[1] |
SOMERVILLE C, YOUNGS H, TAYLOR C, et al. Feedstocks for lignocellulosic biofuels[J]. Science, 2010, 329(5993):790-792.DOI: 10.1126/science.1189268.
|
[2] |
陈莉莎. 我国剑麻种质资源纤维强力性能研究[J]. 中国麻业科学, 2023, 45(1):33-40,48.
|
|
CHEN L S. Research of fiber strength of sisal germplasm resources in China[J]. Plant Fiber Sci China, 2023, 45(1):33-40,48.DOI: 10.3969/j.issn.1671-3532.2023.01.005.
|
[3] |
FIGUEREDO-URBINA C J, ÁLVAREZ-RÍOS G D, GARCÍA-MONTES M A, et al. Morphological and genetic diversity of traditional varieties of agave in Hidalgo State,Mexico[J]. PLoS One, 2021, 16(7):e0254376.DOI: 10.1371/journal.pone.0254376.
|
[4] |
BARRETO S M A G, CADAVID C O M, MOURA R A O, et al. In vitro and in vivo antioxidant activity of Agave sisalana agro-industrial residue[J]. Biomolecules, 2020, 10(10):1435.DOI: 10.3390/biom10101435.
|
[5] |
MARONE M P, CAMPANARI M F Z, RAYA F T, et al. Fungal communities represent the majority of root-specific transcripts in the transcriptomes of Agave plants grown in semiarid regions[J]. Peer J, 2022, 10:e13252.DOI: 10.7717/peerj.13252.
|
[6] |
HUANG X, XIAO M, XI J G, et al. De novo transcriptome assembly of Agave H11648 by illumina sequencing and identification of cellulose synthase genes in Agave species[J]. Genes, 2019, 10(2):103.DOI: 10.3390/genes10020103.
|
[7] |
WINTER K, HOLTUM J A M. Crassulacean acid metabolism:a continuous or discrete trait?[J]. New Phytol, 2015, 208(1):73-78.DOI: 10.1111/nph.13446.
|
[8] |
LIU D G, HU R B, ZHANG J, et al. Overexpression of an Agave phospho enol pyruvate carboxylase improves plant growth and stress tolerance[J]. Cells, 2021, 10(3):582.DOI: 10.3390/cells10030582.
|
[9] |
李俊璋, 秦源, 肖强, 等. 景天酸代谢植物分子生物学研究进展及应用潜力[J]. 园艺学报, 2022, 49(12):2597-2610.
|
|
LI J Z, QIN Y, XIAO Q, et al. Recent advances in molecular biology of crassulacean acid metabolism plants and the application potential of CAM engineering[J]. Acta Hortic Sin, 2022, 49(12):2597-2610.DOI: 10.16420/j.issn.0513-353x.2021-0835.
|
[10] |
WANG C L, DENG Y Z, LIU Z S, et al. Hydrogen sulfide in plants:crosstalk with other signal molecules in response to abiotic stresses[J]. Int J Mol Sci, 2021, 22(21):12068.DOI: 10.3390/ijms222112068.
|
[11] |
GAO S H, WANG Y F, ZENG Z, et al. Integrated bioinformatic and physiological analyses reveal the pivotal role of hydrogen sulfide in enhancing low-temperature tolerance in alfalfa[J]. Physiol Plant, 2023, 175(2):e13885.DOI: 10.1111/ppl.13885.
|
[12] |
GARCÍA-CALDERÓN M, VIGNANE T, FILIPOVIC M R, et al. Persulfidation protects from oxidative stress under nonphotorespi-ratory conditions in Arabidopsis[J]. New Phytol, 2023, 238(4):1431-1445.DOI: 10.1111/nph.18838.
|
[13] |
RAZA A, TABASSUM J, MUBARIK M S, et al. Hydrogen sulfide:an emerging component against abiotic stress in plants[J]. Plant Biol, 2022, 24(4):540-558.DOI: 10.1111/plb.13368.
|
[14] |
牟雪姣, 张远兵, 吴燕, 等. 外源H2S缓解黄瓜种子萌发过程中干旱胁迫伤害的生理机制[J]. 西北农业学报, 2018, 27(9):1328-1334.
