南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (3): 245-256.doi: 10.12302/j.issn.1000-2006.202306002
周昀菲1,2(), 杜庆鑫1,3, 王志勇1,3, 王璐1,3, 王雁1,3, 刘攀峰1,3, 孙志强1,3,*()
收稿日期:
2023-06-03
修回日期:
2023-08-10
出版日期:
2024-05-30
发布日期:
2024-06-14
通讯作者:
*孙志强(zq_sun@paulownia.ac.cn),研究员。
作者简介:
周昀菲(1255623163@qq.com)。
基金资助:
ZHOU Yunfei1,2(), DU Qingxin1,3, WANG Zhiyong1,3, WANG Lu1,3, WANG Yan1,3, LIU Panfeng1,3, SUN Zhiqiang1,3,*()
Received:
2023-06-03
Revised:
2023-08-10
Online:
2024-05-30
Published:
2024-06-14
摘要:
【目的】 通过分析蒸汽爆破(汽爆)后杜仲成熟叶片活性成分、抗氧化活性和香气组分变化,探究汽爆辅助制备杜仲叶茶的可行性。【方法】 对比两个杜仲品种‘华仲8号’和‘华仲12号’成熟叶片的揉捻和不揉捻处理,采用2因素3水平完全试验设计,以叶片总黄酮、多酚和多糖含量确定最佳汽爆参数;采用紫外分光法和高效液相色谱法(HPLC)测定叶片活性成分,测定DPPH(1,1-二苯基-2-三硝基苯肼)和ABTS[2,2-联氮-双-(3-乙基-苯并噻唑-6-磺酸)二铵盐]自由基清除率并分析叶片抗氧化活性与活性成分间的相关性;采用顶空固相微萃取/气相色谱-质谱联用法(HS-SPME/GC-MS)测定三硝基苯香气组分。【结果】 依据总黄酮等含量确定最佳汽爆参数为:蒸汽压强0.45 MPa,稳压时间300 s。该条件下‘华仲8号’不揉捻和‘华仲12号’揉捻叶片处理总黄酮和多酚含量较对照分别提高10.87和21.51倍,多酚含量较对照分别提高1.14和0.87倍,环烯醚萜类等6种活性成分含量均极显著提高(P<0.01)。其中‘华仲8号’不揉捻和‘华仲12号’揉捻处理叶片的京尼平苷酸较对照分别提高了0.88和1.23倍,绿原酸较对照分别提高0.45和0.31倍,没食子酸甲酯较对照分别提高10.41和8.06倍。汽爆后杜仲叶抗氧化活性均极显著提高,‘华仲8号’不揉捻强于‘华仲12号’揉捻处理;IC50值与京尼平苷酸、车叶草苷、绿原酸等含量均呈显著负相关(P<0.05)。叶片挥发性化合物中产生了苯甲醇和β-环柠檬醛等芳香物质,具有花香气味的酮类占比最高,相对含量提高了1.93~3.38倍。【结论】 蒸汽爆破处理显著提高了杜仲成熟叶水提液的活性成分水溶率和抗氧化活性,其芳香类物质种类增加且含量提高。鉴于目前国内绿叶杜仲资源量远高于红叶杜仲,本研究所提出的杜仲成熟叶片萎凋后直接蒸汽爆破简化了制茶工艺步骤,有效降低了绿叶杜仲茶生产成本,为规模化的杜仲叶加工利用提供了新思路。
中图分类号:
周昀菲,杜庆鑫,王志勇,等. 蒸汽爆破对杜仲叶水提液活性成分、抗氧化活性及香气组分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 245-256.
ZHOU Yunfei, DU Qingxin, WANG Zhiyong, WANG Lu, WANG Yan, LIU Panfeng, SUN Zhiqiang. Steam explosion impact on the active ingredients, antioxidant activity and aroma components of the aqueous extract from Eucommia ulmoides leaves[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(3): 245-256.DOI: 10.12302/j.issn.1000-2006.202306002.
