt stress responses[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(4): 1-11 https://doi.org/10.12302/j.issn.1000-2006.202305016
中图分类号: S718;Q522   

参考文献

[1]
CAI W J, LENGAIGNE M, BORLACE S, et al. More extreme swings of the South Pacific convergence zone due to greenhouse warming[J]. Nature, 2012, 488(7411):365-369.DOI: 10.1038/nature11358.
[2]
QADIR M, QUILLÉROU E, NANGIA V, et al. Economics of salt-induced land degradation and restoration[J]. Nat Resour Forum, 2014, 38(4):282-295.DOI: 10.1111/1477-8947.12054.
[3]
ZHAO S, ZHANG Q, LIU M, et al. Regulation of plant responses to salt stress[J]. Int J Mol Sci, 2021, 22(9):4609.DOI: 10.3390/ijms22094609.
[4]
DEINLEIN U, STEPHAN A B, HORIE T, et al. Plant salt-tolerance mechanisms[J]. Trends Plant Sci, 2014, 19(6):371-379.DOI: 10.1016/j.tplants.2014.02.001.
[5]
FOYER C H, RASOOL B, DAVEY J W, et al. Cross-tolerance to biotic and abiotic stresses in plants:a focus on resistance to aphid infestation[J]. J Exp Bot, 2016, 67(7):2025-2037.DOI: 10.1093/jxb/erw079.
[6]
MILLER G, SUZUKI N, CIFTCI-YILMAZ S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant Cell Environ, 2010, 33(4):453-467.DOI: 10.1111/j.1365-3040.2009.02041.x.
[7]
MUNNS R, GILLIHAM M. Salinity tolerance of crops-what is the cost?[J]. New Phytol, 2015, 208(3):668-673.DOI: 10.1111/nph.13519.
[8]
LEE R C, FEINBAUM R L, AMBROS V. The C.elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14[J]. Cell, 1993, 75(5):843-854.DOI: 10.1016/0092-8674(93)90529-y.
[9]
REINHART B J, WEINSTEIN E G, RHOADES M W, et al. MicroRNAs in plants[J]. Genes Dev, 2002, 16(13):1616-1626.DOI: 10.1101/gad.1004402.
[10]
AMBROS V, BARTEL B, BARTEL D P, et al. A uniform system for microRNA annotation[J]. RNA, 2003, 9(3):277-279.DOI: 10.1261/rna.2183803.
[11]
AXTELL M J. Classification and comparison of small RNAs from plants[J]. Annu Rev Plant Biol, 2013, 64:137-159.DOI: 10.1146/annurev-arplant-050312-120043.
[12]
BONNET E, WUYTS J, ROUZÉ P, et al. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes[J]. Proc Natl Acad Sci USA, 2004, 101(31):11511-11516.DOI: 10.1073/pnas.0404025101.
[13]
WANG X J, REYES J L, CHUA N H, et al. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets[J]. Genome Biol, 2004, 5(9):R65.DOI: 10.1186/gb-2004-5-9-r65.
[14]
LYTLE J R, YARIO T A, STEITZ J A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR[J]. Proc Natl Acad Sci USA, 2007, 104(23):9667-9672.DOI: 10.1073/pnas.0703820104.
[15]
XIE Z X, ALLEN E, FAHLGREN N, et al. Expression of Arabidopsis MIRNA genes[J]. Plant Physiol, 2005, 138(4):2145-2154.DOI: 10.1104/pp.105.062943.
[16]
MEGRAW M, BAEV V, RUSINOV V, et al. MicroRNA promoter element discovery in Arabidopsis[J]. RNA, 2006, 12(9):1612-1619.DOI: 10.1261/rna.130506.
[17]
KIM Y J, ZHENG B L, YU Y, et al. The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana[J]. EMBO J, 2011, 30(5):814-822.DOI: 10.1038/emboj.2011.3.
[18]
SONG X W, LI Y, CAO X F, et al. MicroRNAs and their regulatory roles in plant-environment interactions[J]. Annu Rev Plant Biol, 2019, 70:489-525.DOI: 10.1146/annurev-arplant-050718-100334.