|
|
MU X J, ZHANG Y B, WU Y, et al. Physiological mechanism of exogenous H2S in alleviating drought stress-induced injury in germination of cucumber seed[J]. Acta Agric Boreali Occidentalis Sin, 2018, 27(9):1328-1334.DOI: 10.7606/j.issn.1004-1389.2018.09.013.
|
[15] |
WU X L, DU A Q, ZHANG S H, et al. Regulation of growth in peach roots by exogenous hydrogen sulfide based on RNA-Seq[J]. Plant Physiol Biochem, 2021, 159:179-192.DOI: 10.1016/j.plaphy.2020.12.018.
|
[16] |
LI H, GHOTO K, WEI M Y, et al. Unraveling hydrogen sulfide-promoted lateral root development and growth in mangrove plant Kandelia obovata:insight into regulatory mechanism by TMT-based quantitative proteomic approaches[J]. Tree Physiol, 2021, 41(9):1749-1766.DOI: 10.1093/treephys/tpab025.
|
[17] |
CHEN P, YANG W X, WEN M X, et al. Hydrogen sulfide alleviates salinity stress in Cyclocarya paliurus by maintaining chlorophyll fluorescence and regulating nitric oxide level and antioxidant capacity[J]. Plant Physiol Biochem, 2021, 167:738-747.DOI: 10.1016/j.plaphy.2021.09.004.
|
[18] |
孙晓莉, 张鑫荣, 田寿乐, 等. 外源硫化氢处理对板栗幼苗干旱胁迫抗性的影响[J]. 北方园艺, 2017(15):7-12.
|
|
SUN X L, ZHANG X R, TIAN S L, et al. Effect of exogenous hydrogen sulfide on resistance of drought stress of chestnut seedlings[J]. North Hortic, 2017(15):7-12.DOI: 10.11937/bfyy.20165060.
|
[19] |
李冬, 申洪涛, 王艳芳, 等. 干旱胁迫下外源硫化氢对烤烟幼苗光合荧光参数及抗氧化系统的影响[J]. 西北植物学报, 2019, 39(9):1609-1617.
|
|
LI D, SHEN H T, WANG Y F, et al. Effect of exogenous hydrogen sulfide on photosynthetic fluorescence para-meters and antioxidant system of flue-cured tobacco seedlings under drought stress[J]. Acta Bot Boreali Occidentalia Sin, 2019, 39(9):1609-1617.DOI: 10.7606/j.issn.1000-4025.2019.09.1609.
|
[20] |
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
|
|
LI H S. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000.
|
[21] |
陈建勋, 王晓峰. 植物生理学实验指导[M]. 2版. 广州: 华南理工大学出版社, 2006.
|
|
CHEN J X, WANG X F. Experimental instruction of plant physiology[M]. 2nd ed. Guangzhou: South China University of Technology Press, 2006.
|
[22] |
CHEN Y, YUAN B L, WEI Z H, et al. The ion homeostasis and ROS scavenging responses in ‘NL895’ poplar plantlet organs under in vitro salinity stress[J]. In Vitro Cell Dev Biol-Plant, 2018, 54(3):318-331.DOI: 10.1007/s11627-018-9896-z.
|
[23] |
魏子涵, 袁斌玲, 陈茜, 等. 聚乙二醇处理对‘717’杂交杨组培苗的影响[J]. 森林与环境学报, 2017, 37(4): 412-417.
|
|
WEI Z H, YUAN B L CHEN X, et al. Effect of polyethylene glycol treatment on hybrid poplar ( Populus tremula × P. alba ‘717-1B4’) in vitro culture[J]. Journal of Forest and Environment, 2017, 37(4): 412-417. DOI: 10.13324/j.cnki.jfcf.2017.04.005.
|
[24] |
王荔, 张雪, 赵晓珍, 等. 火龙果对干旱胁迫的适应性研究[J]. 热带作物学报, 2020, 41(11):2237-2244.
|
|
WANG L, ZHANG X, ZHAO X Z, et al. Drought adaptability of Hylocereus undatus[J]. Chin J Trop Crops, 2020, 41(11):2237-2244.DOI: 10.3969/j.issn.1000-2561.2020.11.013.
|
[25] |
申艳梅. 景天科植物耐旱性及其机理的研究[D]. 呼和浩特: 内蒙古农业大学, 2010.
|
|
SHEN Y M. Studies on drought resistance and the physiological mechanism in species Sedum L.[D]. Hohhot: Inner Mongolia Agricultural University, 2010.