表2
蒸汽压强和稳压时间对总黄酮、多酚和多糖含量影响的双因素方差分析"
处理 treatment | 活性物质 active ingredient | 蒸汽压强 steam pressure | 稳压时间 pressure time | 蒸汽压强× 稳压时间 steam pressure× pressure time | 处理 treatment | 活性物质 active ingredient | 蒸汽压强 steam pressure | 稳压时间 pressure time | 蒸汽压强× 稳压时间 steam pressure× pressure time |
---|---|---|---|---|---|---|---|---|---|
A1 | 总黄酮 | 64.750** | 1 140.453** | 999.036** | B1 | 多酚 | 3 588.134** | 476.184** | 1 073.366** |
A2 | 总黄酮 | 2 222.454** | 466.554** | 677.750** | B2 | 多酚 | 21 089.124** | 1 693.573** | 4 994.324** |
B1 | 总黄酮 | 89 425.000** | 117 6011.054** | 1 058 505.108** | A1 | 多糖 | 3 276.301** | 89 262.470** | 23 672.693** |
B2 | 总黄酮 | 362 434.719** | 470 119.172** | 100 781.399** | A2 | 多糖 | 301 349.540** | 72 440.380** | 345 765.439** |
A1 | 多酚 | 2 172.081** | 2 904.297** | 1 943.560** | B1 | 多糖 | 12 441.648** | 25 441.630** | 86 482.275** |
A2 | 多酚 | 3 086.185** | 1 416.836** | 4 949.769** | B2 | 多糖 | 3 145.486** | 33 5745.974** | 53 452.984** |
表3
Total flavonoid, polyphenol and polysaccharide contents in aqueous extracts of E. ulmoides leaves by steam explosion单位:mg/g"
处理 treatment | 总黄酮含量 mass fraction of total flavonoid | 多酚含量 mass fraction of polyphenol | 多糖含量 mass fraction of polysaccharide | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | B1 | B2 | A1 | A2 | B1 | B2 | A1 | A2 | B1 | B2 | |
P1T1 | 10.06±0.02 a | 6.09±0.03 b | 40.62±0.44 d | 37.48±1.04 d | 133.05±0.45 b | 134.70±2.48 c | 101.87±0.17 f | 139.98±2.41 c | 1.36±0.17 h | 16.15±0.11 g | 24.73±0.08 c | 13.50±0.04 e |
P1T2 | 1.09±0.01 a | 12.63±0.07 b | 38.67±0.73 e | 32.72±0.51 e | 123.06±0.69 c | 117.15±0.97 d | 98.30±0.50 g | 119.53±1.28 e | 18.72±0.07 d | 17.97±0.08 f | 21.23±0.04 g | 8.34±0.03 g |
P1T3 | 0.41±0.01 b | 40.50±0.03 a | 48.13±0.83 b | 25.14±1.11 f | 59.28±1.65 h | 82.56±0.87 f | 106.00±1.79 e | 69.20±1.11 h | 25.09±0.07 b | 40.41±0.04 d | 24.22±0.02 d | 2.37±0.02 i |
P2T1 | 0.43±0.00 b | 1.24±0.01 d | 23.67±0.36 g | 58.14±0.70 b | 125.89±2.22 c | 103.24±1.20 e | 89.38±1.14 h | 58.43±1.64 i | 18.88±0.17 d | 15.06±0.10 h | 17.21±0.02 i | 6.23±0.01 h |
P2T2 | 0.45±0.01 b | 27.98±0.15 a | 45.94±0.51 c | 60.17±0.91 a | 96.20±2.72 d | 163.83±2.05 b | 184.16±1.96 a | 105.05±1.13 f | 16.14±0.06 f | 22.66±0.07 e | 22.01±0.08 f | 20.73±0.02 c |
P2T3 | 10.28±0.02 a | 41.65±0.03 a | 60.10±0.23 a | 60.64±0.61 a | 146.17±2.34 a | 219.19±0.94 a | 140.77±1.28 c | 125.80±1.34 d | 22.96±0.07 c | 30.35±0.07 d | 36.48±0.08 a | 21.05±0.02 b |
P3T1 | 16.20±0.02 a | 1.04±0.02 d | 45.99±0.91 c | 50.15±1.17 c | 69.28±1.28 e | 52.07±0.60 i | 104.23±0.46 e | 201.40±0.64 a | 30.21±0.09 a | 10.95±0.04 i | 23.38±0.01 e | 16.33±0.04 d |
