南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (4): 1-11.doi: 10.12302/j.issn.1000-2006.202305016
• 林学前沿(执行主编 施季森、尹佟明) • 上一篇 下一篇
收稿日期:
2023-05-16
修回日期:
2024-01-10
出版日期:
2024-07-30
发布日期:
2024-08-05
通讯作者:
*甄艳(zhenyongni30@aliyun.com),副教授。作者简介:
宋子荷(zihesong_njfu@outlook.com),博士生。
基金资助:
Received:
2023-05-16
Revised:
2024-01-10
Online:
2024-07-30
Published:
2024-08-05
摘要:
非编码RNA(non-coding RNA,ncRNA)是一类由生物基因组转录产生但不编码蛋白质的遗传信息分子,作为表观遗传学研究的主要内容,曾一度被视为基因组中的“暗物质”或“转录噪音”。最广为人知的微小RNA (microRNA,miRNA)是在进化上高度保守的一类长20~24个核苷酸的短链非编码小分子RNA,通过与靶位点碱基互补配对切割降解靶基因转录本或抑制其翻译,从而实现对生物体生长发育等过程的调控。随着小RNA测序和降解组测序等miRNA研究手段的发展,越来越多的miRNA及其生物学功能在动植物中被相继报道,揭示了miRNA在逆境响应过程中的重要调控作用。笔者较为系统地论述了植物miRNA的特征、合成过程、作用方式及其在抗旱耐盐方面的研究进展,以期揭示植物抗旱耐盐的miRNA调控机理,为创制抗旱耐盐新种质提供依据。
中图分类号:
宋子荷,甄艳. 植物干旱和盐胁迫响应相关miRNA研究进展[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 1-11.
SONG Zihe, ZHEN Yan. Advancements in the research of miRNAs associated with plant drought and salt stress responses[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(4): 1-11.DOI: 10.12302/j.issn.1000-2006.202305016.
[1] | CAI W J, LENGAIGNE M, BORLACE S, et al. More extreme swings of the South Pacific convergence zone due to greenhouse warming[J]. Nature, 2012, 488(7411):365-369.DOI: 10.1038/nature11358. |
[2] | QADIR M, QUILLÉROU E, NANGIA V, et al. Economics of salt-induced land degradation and restoration[J]. Nat Resour Forum, 2014, 38(4):282-295.DOI: 10.1111/1477-8947.12054. |
[3] | ZHAO S, ZHANG Q, LIU M, et al. Regulation of plant responses to salt stress[J]. Int J Mol Sci, 2021, 22(9):4609.DOI: 10.3390/ijms22094609. |
[4] | DEINLEIN U, STEPHAN A B, HORIE T, et al. Plant salt-tolerance mechanisms[J]. Trends Plant Sci, 2014, 19(6):371-379.DOI: 10.1016/j.tplants.2014.02.001. |
[5] | FOYER C H, RASOOL B, DAVEY J W, et al. Cross-tolerance to biotic and abiotic stresses in plants:a focus on resistance to aphid infestation[J]. J Exp Bot, 2016, 67(7):2025-2037.DOI: 10.1093/jxb/erw079. |
[6] | MILLER G, SUZUKI N, CIFTCI-YILMAZ S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant Cell Environ, 2010, 33(4):453-467.DOI: 10.1111/j.1365-3040.2009.02041.x. |
[7] | MUNNS R, GILLIHAM M. Salinity tolerance of crops-what is the cost?[J]. New Phytol, 2015, 208(3):668-673.DOI: 10.1111/nph.13519. |
[8] | LEE R C, FEINBAUM R L, AMBROS V. The C.elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14[J]. Cell, 1993, 75(5):843-854.DOI: 10.1016/0092-8674(93)90529-y. |
[9] | REINHART B J, WEINSTEIN E G, RHOADES M W, et al. MicroRNAs in plants[J]. Genes Dev, 2002, 16(13):1616-1626.DOI: 10.1101/gad.1004402. |
[10] | AMBROS V, BARTEL B, BARTEL D P, et al. A uniform system for microRNA annotation[J]. RNA, 2003, 9(3):277-279.DOI: 10.1261/rna.2183803. |
[11] | AXTELL M J. Classification and comparison of small RNAs from plants[J]. Annu Rev Plant Biol, 2013, 64:137-159.DOI: 10.1146/annurev-arplant-050312-120043. |
[12] | BONNET E, WUYTS J, ROUZÉ P, et al. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes[J]. Proc Natl Acad Sci USA, 2004, 101(31):11511-11516.DOI: 10.1073/pnas.0404025101. |
