杂交新美柳苗对盐涝胁迫的生长和生理响应

任佳辉, 高捍东, 陈哲楠, 李浩, 刘强, 陈澎军

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (2) : 57-66.

PDF(2237 KB)
PDF(2237 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (2) : 57-66. DOI: 10.12302/j.issn.1000-2006.202305034
研究论文

杂交新美柳苗对盐涝胁迫的生长和生理响应

作者信息 +

Growth and physiological response of Salix matsudana × alba to salt-flooding stress

Author information +
文章历史 +

摘要

【目的】探究盐涝交互作用对杂交新美柳(Salix matsudana × alba)生长及生理的影响,揭示盐涝胁迫下杂交新美柳的抗逆生理变化规律。【方法】选取1年生杂交新美柳扦插苗为研究对象,设置正常水分与淹水两个水分条件,4种质量分数NaCl(分别为0、0.2%、0.4%、0.6%)胁迫处理,以无盐正常水分为对照,分别于胁迫后3、10、17、24、41和60 d取样,测定胁迫过程中的苗高、地径、生物量、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性、丙二醛(MDA)含量、可溶性糖(SS)含量、可溶性蛋白(SP)含量、脯氨酸(Pro)含量、根系活力、叶绿素含量等指标,分析盐涝交互对杂交新美柳生长和生理的影响。【结果】低盐涝胁迫促进苗木高生长,高浓度盐涝胁迫抑制苗木高生长。盐涝交互下杂交新美柳相对电导率与MDA含量呈上升趋势,抗氧化酶活性比单一胁迫时更高,SOD酶活性比POD酶活性更快响应。与单盐胁迫相比,盐涝胁迫24 d时SS含量显著下降,17 d时SP含量显著升高,Pro含量呈先升后降再升的趋势;根系活力都大于单盐胁迫,叶绿素含量呈下降趋势并显著低于单盐胁迫。正常水分条件下杂交新美柳对盐分的耐受阈值为0.65%(111.22 mmol/L),淹水条件下对盐分的耐受阈值为0.42%(71.87 mmol/L),具有较强的耐受性。【结论】盐涝胁迫下,渗透调节系统、保护酶系统对盐涝胁迫响应程度较高,这是影响杂交新美柳幼苗对盐涝胁迫适应能力的重要因素,生物量、MDA含量、根系活力等指标可作为杂交新美柳幼苗水盐耐性评价指标。

Abstract

【Objective】 This study aimed to examine the effects of salt and flooding interactions on the growth and physiological responses of Salix hybrid, focusing on the physiological mechanisms underlying its tolerance to salt-flooding stress. 【Method】One-year-old Salix hybrid cuttings were subjected to two water conditions—normal watering and flooding—and four salinity levels (0%, 0.2%, 0.4%, and 0.6% mass fraction of NaCl), with normal water without salt serving as the control. Samples were collected at six time points (3, 10, 17, 24, 41, and 60 days post-treatment) to measure seedling height, root collar diameter, biomass, and physiological indicators, including superoxide dismutase (SOD), peroxidase (POD) activities, malondialdehyde (MDA), soluble sugar (SS), soluble protein (SP), proline (Pro) content, root vigor, and chlorophyll content. These parameters were analyzed to evaluate the effect of salt-flooding interactions on the growth and physiology of the Salix hybrid. 【Result】Low salinity under flooding conditions promoted seedling elongation, whereas high salinity under flooding inhibited growth. Relative electrical conductivity and MDA levels exhibited a continuous increase under combined salt and flooding stress. Antioxidant enzyme activity was more pronounced under the combined stress than under individual stress conditions, with SOD activity responding more rapidly than POD activity. Compared to salt stress alone, SS content significantly decreased on 24 days, SP content increased significantly on 17 days, and Pro content showed an initial increase, followed by a decline and subsequent recovery. Root vigor was higher under salt-flooding stress than that under salt stress alone, while chlorophyll content decreased significantly and remained lower than that under single salt stress.【Conclusion】The Salix hybrid demonstrated a robust osmoregulatory and protective enzyme system in response to salt-flooding stress, which played a critical role in its adaptive capacity. Biomass, MDA levels, and root vigor were identified as key indicators for assessing water and salt tolerance. The salinity tolerance threshold was determined to be 0.65% (111.22 mmol/L) under normal water conditions and 0.42% (71.87 mmol/L) under flooded conditions, indicating the Salix hybrid’s strong salinity tolerance. This study provides theoretical and practical insights into the physiological mechanisms of the Salix hybrid under salt-flooding stress, offering valuable guidance for its cultivation in saline and waterlogged environments.