P3T2 | 0.42±0.01 b | 0.09±0.02 d | 32.51±0.32 f | 19.17±0.51 g | 43.95±1.40 g | 62.69±0.78 h | 120.78±1.04 d | 77.00±0.61 g | 10.23±0.07 g | 33.14±0.04 c | 19.14±0.08 h | 8.41±0.01 f |
P3T3 | 0.53±0.00 a | 4.95±0.01 c | 41.58±0.86 d | 59.38±1.12 ab | 62.69±0.17 f | 71.59±0.62 g | 172.18±1.56 b | 151.56±0.35 b | 16.77±0.07 e | 42.10±0.06 a | 33.90±0.62 b | 25.56±0.02 a |
CK | 3.51±0.02 | 2.67±0.01 | 102.39±0.69 | 75.30±1.34 | 23.59±0.56 | 24.85±0.08 |
表4
Content of the 7 active ingredients in the aqueous extracts of E. ulmoides leaves in the 4 treatments under optimal steam explosion conditions单位:mg/g"
处理 treatment | 京尼平苷酸 kynurenine glucoside | 车叶草苷 chelerythrine | 原儿茶酸 protocatechuic acid | 绿原酸 chlorogenic acid | 儿茶素 catechin | 松脂醇二 葡萄糖苷 pinoresinol diglucoside | 没食子 酸甲酯 methyl gallate |
---|---|---|---|---|---|---|---|
A1 | 12.593 4±0.059 9 D | 7.088 1±0.000 2 D | 0.899 6±0.000 0 F | 11.329 8±0.001 0 D | 9.552 7±0.003 6 D | 8.464 5±0.001 7 D | 1.230 3±0.000 2 D |
A2 | 16.363 9±0.039 8 B | 8.637 0±0.000 2 B | 1.052 2±0.000 0 B | 12.773 9±0.000 3 B | 12.315 2±0.000 4 B | 9.507 4±0.001 9 B | 2.144 5±0.000 1 B |
B1 | 18.519 3±0.003 9 A | 10.230 1±0.000 5 A | 1.034 2±0.000 2 C | 13.621 2±0.000 3 A | 13.947 1±0.001 7 A | 10.712 9±0.001 6 A | 2.700 4±0.000 7 A |
B2 | 15.192 9±0.010 3 C | 7.602 3±0.000 8 C | 1.009 4±0.000 1 D | 12.322 3±0.000 3 C | 11.45 66±0.000 8 C | 8.870 1±0.000 5 C | 1.870 9±0.000 4 C |
CK1 | 8.705 2±0.015 0 E | 5.817 8±0.000 2 E | 1.150 0±0.000 0 A | 9.727 8±0.000 3 E | 6.638 3±0.002 5 E | 7.595 6±0.000 8 E | 0.236 7±0.000 0 E |
CK2 | 8.312 3±0.035 5 F | 5.626 2±0.000 6 F | 0.954 6±0.000 4 E | 9.426 6±0.000 1 F | 6.226 2±0.001 2 F | 7.062 3±0.001 2 F | 0.192 2±0.000 2 F |
表5
杜仲叶水提液活性成分含量与抗氧化能力相关性分析"
成分 constituent | DPPH自由基 清除能力 DPPH free radicals scavenging | ABTS自由基 清除能力 ABTS free radicals scavenging |
---|---|---|
总黄酮total flavonoids | -0.899* | -0.865* |
多酚polyphenols | -0.837* | -0.820* |
多糖polysaccharides | 0.075 | 0.037 |
京尼平苷酸kyonipin glycosides | -0.913* | -0.877* |
车叶草苷chelerythrin | -0.904* | -0.869* |
原儿茶酸protocatechuic acid | -0.874* | -0.845* |
绿原酸chlorogenic acid | -0.895* | -0.860* |
儿茶素catechins | -0.899* | -0.865* |
松脂醇二葡萄糖苷 pinoresinol diglucoside | -0.837* | -0.820* |
没食子酸甲酯 gallic acid methyl ester | 0.075 | 0.037 |
表6
蒸汽爆破及对照中杜仲成熟叶水提液的香气组分类别的相对含量及种类数"
类别 type | A2 | B1 | CK1 | |||
---|---|---|---|---|---|---|
相对含量/% relative content | 种类数 species number | 相对含量/% relative content | 种类数 species number | 相对含量/% relative content | 种类数 species number | |
碳氢类hydrocarbons | 11.39 | 10 | 13.26 | 16 | 11.80 | 15 |
杂环类heterocycles | 8.83 | 6 | 9.88 | 7 | 19.24 | 8 |