[13] | WANG X J, REYES J L, CHUA N H, et al. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets[J]. Genome Biol, 2004, 5(9):R65.DOI: 10.1186/gb-2004-5-9-r65. |
[14] | LYTLE J R, YARIO T A, STEITZ J A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR[J]. Proc Natl Acad Sci USA, 2007, 104(23):9667-9672.DOI: 10.1073/pnas.0703820104. |
[15] | XIE Z X, ALLEN E, FAHLGREN N, et al. Expression of Arabidopsis MIRNA genes[J]. Plant Physiol, 2005, 138(4):2145-2154.DOI: 10.1104/pp.105.062943. |
[16] | MEGRAW M, BAEV V, RUSINOV V, et al. MicroRNA promoter element discovery in Arabidopsis[J]. RNA, 2006, 12(9):1612-1619.DOI: 10.1261/rna.130506. |
[17] | KIM Y J, ZHENG B L, YU Y, et al. The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana[J]. EMBO J, 2011, 30(5):814-822.DOI: 10.1038/emboj.2011.3. |
[18] | SONG X W, LI Y, CAO X F, et al. MicroRNAs and their regulatory roles in plant-environment interactions[J]. Annu Rev Plant Biol, 2019, 70:489-525.DOI: 10.1146/annurev-arplant-050718-100334. |
[19] | HAN M H, GOUD S, SONG L, et al. The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation[J]. Proc Natl Acad Sci USA, 2004, 101(4):1093-1098.DOI: 10.1073/pnas.0307969100. |
[20] | YANG L, LIU Z Q, LU F, et al. SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis[J]. Plant J, 2006, 47(6):841-850.DOI: 10.1111/j.1365-313X.2006.02835.x. |
[21] | LI J J, YANG Z Y, YU B, et al. Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis[J]. Curr Biol, 2005, 15(16):1501-1507.DOI: 10.1016/j.cub.2005.07.029. |
[22] | YANG Z Y, EBRIGHT Y W, YU B, et al. HEN1 recognizes 21-24 nt small RNA duplexes and deposits a methyl group onto the 2' OH of the 3' terminal nucleotide[J]. Nucleic Acids Res, 2006, 34(2):667-675.DOI: 10.1093/nar/gkj474. |
[23] | AXTELL M J, WESTHOLM J O, LAI E C. Vive la différence:biogenesis and evolution of microRNAs in plants and animals[J]. Genome Biol, 2011, 12(4):221.DOI: 10.1186/gb-2011-12-4-221. |
[24] | EAMENS A L, SMITH N A, CURTIN S J, et al. The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes[J]. RNA, 2009, 15(12):2219-2235.DOI: 10.1261/rna.1646909. |
[25] | TOMARI Y, MATRANGA C, HALEY B, et al. A protein sensor for siRNA asymmetry[J]. Science, 2004, 306(5700):1377-1380.DOI: 10.1126/science.1102755. |
[26] | XU L, HU Y G, CAO Y, et al. An expression atlas of miRNAs in Arabidopsis thaliana[J]. Sci China Life Sci, 2018, 61(2):178-189.DOI: 10.1007/s11427-017-9199-1. |
[27] | JONES-RHOADES M W, BARTEL D P, BARTEL B. MicroRNAS and their regulatory roles in plants[J]. Annu Rev Plant Biol, 2006, 57:19-53.DOI: 10.1146/annurev.arplant.57.032905.105218. |
[28] | SONG J J, SMITH S K, HANNON G J, et al. Crystal structure of Argonaute and its implications for RISC slicer activity[J]. Science, 2004, 305(5689):1434-1437.DOI: 10.1126/science.1102514. |
[29] | YUAN YR, PEI Y, MA J B, et al. Crystal structure of A. aeolicus argonaute,a site-specific DNA-guided endoribonuclease,provides insights into RISC-mediated mRNA cleavage[J]. Mol Cell, 2005, 19(3):405-419.DOI: 10.1016/j.molcel.2005.07.011. |