[19]
HAN M H, GOUD S, SONG L, et al. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation[J]. Proc Natl Acad Sci USA, 2004, 101(4):1093-1098.DOI: 10.1073/pnas.0307969100.
[20]
YANG L, LIU Z Q, LU F, et al. SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis[J]. Plant J, 2006, 47(6):841-850.DOI: 10.1111/j.1365-313X.2006.02835.x.
[21]
LI J J, YANG Z Y, YU B, et al. Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis[J]. Curr Biol, 2005, 15(16):1501-1507.DOI: 10.1016/j.cub.2005.07.029.
[22]
YANG Z Y, EBRIGHT Y W, YU B, et al. HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3' terminal nucleotide[J]. Nucleic Acids Res, 2006, 34(2):667-675.DOI: 10.1093/nar/gkj474.
[23]
AXTELL M J, WESTHOLM J O, LAI E C. Vive la différence:biogenesis and evolution of microRNAs in plants and animals[J]. Genome Biol, 2011, 12(4):221.DOI: 10.1186/gb-2011-12-4-221.
[24]
EAMENS A L, SMITH N A, CURTIN S J, et al. The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes[J]. RNA, 2009, 15(12):2219-2235.DOI: 10.1261/rna.1646909.
[25]
TOMARI Y, MATRANGA C, HALEY B, et al. A protein sensor for siRNA asymmetry[J]. Science, 2004, 306(5700):1377-1380.DOI: 10.1126/science.1102755.
[26]
XU L, HU Y G, CAO Y, et al. An expression atlas of miRNAs in Arabidopsis thaliana[J]. Sci China Life Sci, 2018, 61(2):178-189.DOI: 10.1007/s11427-017-9199-1.
[27]
JONES-RHOADES M W, BARTEL D P, BARTEL B. MicroRNAS and their regulatory roles in plants[J]. Annu Rev Plant Biol, 2006, 57:19-53.DOI: 10.1146/annurev.arplant.57.032905.105218.
[28]
SONG J J, SMITH S K, HANNON G J, et al. Crystal structure of Argonaute and its implications for RISC slicer activity[J]. Science, 2004, 305(5689):1434-1437.DOI: 10.1126/science.1102514.
[29]
YUAN YR, PEI Y, MA J B, et al. Crystal structure of A. aeolicus argonaute,a site-specific DNA-guided endoribonuclease,provides insights into RISC-mediated mRNA cleavage[J]. Mol Cell, 2005, 19(3):405-419.DOI: 10.1016/j.molcel.2005.07.011.
[30]
ADDO-QUAYE C, ESHOO T W, BARTEL D P, et al. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome[J]. Curr Biol, 2008, 18(10):758-762.DOI: 10.1016/j.cub.2008.04.042.
[31]
GERMAN M A, PILLAY M, JEONG D H, et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends[J]. Nat Biotechnol, 2008, 26(8):941-946.DOI: 10.1038/nbt1417.
[32]
AXTELL M J, JAN C, RAJAGOPALAN R, et al. A two-hit trigger for siRNA biogenesis in plants[J]. Cell, 2006, 127(3):565-577.DOI: 10.1016/j.cell.2006.09.032.
[33]
FRANCO-ZORRILLA J M, VALLI A, TODESCO M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nat Genet, 2007, 39(8):1033-1037.DOI: 10.1038/ng2079.
[34]
BRODERSEN P, SAKVARELIDZE-ACHARD L, BRUUN-RASMUSSEN M, et al. Widespread translational inhibition by plant miRNAs and siRNAs[J]. Science, 2008, 320(5880):1185-1190.DOI: 10.1126/science.1159151.
[35]
SCHWAB R, PALATNIK J F, RIESTER M, et al. Specific effects of microRNAs on the plant transcriptome[J]. Dev Cell, 2005, 8(4):517-527.DOI: 10.1016/j.devcel.2005.01.018.