醇类alcohols | 15.22 | 9 | 4.34 | 4 | 9.27 | 4 |
醛类aldehydes | 10.52 | 7 | 12.90 | 8 | 3.96 | 4 |
酮类ketones | 29.05 | 20 | 23.32 | 17 | 6.63 | 10 |
酯类esters | 16.33 | 5 | 18.02 | 4 | 41.71 | 8 |
酚类phenols | 2.52 | 3 | 3.03 | 5 | — | — |
其他类others | 6.14 | 8 | 8.73 | 8 | 2.28 | 3 |
总计total | 100.00 | 68 | 93.48 | 69 | 94.89 | 52 |
表7
蒸汽爆破及对照中杜仲成熟叶水提液的主要香气成分的相对含量及香气描述"
化合物 编号 compound No. | CAS | 化学式 chemical formula | 名称 name | 香气描述 aroma description | 阈值[ /(mg·kg-1) threshold value | A2 | B1 | CK1 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
相对含量/% relative content | 气味 活度值 OAV | 相对含量/% relative content | 气味 活度值 OAV | 相对含量/% relative content | 气味 活度值 OAV | ||||||
1 | 100-51-6 | C7H8O | 苯甲醇benzyl alcohol | 花香、香水 | 5.500 | 8.70 | 1.58 | — | — | — | — |
2 | 124-19-6 | C9H18O | 壬醛nonanal | 柑橘香、花香、油脂味、 栗子香、焦糖香 | 1.100 | 1.40 | 1.27 | 1.35 | 1.23 | 0.59 | 0.54 |
3 | 112-31-2 | C10H20O | 癸醛decanal | 橙皮味 | 0.100 | — | — | 0.69 | 6.90 | 0.35 | 3.50 |
4 | 4313-3-5 | C7H10O | (E,E)-2,4- 庚二烯醛 (E,E)-2,4- heptadienal | 青草味 | 0.051 | 5.29 | 103.73 | 3.78 | 74.12 | — | — |
5 | 432-25-7 | C10H16O | β-环柠檬醛β-cyclocitral | 烘烤香 | 3.000 | 0.89 | 0.30 | 0.99 | 0.33 | — | — |
6 | 121-33-5 | C8H8O3 | 香兰素vanillin | 类似香荚兰豆香气 | 0.500 | 0.81 | 1.62 | 0.45 | 0.90 | — | — |
7 | 23726-93-4 | C13H18O | 大马士酮damascenone | 强烈的玫瑰香 | 0.002 | 0.72 | 360.00 | 1.14 | 570.00 | 0.66 | 330.00 |
8 | 3796-70-1 | C13H22O | 香叶基丙酮geranylacetone | 木兰香气 | 0.010 | 2.47 | 247.00 | 2.60 | 260.00 | 0.74 | 74.00 |
9 | 79-77-6 | C13H20O | β-紫罗兰酮β-violetone | 花香、紫罗兰香 | 0.007 | 3.85 | 550.00 | — | — | 1.35 | 192.86 |
10 | 79-77-6 | C13H20O | α-紫罗兰酮α-violetone | 木香、花香、蜂蜜气味 | 0.004 | 3.24 | 810.00 | 0.64 | 160.00 | — | — |
11 | 17092-92-1 | C11H16O2 | 二氢猕猴桃内酯dihydrokiwi lactone | 甜桃香 | 0.500 | 9.96 | 19.92 | 6.29 | 12.58 | 1.33 | 2.66 |
[1] | JIANG P Z, DICKSON D W. Parkinson’s disease: experimental models and reality[J]. Acta Neuropathologica, 2018, 135(1):13-32. DOI:10.1007/s00401-017-1671-4. |
[2] | 吴红艳, 彭呈军, 邓后勤. 杜仲叶化学成分研究进展[J]. 食品工业科技, 2019, 40(17): 360-364. |
WU H Y, PENG C J, DENG H Q, et al. Research progress on chemical component of Eucommia folium[J]. Sci and Techn of F Ind, 2019, 40(17): 360-364. DOI:10.13386/j.issn1002-0306.2019.17.059. | |
[3] | 龚频, 韩业雯, 翟鹏涛, 等. 杜仲叶的活性成分、药理作用及其在食品加工中的应用[J]. 食品工业科技, 2022, 43(10): 395-404. |
GONG P, HAN Y W, ZHAI P T, et al. Active components, pharmacological action and application in food processing of Eucommia ulmoides leaves[J]. Sci and Techn of F Ind, 2022, 43(10): 395-404. DOI:10.13386/j.issn1002-0306.2021050082. | |
[4] | DEYAMA T, NISHIBE S, NAKAZAWA Y. Constituents and pharmacological effects of Eucommia and Siberian ginseng[J]. Acta Pharmacol Sin, 2001, 22(12): 1057-1070. |