[30] | ADDO-QUAYE C, ESHOO T W, BARTEL D P, et al. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome[J]. Curr Biol, 2008, 18(10):758-762.DOI: 10.1016/j.cub.2008.04.042. |
[31] | GERMAN M A, PILLAY M, JEONG D H, et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends[J]. Nat Biotechnol, 2008, 26(8):941-946.DOI: 10.1038/nbt1417. |
[32] | AXTELL M J, JAN C, RAJAGOPALAN R, et al. A two-hit trigger for siRNA biogenesis in plants[J]. Cell, 2006, 127(3):565-577.DOI: 10.1016/j.cell.2006.09.032. |
[33] | FRANCO-ZORRILLA J M, VALLI A, TODESCO M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nat Genet, 2007, 39(8):1033-1037.DOI: 10.1038/ng2079. |
[34] | BRODERSEN P, SAKVARELIDZE-ACHARD L, BRUUN-RASMUSSEN M, et al. Widespread translational inhibition by plant miRNAs and siRNAs[J]. Science, 2008, 320(5880):1185-1190.DOI: 10.1126/science.1159151. |
[35] | SCHWAB R, PALATNIK J F, RIESTER M, et al. Specific effects of microRNAs on the plant transcriptome[J]. Dev Cell, 2005, 8(4):517-527.DOI: 10.1016/j.devcel.2005.01.018. |
[36] | HOU C Y, LEE W C, CHOU H C, et al. Global analysis of truncated RNA ends reveals new insights into ribosome stalling in plants[J]. Plant Cell, 2016, 28(10):2398-2416.DOI: 10.1105/tpc.16.00295. |
[37] | IWAKAWA HO, TOMARI Y. Molecular insights into microRNA-mediated translational repression in plants[J]. Mol Cell, 2013, 52(4):591-601.DOI: 10.1016/j.molcel.2013.10.033. |
[38] | BAO N, LYE K W, BARTON M K. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome[J]. Dev Cell, 2004, 7(5):653-662.DOI: 10.1016/j.devcel.2004.10.003. |
[39] | WU L, ZHOU H, ZHANG Q, et al. DNA methylation mediated by a microRNA pathway[J]. Mol Cell, 2010, 38(3):465-475.DOI: 10.1016/j.molcel.2010.03.008. |
[40] | VAN GOETHEM A, MESTDAGH P, VAN MAERKEN T, et al. MicroRNA expression analysis using small RNA sequencing discovery and RT-qPCR-based validation[J]. Methods Mol Biol, 2017, 1654:197-208.DOI: 10.1007/978-1-4939-7231-9_13. |
[41] | CHÁVEZ MONTES RA, JAIMES-MIRANDA F, DE FOLTER S. Bioinformatic analysis of small RNA sequencing libraries[J]. Methods Mol Biol, 2019, 1932:51-63.DOI: 10.1007/978-1-4939-9042-9_4. |
[42] | CHEN B B, DING Z Y, ZHOU X, et al. Integrated full-length transcriptome and microRNA sequencing approaches provide insights into salt tolerance in mangrove (Sonneratia apetala Buch.-Ham.)[J]. Front Genet, 2022, 13:932832.DOI: 10.3389/fgene.2022.932832. |
[43] | WU J X, ZHENG S S, FENG G Z, et al. Comparative analysis of miRNAs and their target transcripts between a spontaneous late-ripening sweet orange mutant and its wild-type using small RNA and degradome sequencing[J]. Front Plant Sci, 2016, 7:1416.DOI: 10.3389/fpls.2016.01416. |
[44] | 董淼, 黄越, 陈文铎, 等. 降解组测序技术在植物miRNA研究中的应用[J]. 植物学报, 2013, 48(3):344-353. |
DONG M, HUANG Y, CHEN W D, et al. Use of degradome sequencing in study of plant microRNAs[J]. Chin Bull Bot, 2013, 48(3):344-353.DOI: 10.3724/SP.J.1259.2013.00344. | |
[45] | BAKSA I, SZITTYA G. Identification of ARGONAUTE/small RNA cleavage sites by degradome sequencing[J]. Methods Mol Biol, 2017, 1640:113-128.DOI: 10.1007/978-1-4939-7165-7_7. |