[36]
HOU C Y, LEE W C, CHOU H C, et al. Global analysis of truncated RNA ends reveals new insights into ribosome stalling in plants[J]. Plant Cell, 2016, 28(10):2398-2416.DOI: 10.1105/tpc.16.00295.
[37]
IWAKAWA HO, TOMARI Y. Molecular insights into microRNA-mediated translational repression in plants[J]. Mol Cell, 2013, 52(4):591-601.DOI: 10.1016/j.molcel.2013.10.033.
[38]
BAO N, LYE K W, BARTON M K. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome[J]. Dev Cell, 2004, 7(5):653-662.DOI: 10.1016/j.devcel.2004.10.003.
[39]
WU L, ZHOU H, ZHANG Q, et al. DNA methylation mediated by a microRNA pathway[J]. Mol Cell, 2010, 38(3):465-475.DOI: 10.1016/j.molcel.2010.03.008.
[40]
VAN GOETHEM A, MESTDAGH P, VAN MAERKEN T, et al. MicroRNA expression analysis using small RNA sequencing discovery and RT-qPCR-based validation[J]. Methods Mol Biol, 2017, 1654:197-208.DOI: 10.1007/978-1-4939-7231-9_13.
[41]
CHÁVEZ MONTES RA, JAIMES-MIRANDA F, DE FOLTER S. Bioinformatic analysis of small RNA sequencing libraries[J]. Methods Mol Biol, 2019, 1932:51-63.DOI: 10.1007/978-1-4939-9042-9_4.
[42]
CHEN B B, DING Z Y, ZHOU X, et al. Integrated full-length transcriptome and microRNA sequencing approaches provide insights into salt tolerance in mangrove (Sonneratia apetala Buch.-Ham.)[J]. Front Genet, 2022, 13:932832.DOI: 10.3389/fgene.2022.932832.
[43]
WU J X, ZHENG S S, FENG G Z, et al. Comparative analysis of miRNAs and their target transcripts between a spontaneous late-ripening sweet orange mutant and its wild-type using small RNA and degradome sequencing[J]. Front Plant Sci, 2016, 7:1416.DOI: 10.3389/fpls.2016.01416.
[44]
董淼, 黄越, 陈文铎, 等. 降解组测序技术在植物miRNA研究中的应用[J]. 植物学报, 2013, 48(3):344-353.
DONG M, HUANG Y, CHEN W D, et al. Use of degradome sequencing in study of plant microRNAs[J]. Chin Bull Bot, 2013, 48(3):344-353.DOI: 10.3724/SP.J.1259.2013.00344.
[45]
BAKSA I, SZITTYA G. Identification of ARGONAUTE/small RNA cleavage sites by degradome sequencing[J]. Methods Mol Biol, 2017, 1640:113-128.DOI: 10.1007/978-1-4939-7165-7_7.
[46]
FOLKES L, MOXON S, WOOLFENDEN H C, et al. PAREsnip:a tool for rapid genome-wide discovery of small RNA/target interactions evidenced through degradome sequencing[J]. Nucleic Acids Res, 2012, 40(13):e103.DOI: 10.1093/nar/gks277.
[47]
ADDO-QUAYE C, MILLER W, AXTELL M J. CleaveLand:a pipeline for using degradome data to find cleaved small RNA targets[J]. Bioinformatics, 2009, 25(1):130-131.DOI: 10.1093/bioinformatics/btn604.
[48]
KAKRANA A, HAMMOND R, PATEL P, et al. SPARTA:A parallelized pipeline for integrated analysis of plant miRNA and cleaved mRNA data sets,including new miRNA target-identification software[J]. Nucleic Acids Res, 2014, 42(18):e139.DOI: 10.1093/nar/gku693.
[49]
ZHANG Y J, GONG H H, LI D H, et al. Integrated small RNA and Degradome sequencing provide insights into salt tolerance in sesame (Sesamum indicum L.)[J]. BMC Genomics, 2020, 21(1):494.DOI: 10.1186/s12864-020-06913-3.
[50]
CANDAR C B, ARICAN E, ZHANG B H. Small RNA and degradome deep sequencing reveals drought-and tissue-specific micrornas and their important roles in drought-sensitive and drought-tolerant tomato genotypes[J]. Plant Biotechnol J, 2016, 14(8):1727-1746.DOI: 10.1111/pbi.12533.