关键词

杂交新美柳 / 盐涝胁迫 / 耐受阈值 / 生长和生理响应

Key words

Salix matsudana × alba / salt and flooded stress / tolerance thresholds / growth and physiological response

引用本文

导出引用
任佳辉, 高捍东, 陈哲楠, . 杂交新美柳苗对盐涝胁迫的生长和生理响应[J]. 南京林业大学学报(自然科学版). 2025, 49(2): 57-66 https://doi.org/10.12302/j.issn.1000-2006.202305034
REN Jiahui, GAO Handong, CHEN Zhenan, et al. Growth and physiological response of Salix matsudana × alba to salt-flooding stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(2): 57-66 https://doi.org/10.12302/j.issn.1000-2006.202305034
中图分类号: S718   

参考文献

[1]
龚蔚霞, 张虹鸥, 钟肖健. 海陆交互作用生态系统下的滨海开发模式研究[J]. 城市发展研究, 2015, 22(1):79-85.
GONG W X, ZHANG H O, ZHONG X J. Research on the development mode of coastal area basing on ecosystem of sea-land interaction[J]. Urban Dev Stud, 2015, 22(1):79-85.DOI: 10.3969/j.issn.1006-3862.2015.01.013.
[2]
李晶, 雷茵茹, 崔丽娟, 等. 我国滨海滩涂湿地现状及研究进展[J]. 林业资源管理, 2018(2):24-28,137.
LI J, LEI Y R, CUI L J, et al. Current status and research progress of coastal tidal flat wetlands in China[J]. For Resour Manag, 2018(2):24-28,137.DOI: 10.13466/j.cnki.lyzygl.2018.02.005.
[3]
吴薇. 杂交新美柳的盐胁迫响应及外源NO处理的调节作用[D]. 南京: 南京林业大学, 2008.
WU W. Response to salt stress and regulation effect of exogenous NO treatment on hybrid Xinmeiliu[D]. Nanjing: Nanjing Forestry University, 2008.
[4]
张燕飞. 杂交新美柳扦插苗NaCl胁迫及组织培养研究[D]. 南京: 南京林业大学, 2007.
ZHANG Y F. Study on NaCl stress and tissue culture of cutting seedlings of hybrid new willow[D]. Nanjing: Nanjing Forestry University, 2007.
[5]
方芳, 洪晓玲, 刘玲玲, 等. 指数施肥对杂交新美柳幼苗生长及生物量积累的影响[J]. 四川林业科技, 2023, 44(1):47-51.
FANG F, HONG X L, LIU L L, et al. Effects of exponential fertilization on growth and biomass accumulation of hybrid Salix matsudana × alba seedlings[J]. J Sichuan For Sci Technol, 2023, 44(1):47-51.DOI: 10.12172/202203110001.
[6]
蔡伟建, 高捍东, 崔春梅. 杂交新美柳幼苗年生长节律研究[J]. 江苏林业科技, 2009, 36(2):1-4,14.
CAI W J, GAO H D, CUI C M. Studies on annual growth rhythm of Salix matsudana × alba seedlings[J]. J Jiangsu For Sci Technol, 2009, 36(2):1-4,14.DOI: 10.3969/j.issn.1001-7380.2009.02.001.
[7]
蔡伟建, 高捍东, 白士杰. 杂交新美柳幼苗光合特性[J]. 浙江林学院学报, 2010, 27(3):340-346.
CAI W J, GAO H D, BAI S J. Photosynthetic characteristics of Salix matsudana × alba seedlings[J]. J Zhejiang For Coll, 2010, 27(3):340-346.DOI: 10.3969/j.issn.2095-0756.2010.03.004.
[8]
吴薇, 高捍东, 魏树强. 水培盐碱胁迫对杂交新美柳生根特性的影响[J]. 林业科技开发, 2008, 22(3):32-34.