[46] | FOLKES L, MOXON S, WOOLFENDEN H C, et al. PAREsnip:a tool for rapid genome-wide discovery of small RNA/target interactions evidenced through degradome sequencing[J]. Nucleic Acids Res, 2012, 40(13):e103.DOI: 10.1093/nar/gks277. |
[47] | ADDO-QUAYE C, MILLER W, AXTELL M J. CleaveLand:a pipeline for using degradome data to find cleaved small RNA targets[J]. Bioinformatics, 2009, 25(1):130-131.DOI: 10.1093/bioinformatics/btn604. |
[48] | KAKRANA A, HAMMOND R, PATEL P, et al. SPARTA:A parallelized pipeline for integrated analysis of plant miRNA and cleaved mRNA data sets,including new miRNA target-identification software[J]. Nucleic Acids Res, 2014, 42(18):e139.DOI: 10.1093/nar/gku693. |
[49] | ZHANG Y J, GONG H H, LI D H, et al. Integrated small RNA and Degradome sequencing provide insights into salt tolerance in sesame (Sesamum indicum L.)[J]. BMC Genomics, 2020, 21(1):494.DOI: 10.1186/s12864-020-06913-3. |
[50] | CANDAR C B, ARICAN E, ZHANG B H. Small RNA and degradome deep sequencing reveals drought-and tissue-specific micrornas and their important roles in drought-sensitive and drought-tolerant tomato genotypes[J]. Plant Biotechnol J, 2016, 14(8):1727-1746.DOI: 10.1111/pbi.12533. |
[51] | WANG M, WU H J, FANG J, et al. A long noncoding RNA involved in rice reproductive development by negatively regulating osa-miR160[J]. Sci Bull, 2017, 62(7):470-475.DOI: 10.1016/j.scib.2017.03.013. |
[52] | LI F F, WANG W D, ZHAO N, et al. Regulation of nicotine biosynthesis by an endogenous target mimicry of microRNA in tobacco[J]. Plant Physiol, 2015, 169(2):1062-1071.DOI: 10.1104/pp.15.00649. |
[53] | TODESCO M, RUBIO-SOMOZA I, PAZ-ARES J, et al. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana[J]. PLoS Genet, 2010, 6(7):e1001031.DOI: 10.1371/journal.pgen.1001031. |
[54] | YAN J, GU Y Y, JIA X Y, et al. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis[J]. Plant Cell, 2012, 24(2):415-427.DOI: 10.1105/tpc.111.094144. |
[55] | 郑文清, 张倩, 杜亮. 短串联靶标模拟技术及其在植物miRNA功能研究中的应用[J]. 生物技术通报, 2020, 36(12):256-264. |
ZHENG W Q, ZHANG Q, DU L. Short tandem target mimic and its application in analyzing plant miRNA functions[J]. Biotechnol Bull, 2020, 36(12):256-264.DOI: 10.13560/j.cnki.biotech.bull.1985.2020-0257. | |
[56] | SHARMA M, KUMAR P, VERMA V, et al. Understanding plant stress memory response for abiotic stress resilience:molecular insights and prospects[J]. Plant Physiol Biochem, 2022, 179:10-24.DOI: 10.1016/j.plaphy.2022.03.004. |
[57] | SUZUKI N, RIVERO R M, SHULAEV V, et al. Abiotic and biotic stress combinations[J]. New Phytol, 2014, 203(1):32-43.DOI: 10.1111/nph.12797. |
[58] | WANG Z R, BASKIN J M, BASKIN C C, et al. Great granny still ruling from the grave:phenotypical response of plant performance and seed functional traits to salt stress affects multiple generations of a halophyte[J]. J Ecol, 2022, 110(1):117-128.DOI: 10.1111/1365-2745.13789. |
[59] | LÄMKE J, BÄURLE I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants[J]. Genome Biol, 2017, 18(1):124.DOI: 10.1186/s13059-017-1263-6. |