[5] | LI Y, KAMO S, METORI K, et al. The promoting effects of eucommiol from Eucommia cortex on collagen synthesis[J]. Biol Pharm Bul, 2000, 23(1): 54-59. DOI:10.1248/bpb.23.54. |
[6] | 王亮亮, 唐小兰, 王凯, 等. 杜仲的活性成分和保健功效及杜仲在食品加工中的应用[J]. 食品安全质量检测学报, 2020, 11(10):3074-3080. |
WANG L L, TANG X L, WANG K, et al. The active ingredient and health-care function of Eucommia ulmoides and its development in food processing[J]. J of Food Saf and Qual, 2020, 11(10):3074-3080. DOI:10.19812/j.cnki.jfsq11-5956/ts.2020.10.003. | |
[7] | 王亚洁, 何玉珏. 近年杜仲茶成分及工艺探究[J]. 科学大众(科学教育), 2017(7): 192. |
WANG Y J, HE Y J. Research on the composition and technology of Eucommia ulmoides tea in recent years[J]. Pop Sci, 2017(7): 192. | |
[8] | 刘雯. 杜仲复合功能茶杀青工艺研究[D]. 杨凌: 西北农林科技大学, 2013. |
LIU W. Study on the green killing technology of Eucommia ulmoides compound functional tea[D]. Yangling: N A&F Univ, 2013. | |
[9] | 刘梦培, 铁珊珊, 王璐, 等. 发酵条件对杜仲茶组分及抗氧化性的影响[J]. 食品科技, 2018, 43(2):105-108. |
LIU M P, TIE S S, WANG L, et al. The influence of fermentation conditions on the composition and antioxidant capacity of Eucommia ulmoides tea[J]. F Sci and Techn, 2018, 43(2): 105-108. DOI:CNKI:SUN:SSPJ.0.2018-02-020. | |
[10] | 张丽华, 李珍珠, 赵光远, 等. 冠突散囊菌发酵杜仲茶的工艺优化[J]. 食品工业科技, 2019, 40(21): 118-123. |
ZHANG L H, LI Z Z, ZHAO G Y, et al. Process optimization of fermentation of Eucommia ulmoides tea by Eurotium cristatum[J]. Sci and Techn of F Ind, 2019, 40(21): 118-123. DOI:10.13386/j.issn1002-0306.2019.21.019. | |
[11] | 黄友谊, 杨晓萍, 袁芳亭, 等. 杀青条件对杜仲茶主成分的影响[J]. 食品工业, 2003, 2: 17-19. |
HUANG Y Y, YANG X P, YUAN F T, et al. The effect of killing conditions on the main components of Eucommia ulmoides tea[J]. F Ind, 2003, 2: 17-19. | |
[12] | 董尚胜, 翁蔚, 查森俊, 等. 复火对杜仲茶品质成份的影响[J]. 浙江大学学报(农业与生命科学版), 2000(5): 110-111. |
DONG S S, WENG W, CHA S J, et al. The effect of reheating on the quality components of Eucommia ulmoides tea[J]. J of Zhej Univ (Ag & Lif Sci), 2000(5): 110-111. DOI:10.3321/j.issn:1008-9209.2000.05.029. | |
[13] | 杨延, 陆多林, 查银娟. 红茶品质影响因素研究进展[J]. 农业技术与装备, 2021(2): 12-13. |
YANG Y, LU D L, ZHA Y J. Research progress on factors affecting the quality of black tea[J]. Ag Techn and Eq, 2021(2): 12-13. DOI:10.3969/j.issn.1673-887X.2021.02.004. | |
[14] | 童启庆, 董尚胜, 翁蔚, 等. 杜仲茶风味化学的研究Ⅰ 杜仲绿茶初制工艺对品质成份的影响[J]. 茶叶, 2000, 26(1): 32-34. |
TONG Q Q, DONG S S, WENG W, et al. Research on the flavor chemistry of Eucommia ulmoides tea Ⅰ: the effect of the initial processing technology of Eucommia ulmoides green tea on its quality components[J]. Tea, 2000, 26(1): 32-34. | |