[51]
WANG M, WU H J, FANG J, et al. A long noncoding RNA involved in rice reproductive development by negatively regulating osa-miR160[J]. Sci Bull, 2017, 62(7):470-475.DOI: 10.1016/j.scib.2017.03.013.
[52]
LI F F, WANG W D, ZHAO N, et al. Regulation of nicotine biosynthesis by an endogenous target mimicry of microRNA in tobacco[J]. Plant Physiol, 2015, 169(2):1062-1071.DOI: 10.1104/pp.15.00649.
[53]
TODESCO M, RUBIO-SOMOZA I, PAZ-ARES J, et al. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana[J]. PLoS Genet, 2010, 6(7):e1001031.DOI: 10.1371/journal.pgen.1001031.
[54]
YAN J, GU Y Y, JIA X Y, et al. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis[J]. Plant Cell, 2012, 24(2):415-427.DOI: 10.1105/tpc.111.094144.
[55]
郑文清, 张倩, 杜亮. 短串联靶标模拟技术及其在植物miRNA功能研究中的应用[J]. 生物技术通报, 2020, 36(12):256-264.
ZHENG W Q, ZHANG Q, DU L. Short tandem target mimic and its application in analyzing plant miRNA functions[J]. Biotechnol Bull, 2020, 36(12):256-264.DOI: 10.13560/j.cnki.biotech.bull.1985.2020-0257.
[56]
SHARMA M, KUMAR P, VERMA V, et al. Understanding plant stress memory response for abiotic stress resilience:molecular insights and prospects[J]. Plant Physiol Biochem, 2022, 179:10-24.DOI: 10.1016/j.plaphy.2022.03.004.
[57]
SUZUKI N, RIVERO R M, SHULAEV V, et al. Abiotic and biotic stress combinations[J]. New Phytol, 2014, 203(1):32-43.DOI: 10.1111/nph.12797.
[58]
WANG Z R, BASKIN J M, BASKIN C C, et al. Great granny still ruling from the grave:phenotypical response of plant performance and seed functional traits to salt stress affects multiple generations of a halophyte[J]. J Ecol, 2022, 110(1):117-128.DOI: 10.1111/1365-2745.13789.
[59]
LÄMKE J, BÄURLE I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants[J]. Genome Biol, 2017, 18(1):124.DOI: 10.1186/s13059-017-1263-6.
[60]
ZHANG Y F, XIAO T, YI F, et al. SimiR396d targets SiGRF1 to regulate drought tolerance and root growth in foxtail millet[J]. Plant Sci, 2023, 326:111492.DOI: 10.1016/j.plantsci.2022.111492.
[61]
WAN J, MENG S J, WANG Q Y, et al. Suppression of microRNA168 enhances salt tolerance in rice (Oryza sativa L.)[J]. BMC Plant Biol, 2022, 22(1):563.DOI: 10.1186/s12870-022-03959-1.
[62]
ARSHAD M, FEYISSA B A, AMYOT L, et al. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13[J]. Plant Sci, 2017, 258:122-136.DOI: 10.1016/j.plantsci.2017.01.018.
[63]
LI M N, XU L, ZHANG L X, et al. Overexpression of Mtr-miR319a contributes to leaf curl and salt stress adaptation in Arabidopsis thaliana and Medicago truncatula[J]. Int J Mol Sci, 2022, 24(1):429.DOI: 10.3390/ijms24010429.
[64]
ZHOU M, LI D Y, LI Z G, et al. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass[J]. Plant Physiol, 2013, 161(3):1375-1391.DOI: 10.1104/pp.112.208702.
[65]
YUAN S R, ZHAO J M, LI Z G, et al. MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass[J]. Hortic Res, 2019, 6:48.DOI: 10.1038/s41438-019-0130-x.
[66]
ZHANG J S, ZHANG H, SRIVASTAVA A K, et al. Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development[J]. Plant Physiol, 2018, 176(3):2082-2094.DOI: 10.1104/pp.17.01432.