[60] | ZHANG Y F, XIAO T, YI F, et al. SimiR396d targets SiGRF1 to regulate drought tolerance and root growth in foxtail millet[J]. Plant Sci, 2023, 326:111492.DOI: 10.1016/j.plantsci.2022.111492. |
[61] | WAN J, MENG S J, WANG Q Y, et al. Suppression of microRNA168 enhances salt tolerance in rice (Oryza sativa L.)[J]. BMC Plant Biol, 2022, 22(1):563.DOI: 10.1186/s12870-022-03959-1. |
[62] | ARSHAD M, FEYISSA B A, AMYOT L, et al. MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13[J]. Plant Sci, 2017, 258:122-136.DOI: 10.1016/j.plantsci.2017.01.018. |
[63] | LI M N, XU L, ZHANG L X, et al. Overexpression of Mtr-miR319a contributes to leaf curl and salt stress adaptation in Arabidopsis thaliana and Medicago truncatula[J]. Int J Mol Sci, 2022, 24(1):429.DOI: 10.3390/ijms24010429. |
[64] | ZHOU M, LI D Y, LI Z G, et al. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass[J]. Plant Physiol, 2013, 161(3):1375-1391.DOI: 10.1104/pp.112.208702. |
[65] | YUAN S R, ZHAO J M, LI Z G, et al. MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass[J]. Hortic Res, 2019, 6:48.DOI: 10.1038/s41438-019-0130-x. |
[66] | ZHANG J S, ZHANG H, SRIVASTAVA A K, et al. Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development[J]. Plant Physiol, 2018, 176(3):2082-2094.DOI: 10.1104/pp.17.01432. |
[67] | YANG J W, ZHANG N, BAI J P, et al. Stu-miR827-targeted StWRKY48 transcription factor negatively regulates drought tolerance of potato by increasing leaf stomatal density[J]. Int J Mol Sci, 2022, 23(23):14805.DOI: 10.3390/ijms232314805. |
[68] | ZHANG X H, ZOU Z, GONG P J, et al. Over-expression of microRNA169 confers enhanced drought tolerance to tomato[J]. Biotechnol Lett, 2011, 33(2):403-409.DOI: 10.1007/s10529-010-0436-0. |
[69] | JIANG Y Q, WU X, SHI M, et al. The miR159-MYB33-ABI5 module regulates seed germination in Arabidopsis[J]. Physiol Plant, 2022, 174(2):e13659.DOI: 10.1111/ppl.13659. |
[70] | 黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学:生命科学, 2019, 49(10):1227-1281. |
LI J, LI C Y. Seventy-year major research progress in plant hormones by Chinese scholars[J]. Sci Sin (Vitae), 2019, 49(10):1227-1281.DOI: 10.1360/SSV-2019-0197. | |
[71] | PAQUE S, WEIJERS D Q A. Auxin:the plant molecule that influences almost anything[J]. BMC Biol, 2016, 14(1):67.DOI: 10.1186/s12915-016-0291-0. |
[72] | SHEN X X, HE J Q, PING Y K, et al. The positive feedback regulatory loop of miR160-Auxin Response Factor 17-HYPONASTIC LEAVES 1 mediates drought tolerance in apple trees[J]. Plant Physiol, 2022, 188(3):1686-1708.DOI: 10.1093/plphys/kiab565. |
[73] | ZHANG X P, SHEN J, XU Q J, et al. Long noncoding RNA lncRNA354 functions as a competing endogenous RNA of miR160b to regulate ARF genes in response to salt stress in upland cotton[J]. Plant Cell Environ, 2021, 44(10):3302-3321.DOI: 10.1111/pce.14133. |
[74] | HE F, XU C Z, FU X K, et al. The MICRORNA390/TRANS-ACTING SHORT INTERFERING RNA3 module mediates lateral root growth under salt stress via the auxin pathway[J]. Plant Physiol, 2018, 177(2):775-791.DOI: 10.1104/pp.17.01559. |