|
[26] |
黎远东, 江海霞, 谢丽琼. 植物盐胁迫适应性机制研究进展[J]. 植物遗传资源学报, 2022, 23(6):1585-1593.
|
|
LI Y D, JIANG H X, XIE L Q. Review of plant adaptation mechanism to salt stress[J]. J Plant Genet Resour, 2022, 23(6):1585-1593.DOI: 10.13430/j.cnki.jpgr.20220518003.
|
[27] |
茶晓飞, 董琼, 段华超, 等. 干旱下白枪杆幼苗生物量及生理活性物质对钙添加的适应性调节[J]. 西北林学院学报, 2023, 38(3):10-17.
|
|
CHA X F, DONG Q, DUAN H C, et al. Adaptive re-gulation of biomass and physiologically active substances in response to calcium addition in Fraxinus malacophylla seedlings under drought[J]. J Northwest For Univ, 2023, 38(3):10-17.DOI: 10.3969/j.issn.1001-7461.2023.03.02.
|
[28] |
李林宇, 马靖恒, 张璐瑶, 等. 6-BA预处理对干旱胁迫下越橘生理特性的影响[J]. 分子植物育种, 2023(20):1-11.
|
|
LI L Y, MA J H, ZHANG L Y, et al. Effects of 6-BA pretreatment on physiological characteristics of blueberry under drought stress[J]. Mol Plant Breed, 2023(20):1-11.
|
[29] |
刘建新, 刘瑞瑞, 刘秀丽, 等. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3):374-388.
|
|
LIU J X, LIU R R, LIU X L, et al. Regulation of exogenous hydrogen sulfide on photosynthetic carbon metabolism in Avena nude under saline-alkaline stress[J]. Chin J Plant Ecol, 2023, 47(3):374-388.
|
[30] |
张林, 陈翔, 吴宇, 等. 脯氨酸在植物抗逆中的研究进展[J]. 江汉大学学报(自然科学版), 2023, 51(1):42-51.
|
|
ZHANG L, CHEN X, WU Y, et al. Research progress of proline in plant stress resistance[J]. J Jianghan Univ (Nat Sci Ed), 2023, 51(1):42-51.DOI: 10.16389/j.cnki.cn42-1737/n.2023.01.006.
|
[31] |
CHEN J, SHANG Y T, WANG W H, et al. Hydrogen sulfide-me-diated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings[J]. Front Plant Sci, 2016, 7:1173.DOI: 10.3389/fpls.2016.01173.
|
[32] |
YALCINKAYA T, UZILDAY B, OZGUR R, et al. The roles of reactive carbonyl species in induction of antioxidant defence and ROS signalling in extreme halophytic model Eutrema parvulum and glycophytic model Arabidopsis thaliana[J]. Environ Exp Bot, 2019, 160:81-91.DOI: 10.1016/j.envexpbot.2019.01.009.
|
[33] |
FENG K, LU J L, CHEN Y, et al. The coordinated alterations in antioxidative enzymes,PeCu/ZnSOD and PeAPX2 expression facilitated in vitro Populus euphratica resistance to salinity stress[J]. Plant Cell Tiss Organ Cult, 2022, 150(2):399-416.DOI: 10.1007/s11240-022-02292-7.
|
[34] |
PANDA A, RANGANI J, PARIDA A K. Cross talk between ROS homeostasis and antioxidative machinery contributes to salt tole-rance of the xero-halophyte Haloxylon salicornicum[J]. Environ Exp Bot, 2019, 166:1-19. https://doi.org/10.1016/j.envex pbot.2019.103799.
|
[35] |
MUKHERJEE S, CORPAS F J. Crosstalk among hydrogen sulfide (H2S),nitric oxide (NO) and carbon monoxide (CO) in root-system development and its rhizosphere interactions:a gaseous interactome[J]. Plant Physiol Biochem, 2020, 155:800-814.DOI: 10.1016/j.plaphy.2020.08.020.
|
[36] |
ZHOU X R, JOSHI S, PATIL S, et al. Reactive oxygen,nitrogen,carbonyl and sulfur species and their roles in plant abiotic stress responses and tolerance[J]. J Plant Growth Regul, 2022, 41(1):119-142.DOI: 10.1007/s00344-020-10294-y.
|