[67]
YANG J W, ZHANG N, BAI J P, et al. Stu-miR827-targeted StWRKY48 transcription factor negatively regulates drought tolerance of potato by increasing leaf stomatal density[J]. Int J Mol Sci, 2022, 23(23):14805.DOI: 10.3390/ijms232314805.
[68]
ZHANG X H, ZOU Z, GONG P J, et al. Over-expression of microRNA169 confers enhanced drought tolerance to tomato[J]. Biotechnol Lett, 2011, 33(2):403-409.DOI: 10.1007/s10529-010-0436-0.
[69]
JIANG Y Q, WU X, SHI M, et al. The miR159-MYB33-ABI5 module regulates seed germination in Arabidopsis[J]. Physiol Plant, 2022, 174(2):e13659.DOI: 10.1111/ppl.13659.
[70]
黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学:生命科学, 2019, 49(10):1227-1281.
LI J, LI C Y. Seventy-year major research progress in plant hormones by Chinese scholars[J]. Sci Sin (Vitae), 2019, 49(10):1227-1281.DOI: 10.1360/SSV-2019-0197.
[71]
PAQUE S, WEIJERS D Q A. Auxin:the plant molecule that influences almost anything[J]. BMC Biol, 2016, 14(1):67.DOI: 10.1186/s12915-016-0291-0.
[72]
SHEN X X, HE J Q, PING Y K, et al. The positive feedback regulatory loop of miR160-Auxin Response Factor 17-HYPONASTIC LEAVES 1 mediates drought tolerance in apple trees[J]. Plant Physiol, 2022, 188(3):1686-1708.DOI: 10.1093/plphys/kiab565.
[73]
ZHANG X P, SHEN J, XU Q J, et al. Long noncoding RNA lncRNA354 functions as a competing endogenous RNA of miR160b to regulate ARF genes in response to salt stress in upland cotton[J]. Plant Cell Environ, 2021, 44(10):3302-3321.DOI: 10.1111/pce.14133.
[74]
HE F, XU C Z, FU X K, et al. The MICRORNA390/TRANS-ACTING SHORT INTERFERING RNA3 module mediates lateral root growth under salt stress via the auxin pathway[J]. Plant Physiol, 2018, 177(2):775-791.DOI: 10.1104/pp.17.01559.
[75]
ZHAO J M, YUAN S R, ZHOU M, et al. Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance[J]. Plant Biotechnol J, 2019, 17(1):233-251.DOI: 10.1111/pbi.12960.
[76]
BAEK D, CHUN H J, KANG S, et al. A role for Arabidopsis miR399f in salt,drought,and ABA signaling[J]. Mol Cells, 2016, 39(2):111-118.DOI: 10.14348/molcells.2016.2188.
[77]
NI Z Y, HU Z, JIANG Q Y, et al. GmNFYA3,a target gene of miR169,is a positive regulator of plant tolerance to drought stress[J]. Plant Mol Biol, 2013, 82(1/2):113-129.DOI: 10.1007/s11103-013-0040-5.
[78]
SONG J B, GAO S, SUN D, et al. miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner[J]. BMC Plant Biol, 2013, 13:210.DOI: 10.1186/1471-2229-13-210.
[79]
YAN J, ZHAO C Z, ZHOU J P, et al. The miR165/166 mediated regulatory module plays critical roles in ABA homeostasis and response in Arabidopsis thaliana[J]. PLoS Genet, 2016, 12(11):e1006416.DOI: 10.1371/journal.pgen.1006416.
[80]
LIU Y, LI D, YAN J, et al. MiR319-mediated ethylene biosynthesis, signalling and salt stress response in switchgrass[J]. Plant Biotechnology Journal, 2019, 17(12):2370-2383. DOI: 10.1111/pbi.13154.
[81]
XIA K F, OU X J, TANG H D, et al. Rice microRNA osa-miR1848 targets the obtusifoliol 14α-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress[J]. New Phytol, 2015, 208(3):790-802.DOI: 10.1111/nph.13513.