[75] | ZHAO J M, YUAN S R, ZHOU M, et al. Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance[J]. Plant Biotechnol J, 2019, 17(1):233-251.DOI: 10.1111/pbi.12960. |
[76] | BAEK D, CHUN H J, KANG S, et al. A role for Arabidopsis miR399f in salt,drought,and ABA signaling[J]. Mol Cells, 2016, 39(2):111-118.DOI: 10.14348/molcells.2016.2188. |
[77] | NI Z Y, HU Z, JIANG Q Y, et al. GmNFYA3,a target gene of miR169,is a positive regulator of plant tolerance to drought stress[J]. Plant Mol Biol, 2013, 82(1/2):113-129.DOI: 10.1007/s11103-013-0040-5. |
[78] | SONG J B, GAO S, SUN D, et al. miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner[J]. BMC Plant Biol, 2013, 13:210.DOI: 10.1186/1471-2229-13-210. |
[79] | YAN J, ZHAO C Z, ZHOU J P, et al. The miR165/166 mediated regulatory module plays critical roles in ABA homeostasis and response in Arabidopsis thaliana[J]. PLoS Genet, 2016, 12(11):e1006416.DOI: 10.1371/journal.pgen.1006416. |
[80] | LIU Y, LI D, YAN J, et al. MiR319-mediated ethylene biosynthesis, signalling and salt stress response in switchgrass[J]. Plant Biotechnology Journal, 2019, 17(12):2370-2383. DOI: 10.1111/pbi.13154. |
[81] | XIA K F, OU X J, TANG H D, et al. Rice microRNA osa-miR1848 targets the obtusifoliol 14α-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress[J]. New Phytol, 2015, 208(3):790-802.DOI: 10.1111/nph.13513. |
[82] | GOMEZ J M, JIMENEZ A, OLMOS E, et al. Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv.Puget) chloroplasts[J]. J Exp Bot, 2004, 55(394):119-130.DOI: 10.1093/jxb/erh013. |
[83] | LEE D H, KIM Y S, LEE C B. The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.)[J]. J Plant Physiol, 2001, 158(6):737-745.DOI: 10.1078/0176-1617-00174. |
[84] | WANG W, LIU D, CHEN D D, et al. MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress[J]. RNA Biol, 2019, 16(3):362-375.DOI: 10.1080/15476286.2019.1574163. |
[85] | CHENG X L, HE Q, TANG S, et al. The miR172/IDS1 signaling module confers salt tolerance through maintaining ROS homeostasis in cereal crops[J]. New Phytol, 2021, 230(3):1017-1033.DOI: 10.1111/nph.17211. |
[86] | HE Y, ZHOU J X, HU Y F, et al. Overexpression of sly-miR398b increased salt sensitivity likely via regulating antioxidant system and photosynthesis in tomato[J]. Environ Exp Bot, 2021, 181:104273.DOI: 10.1016/j.envexpbot.2020.104273. |
[87] | XING L J, ZHU M, LUAN M D, et al. miR169q and NUCLEAR FACTOR YA8 enhance salt tolerance by activating PEROXIDASE1 expression in response to ROS[J]. Plant Physiol, 2022, 188(1):608-623.DOI: 10.1093/plphys/kiab498. |
[88] | WANG L, BAI X Y, QIAO Y, et al. Tae-miR9674a,a microRNA member of wheat,confers plant drought and salt tolerance through modulating the stomata movement and ROS homeostasis[J]. Plant Biotechnol Rep, 2023, 17(4):471-488.DOI: 10.1007/s11816-022-00787-5. |
[89] | PENG X, FENG C, WANG Y T, et al. miR164g-MsNAC022 acts as a novel module mediating drought response by transcriptional regulation of reactive oxygen species scavenging systems in apple[J]. Hortic Res, 2022, 9:uhac192.DOI: 10.1093/hr/uhac192. |