[15] | 张厅, 刘晓, 熊元元, 等. 四川黑茶渥堆过程中主要品质成分和茶汤色差变化及其相关性研究[J]. 食品与发酵工业, 2022, 48(9): 154-162. |
ZHANG T, LIU X, XIONG Y Y, et al. Correlation between main quality components and teasoup color of Sichuan dark tea during post-fermentation[J]. F and Ferm Ind, 2022, 48(9): 154-162. DOI:10.13995/j.cnki.11-1802/ts.026946. | |
[16] | 何永杰. 不同加工工艺对天津产杜仲茶品质的影响[D]. 天津: 天津农学院, 2018. |
HE Y J. The influence of different processing techniques on the quality of Eucommia ulmoides tea produced in Tianjin[D]. Tianjin: Ti Ag Coll, 2018. DOI:10.3969/j.issn.0439-8114.2008.03.031. | |
[17] | 柯文林, 杨韧强. 复合酶辅助提取杜仲叶多酚及其应用[J]. 食品工业, 2021, 42(12): 224-228. |
KE W L, YANG R Q. Extraction of polyphenols from Eucommia ulmoides leaves by compound enzyme and its application[J]. F Ind, 2021, 42(12): 224-228. | |
[18] | 梁兆昌, 褚洪标, 肖琳, 等. 杜仲超微粉体理化特性及体外溶出性能研究[J]. 中草药, 2015, 46(11):1609-1614. |
LIANG Z C, CHU H B, XIAO L, et al. Physicochemical properties and in vitro dissolution behavior of active ingredients in ultrafine powder of Eucommia ulmoides[J]. Chin Tr and Herb Dr, 2015, 46(11):1609-1614. DOI: 10.7501/j.issn.0253-2670.2015.11.008. | |
[19] | GONG L X, HUANG L L, ZHANG Y. Effect of steam explosion treatment on barley bran phenolic compoundsand antioxidant capacity[J]. Journal of Agricultural & Food Chemistry, 2012, 60(29):7177-7184. DOI:10.1021/jf301599a. |
[20] | YU Z, ZHANG B, YU F, et al. A real explosion: the requirement of steam explosion pretreatment[J]. Bioresource technology, 2012, 121: 335-341. DOI: 10.1016/j.biortech.2012.06.055. |
[21] | SONG H, YANG R, ZHAO W, et al. Innovative assistant extraction of flavonoids from pine (Larix olgensis Henry) needles by high-density steam flash-explosion[J]. Journal of Agricultural and Food Chemistry, 2014, 62(17): 3806-3812. DOI: 10.1021/jf405412r. |
[22] | 魏锦锦, 辛东林, 陈翔, 等. 蒸汽爆破预处理对杜仲皮活性成分和杜仲胶提取的影响[J]. 林产化学与工业, 2019, 39(1): 88-94. |
WEI J J, XIN D L, CHEN X, et al. Effect of steam explosion on extraction of bioactive components and gutta-percha from barks of Eucommia ulmoides oliver[J]. Chem and Ind of For Prod, 2019, 39(1): 88-94. DOI:10.3969/j.issn.0253-2417.2019.01.013. | |
[23] | FU X, CHEN H. Air-steam explosion enhancing the extraction efficiency of chlorogenic acid from leaves of Eucommia ulmoides oliver[J]. Separation and Purification Technology, 2015, 146: 317-325. DOI: 10.1016/j.seppur.2015.03.054. |
[24] | 丁欢欢, 张宁, 王璐, 等. 蒸汽爆破预处理提高杜仲总黄酮产量的效果[J]. 中南林业科技大学学报, 2021, 41(6): 147-156. |
DING H H, ZHANG N, WANG L, et al. Effect of enhancing total flavonoids yield from Eucommia ulmoides oliver via steam explosion[J]. J of Centr Sou Univ of For & Techn, 2021, 41(6): 147-156. DOI:10.14067/j.cnki.1673-923x.2021.06.016. | |