WU W, GAO H D, WEI S Q. Effects of salt-alkali stress on rooting properties of Salix hybrid by the method of solution culture[J]. China For Sci Technol, 2008, 22(3):32-34.
[9]
胡涛, 张鸽香, 郑福超, 等. 植物盐胁迫响应的研究进展[J]. 分子植物育种, 2018, 16(9):3006-3015.
HU T, ZHANG G X, ZHENG F C, et al. Research progress in plant salt stress response[J]. Mol Plant Breed, 2018, 16(9):3006-3015.DOI: 10.13271/j.mpb.016.003006.
[10]
张阳, 李瑞莲, 张德胜, 等. 涝渍对植物影响研究进展[J]. 作物研究, 2011, 25(4):420-424.
ZHANG Y, LI R L, ZHANG D S, et al. Research progress on the influence of waterlogging on plants[J]. Crop Res, 2011, 25(4):420-424.DOI: 10.3969/j.issn.1001-5280.2011.04.30.
[11]
JIA W T, MA M H, CHEN J L, et al. Plant morphological,physiological and anatomical adaption to flooding stress and the underlying molecular mechanisms[J]. Int J Mol Sci, 2021, 22(3):1088.DOI: 10.3390/ijms22031088.
[12]
李合生. 现代植物生理学[M]. 3版. 北京: 高等教育出版社, 2012.
LI H S. Modern plant physiology[M]. 3rd ed. Beijing: Higher Education Press, 2012.
[13]
XU Z, ZHOU J, REN T, et al. Salt stress decreases seedling growth and development but increases quercetin and kaempferol content in Apocynum venetum[J]. Plant Biol, 2020, 22(5):813-821.DOI: 10.1111/plb.13128.
[14]
LI H, WANG H, WEN W J, et al. The antioxidant system in Suaeda salsa under salt stress[J]. Plant Signal Behav, 2020, 15(7):1771939.DOI: 10.1080/15592324.2020.1771939.
[15]
WANG S W, XU F F, GUO L J, et al. Different responses of the halophyte Carex pumila to salt stress[J]. Biologia Plant, 2020, 64:519-528.DOI: 10.32615/bp.2020.075.
[16]
吴欣明, 王运琦, 刘建宁, 等. 羊茅属植物耐盐性评价及其对盐胁迫的生理反应[J]. 草业学报, 2007, 16(6):67-73.
WU X M, WANG Y Q, LIU J N, et al. The research of physiological response and evaluation salt tolerance at seeding stage Festuca[J]. Acta Prataculturae Sin, 2007, 16(6):67-73.DOI: 10.3321/j.issn:1004-5759.2007.06.010.
[17]
潘澜, 薛立. 植物淹水胁迫的生理学机制研究进展[J]. 生态学杂志, 2012, 31(10):2662-2672.
PAN L, XUE L. Plant physiological mechanisms in adapting to waterlogging stress:a review[J]. Chin J Ecol, 2012, 31(10):2662-2672.DOI: 10.13292/j.1000-4890.2012.0393.
[18]
吴麟, 张伟伟, 葛晓敏, 等. 植物对淹水胁迫的响应机制研究进展[J]. 世界林业研究, 2012, 25(6):27-33.
WU L, ZHANG W W, GE X M, et al. A review of the response mechanisms of plants to waterlogging stress[J]. World For Res, 2012, 25(6):27-33.DOI: 10.13348/j.cnki.sjlyyj.2012.06.009.
[19]
王荣, 胡海清, 支博. 火烧处理对幼树叶片质膜透性和保护酶活性的影响[J]. 西北林学院学报, 2016, 31(4):176-181.