[90] | WANG Y T, FENG C, ZHAI Z F, et al. The apple microR171i-SCARECROW-LIKE PROTEINS26.1 module enhances drought stress tolerance by integrating ascorbic acid metabolism[J]. Plant Physiol, 2020, 184(1):194-211.DOI: 10.1104/pp.20.00476. |
[91] | NGUYEN D Q, BROWN C W, PEGLER J L, et al. Molecular manipulation of microRNA397 abundance influences the development and salt stress response of Arabidopsis thaliana[J]. Int J Mol Sci, 2020, 21(21):7879.DOI: 10.3390/ijms21217879. |
[92] | QIN R D, HU Y M, CHEN H, et al. MicroRNA408 negatively regulates salt tolerance by affecting secondary cell wall development in maize[J]. Plant Physiol, 2023, 192(2):1569-1583.DOI: 10.1093/plphys/kiad135. |
[93] | JEENA G S, JOSHI A, SHUKLA R K. Bm-miR172c-5p regulates lignin biosynthesis and secondary xylem thickness by altering the ferulate 5 hydroxylase gene in Bacopa monnieri[J]. Plant Cell Physiol, 2021, 62(5):894-912.DOI: 10.1093/pcp/pcab054. |
[94] | FAN S G, AMOMBO E, AVOGA S, et al. Salt-responsive bermudagrass microRNAs and insights into light reaction photosynthetic performance[J]. Front Plant Sci, 2023, 14:1141295.DOI: 10.3389/fpls.2023.1141295. |
[95] | UM T, CHOI J, PARK T, et al. Rice microRNA171f/SCL6 module enhances drought tolerance by regulation of flavonoid biosynthesis genes[J]. Plant Direct, 2022, 6(1):e374.DOI: 10.1002/pld3.374. |
[1] | 宗建伟, 李柽, 张静, 杨雨华. 接种丛枝菌根真菌对盐胁迫下文冠果生长及生理特性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 168-176. |
[2] | 马坛, 田野, 王书军, 李文昊, 段启英, 张庆源. 不同性别南方型黑杨无性系叶片对土壤短期间歇性干旱的生理响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 172-180. |
[3] | 杜晋城, 李欣欣, 王泽亮, 刘偲, 钟毅, 王丽华. 聚乙二醇胁迫下3个油橄榄品种生理指标响应[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 137-143. |
[4] | 母洪娜, 王炜, 樊蕾, 吴楚, 郭晓华, 孙陶泽. 印度梨形孢对干旱胁迫下桂花生长及抗旱性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 101-106. |
[5] | 芦治国, 华建峰, 殷云龙, 施钦. 盐胁迫下氮素形态对海滨木槿幼苗生长及生理特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 91-98. |
[6] | 张强, 周鹏, 刘昌来, 余永帆, 张敏, 杨甲定. NaCl处理下全缘冬青和红果冬青根系的转录组活性比较[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 99-108. |
[7] | 马仕林, 曹鹏翔, 张金池, 刘京, 王金平, 朱凌骏, 袁钟鸣. 盐胁迫下AMF对榉树幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 122-130. |
[8] | 佘建炜, 张康, 郑旭, 赵小军, 程方, 唐罗忠. 海水处理对沼泽小叶桦苗木生长和生理的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 102-108. |
[9] | 黎梦娟, 朱礼明, 霍俊男, 张景波, 施季森, 成铁龙. 唐古特白刺NtCBL1、NtCBL2基因克隆及表达分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 93-99. |
[10] | 洪震, 刘术新, 洪琮浩, 雷小华. 5种造林树种对干旱胁迫的抗性应答[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 111-119. |
[11] | 石欣隆, 杨月琴, 薛娴, 刘伟, 宋程威, 郭丽丽, 侯小改. 壳寡糖对干旱胁迫下‘凤丹’幼苗生长及生理特性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 120-126. |
[12] | 崔令军, 刘瑜霞, 林健, 石开明. 丛枝菌根真菌对盐胁迫下桢楠光合生理的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 101-106. |
[13] | 叶查龙, 颜斌, 申婷婷, 宁坤, 李慧玉. 转BpmiR156基因白桦株系的耐盐性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 147-151. |
[14] | 鲁强, 杨玲, 王昊伟, 袁佳秋, 洑香香, 方彦. 秀丽四照花光合特性和叶绿体超微结构的盐胁迫响应[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 29-36. |
[15] | 崔令军, 刘瑜霞, 林健, 石开明. 盐胁迫下丛枝菌根真菌对桢楠根系生长和激素的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 119-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||