[25] | 俞锐, 杜红岩, 胡文臻. 杜仲产业绿皮书:中国杜仲橡胶资源与产业发展报告[M]. 北京: 社会科学文献出版社, 2013. |
YU R, DU H Y, HU W Z, et al. Report on development of China eucommia rubber resources and industry[M]. Beijing: Soc Sci Lit Pr, 2013. | |
[26] | 李洪果, 许基煌, 杜红岩, 等. 基于等位基因最大化法初步构建杜仲核心种质[J]. 林业科学, 2018, 54(2): 42-51. |
LI H G, XU J H, DU H Y, et al. Preliminary construction of core collection of Eucommia ulmoides based on allele number maximization strategy[J]. Sci Silv Sinic, 2018, 54(2): 42-51. | |
[27] | 肖作为, 谢梦洲, 甘龙, 等. 山银花、金银花中绿原酸和总黄酮含量及抗氧化活性测定[J]. 中草药, 2019, 50(1): 210-216. |
XIAO Z W, XIE M Z, GAN L, et al. Determination of chlorogenic acid, total flavones, and anti-oxidant activity of Flos lonicerae japonicae and Flos lonicerae[J]. Chin Trad and Herb Drug, 2019, 50(1): 210-216. DOI:10.7501/j.issn.0253-2670.2019.01.031. | |
[28] | LI F, ZHANG X, ZHENG S, et al. The composition, antioxidant and antiproliferative capacities of phenolic compounds extracted from tartary buckwheat bran [Fagopyrum tartaricum (L.) Gaerth][J]. Journal of functional foods, 2016, 22: 145-155. DOI: 10.1016/j.jff.2016.01.027. |
[29] | 王黎明, 夏文水. 蒽酮-硫酸法测定茶多糖含量的研究[J]. 食品科学, 2005, 26(7): 185-188. |
WANG L M, XIA W S. Determination of TPS by improvement of anthrone-sulfuric acid method[J]. F Sci, 2005, 26(7): 185-188. DOI:10.3321/j.issn:1002-6630.2005.07.044. | |
[30] | 孟益德, 王琦, 刘攀峰, 等. 短周期叶用林模式下不同杜仲无性系枝皮化学成分分析[J]. 天然产物研究与开发, 2022, 34(11): 1871-1882. |
MENG Y D, WANG Q, LIU P F, et al. Analysis on chemical constituents of branch bark of different Eucommia ulmoides clones under short-period foliar forest mode[J]. Nat Prod Res Dev, 2022, 34(11): 1871-1882. DOI:10.16333/j.1001-6880.2022.11.008. | |
[31] | 唐思颉, 涂传海, 胡文秀, 等. 红茶菌发酵黄浆水的体外抗氧化活性[J]. 食品科学, 2019, 40(17): 1-6. |
TANG S J, TU C H, HU W X, et al. Antioxidant activity of fermented soy whey with kombucha consortium[J]. F Sci, 2019, 40(17): 1-6. DOI:10.7506/spkx1002-6630-20180705-080. | |
[32] | GAY M, LEMPEREUR L, FRANCIS F, et al. Control of Dermanyssus gallinae (De Geer 1778) and other mites with volatile organic compounds[J]. Parasitology, 2020, 147(7):731-739. DOI:10.1017/S0031182020000530. |
[33] | WU Y S, ZHANG W W, YU W J, et al. Study on the volatile composition of table grapes of three aroma types[J]. LWT-Food Science & Technology, 2019, 115(1):1-9. DOI:10.1016/j.lwt.2019.108450. |
[34] | 李慧, 张婉, 李静, 等. ‘华仲12号’杜仲叶片黄酮类物质组成鉴定及含量分析[J]. 经济林研究, 2022, 40 (3): 133-141. |
LI H, ZHANG W, LI J, et al. Identification and content profiles of flavonoids in leaves of Eucommia ulmoides ‘Huazhong No.12’[J]. Non-w For Res, 2022, 40(3): 133-141. DOI:10.14067/j.cnki.1003-8981.2022.03.014. | |