[82]
GOMEZ J M, JIMENEZ A, OLMOS E, et al. Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv.Puget) chloroplasts[J]. J Exp Bot, 2004, 55(394):119-130.DOI: 10.1093/jxb/erh013.
[83]
LEE D H, KIM Y S, LEE C B. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.)[J]. J Plant Physiol, 2001, 158(6):737-745.DOI: 10.1078/0176-1617-00174.
[84]
WANG W, LIU D, CHEN D D, et al. MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress[J]. RNA Biol, 2019, 16(3):362-375.DOI: 10.1080/15476286.2019.1574163.
[85]
CHENG X L, HE Q, TANG S, et al. The miR172/IDS1 signaling module confers salt tolerance through maintaining ROS homeostasis in cereal crops[J]. New Phytol, 2021, 230(3):1017-1033.DOI: 10.1111/nph.17211.
[86]
HE Y, ZHOU J X, HU Y F, et al. Overexpression of sly-miR398b increased salt sensitivity likely via regulating antioxidant system and photosynthesis in tomato[J]. Environ Exp Bot, 2021, 181:104273.DOI: 10.1016/j.envexpbot.2020.104273.
[87]
XING L J, ZHU M, LUAN M D, et al. miR169q and NUCLEAR FACTOR YA8 enhance salt tolerance by activating PEROXIDASE1 expression in response to ROS[J]. Plant Physiol, 2022, 188(1):608-623.DOI: 10.1093/plphys/kiab498.
[88]
WANG L, BAI X Y, QIAO Y, et al. Tae-miR9674a,a microRNA member of wheat,confers plant drought and salt tolerance through modulating the stomata movement and ROS homeostasis[J]. Plant Biotechnol Rep, 2023, 17(4):471-488.DOI: 10.1007/s11816-022-00787-5.
[89]
PENG X, FENG C, WANG Y T, et al. miR164g-MsNAC022 acts as a novel module mediating drought response by transcriptional regulation of reactive oxygen species scavenging systems in apple[J]. Hortic Res, 2022, 9:uhac192.DOI: 10.1093/hr/uhac192.
[90]
WANG Y T, FENG C, ZHAI Z F, et al. The apple microR171i-SCARECROW-LIKE PROTEINS26.1 module enhances drought stress tolerance by integrating ascorbic acid metabolism[J]. Plant Physiol, 2020, 184(1):194-211.DOI: 10.1104/pp.20.00476.
[91]
NGUYEN D Q, BROWN C W, PEGLER J L, et al. Molecular manipulation of microRNA397 abundance influences the development and salt stress response of Arabidopsis thaliana[J]. Int J Mol Sci, 2020, 21(21):7879.DOI: 10.3390/ijms21217879.
[92]
QIN R D, HU Y M, CHEN H, et al. MicroRNA408 negatively regulates salt tolerance by affecting secondary cell wall development in maize[J]. Plant Physiol, 2023, 192(2):1569-1583.DOI: 10.1093/plphys/kiad135.
[93]
JEENA G S, JOSHI A, SHUKLA R K. Bm-miR172c-5p regulates lignin biosynthesis and secondary xylem thickness by altering the ferulate 5 hydroxylase gene in Bacopa monnieri[J]. Plant Cell Physiol, 2021, 62(5):894-912.DOI: 10.1093/pcp/pcab054.
[94]
FAN S G, AMOMBO E, AVOGA S, et al. Salt-responsive bermudagrass microRNAs and insights into light reaction photosynthetic performance[J]. Front Plant Sci, 2023, 14:1141295.DOI: 10.3389/fpls.2023.1141295.
[95]
UM T, CHOI J, PARK T, et al. Rice microRNA171f/SCL6 module enhances drought tolerance by regulation of flavonoid biosynthesis genes[J]. Plant Direct, 2022, 6(1):e374.DOI: 10.1002/pld3.374.

基金

国家自然科学基金项目(31000287)

编辑: 吴祝华
PDF(1798 KB)

Accesses

Citation

Detail

段落导航
相关文章

/