WANG R, HU H Q, ZHI B. Effects of burning on the cell membrane permeability and protective enzyme activity of the saplings of three tree species[J]. J Northwest For Univ, 2016, 31(4):176-181.DOI: 10.3969/j.issn.1001-7461.2016.04.30.
[20]
伍江波, 金晓玲, 汪晓丽, 等. 盐胁迫对杜仲幼苗生理特性的影响[J]. 广东农业科学, 2015, 42(2):17-21.
WU J B, JIN X L, WANG X L, et al. Effects of salt stress on physiological characteristics of Eucommia ulmoides seedlings[J]. Guangdong Agric Sci, 2015, 42(2):17-21.DOI: 10.16768/j.issn.1004-874x.2015.02.014.
[21]
朱蕊. 盐碱胁迫对柳枝稷(Panicum virgatum L.)的生长生理影响研究[D]. 北京: 北京林业大学, 2021.
ZHU R. Effects of saline-alkali stress on growth physiology of switchgrass (Panicum virgatum L.)[D]. Beijing: Beijing Forestry University, 2021.
[22]
IMAHORI Y, TAKEMURA M, BAI J H. Chilling-induced oxidative stress and antioxidant responses in mume (Prunus mume) fruit during low temperature storage[J]. Postharvest Biol Technol, 2008, 49(1):54-60.DOI: 10.1016/j.postharvbio.2007.10.017.
[23]
朱金方, 刘京涛, 陆兆华, 等. 盐胁迫对中国柽柳幼苗生理特性的影响[J]. 生态学报, 2015, 35(15):5140-5146.
ZHU J F, LIU J T, LU Z H, et al. Effects of salt stress on physiological characteristics of Tamarix chinensis Lour.seedlings[J]. Acta Ecol Sin, 2015, 35(15):5140-5146.DOI: 10.5846/stxb201312182981.
[24]
韩阳, 邱漫莉, 孟靖, 等. 碱胁迫对紫花苜蓿抗氧化酶的影响[J]. 辽宁大学学报(自然科学版), 2020, 47(3):193-199,188.
HAN Y, QIU M L, MENG J, et al. Effect of alkali stress on antioxidant enzymes of alfalfa[J]. J Liaoning Univ (Nat Sci Ed), 2020, 47(3):193-199,188.DOI: 10.16197/j.cnki.lnunse.2020.03.001.
[25]
PERRI S, ENTEKHABI D, MOLINI A. Plant osmoregulation as an emergent water-saving adaptation[J]. Water Resour Res, 2018, 54(4):2781-2798.DOI: 10.1002/2017WR022319.
[26]
刘介坤, 史锋厚, 管军, 等. NaCl胁迫对小叶栎生长和生理特性的影响[J]. 中南林业科技大学学报, 2023, 43(2):46-56.
LIU J K, SHI F H, GUAN J, et al. Effects of NaCl stress on the growth and physiological characteristics of Quercus chenii Nakai[J]. J Cent South Univ For Technol, 2023, 43(2):46-56.DOI: 10.14067/j.cnki.1673-923x.2023.02.006.
[27]
陈泽平, 史晓敏, 王瑞, 等. 盐胁迫下不同葡萄砧木的渗透调节及抗氧化能力[J]. 西北植物学报, 2022, 42(11):1880-1891.
CHEN Z P, SHI X M, WANG R, et al. Osmotic regulation and antioxidant capacity of different grapevine rootstocks under salt stress[J]. Acta Bot Boreali Occidentalia Sin, 2022, 42(11):1880-1891.

基金

2021年江苏省自然资源发展专项资金资助项目(JSZRHYKJ202108)

编辑: 郑琰燚
PDF(2237 KB)

Accesses

Citation

Detail

段落导航
相关文章

/