[35] | 朱景乐. ‘红叶’杜仲叶片呈色生理特性及关键基因筛选[D]. 北京: 中国林业科学研究院, 2017. |
ZHU J L. Physiological characteristics and key gene screening of ‘Red Leaf’ Eucommia ulmoides leave in coloring[D]. Beijing: Chin Acad of For, 2017. | |
[36] | 施树云, 郭柯柯, 彭胜, 等. DPPH-HPLC-QTOF-MS/MS快速筛选和鉴定杜仲黑茶中抗氧化活性成分[J]. 天然产物研究与开发, 2018, 30(11):1913-1917. |
SHI S Y, GUO K K, PENG S, et al. Rapid screening and identification of antioxidants from Duzhong brick tea by DPPH-HPLC-QTOF-MS/MS[J]. Nat Prod Res Dev, 2018, 30(11):1913-1917. DOI:10.16333/j.1001-6880.2018.11.010. | |
[37] | WANG L, XU H G, YUAN F, et al. Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking[J]. Food Chemistry, 2015, 185: 90-98. DOI: 10.1016/j.foodchem.2015.03.112. |
[38] | CHEN G Z, CHEN H Z. Enhancement of oil extraction from sumac fruit using steam-explosion pretreatment[J]. Journal of the American Oil Chemists Society, 2011, 88(1):151-156. DOI:10.1007/s11746-010-1650-6. |
[39] | 崔潇文, 袁茂翼, 叶发银, 等. 蒸汽爆破预处理对番茄皮渣膳食纤维组成及理化特性的影响[J]. 食品与发酵工业, 2021, 47(21): 170-177. |
CUI X W, YUAN M Y, YE F Y, et al. Effects of steam explosion pretreatment on the composition and physicochemical properties of dietary fiber from tomato pomace[J]. F and Ferm Ind, 2021, 47(21): 170-177. DOI: 10.13995/j.cnki.11-1802/ts.027095. | |
[40] | 韩士群, 杨莹, 周庆, 等. 蒸汽爆破对芦苇纤维及其木塑复合材料性能的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(1): 136-142. |
HAN S Q, YANG Y, ZHOU Q, et al. Effect of steam explosion on reeds fiber and the properties of reed wood-plastic composites[J]. J of Nanj For Univ (Nat Sci Edit), 2017, 41(1): 136-142. DOI:10.3969/j.issn.1000-2006.2017.01.021. | |
[41] | LI B, YANG W, NIE Y Y, et al. Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara[J]. Food Hydrocolloids, 2019, 94(SEP.): 48-56. |
[42] | DING H, LIU H, YANG Y, et al. Enhanced gutta-percha production from Eucommia ulmoides Oliver via steam explosion[J]. Journal of Biobased Materials and Bioenergy, 2019, 13(3): 353-362. DOI: 10.1166/jbmb.2019.1853. |
[43] | 杨晶, 黄星球, 杨文. 桑叶红茶的加工技术[J]. 食品工业, 2022, 43(12):8-11. |
YANG J, HUANG X Q, YANG W. Processing technology of mulberry leaf black tea[J]. F Ind, 2022, 43(12):8-11. | |
[44] | 宋娟娟, 谢婷, 刘文涵, 等. 丙二醛对豆粕蛋白质氧化的影响及茶多酚的缓解作用[J]. 南京农业大学学报, 2023, 46(2):324-332. |
SONG J J, XIE T, LIU W H, et al. Effects of malonaldehyde on protein oxidation of soybean meal and the mitigation effect of tea polyphenols[J]. J Nanjing Agric Univ, 2023, 46(2):324-332.DOI: 10.7685/jnau.202112043. | |
[45] | 康育鑫, 陈永快, 肖两德, 等. 安溪铁观音加工过程中影响色、香、味的成分变化[J]. 食品工业科技, 2022, 43(12): 291-298. |
KANG Y X, CHEN Y K, XIAO L D, et al. Changes of components affecting color, aroma and taste during the processing of Anxi Tieguanyin[J]. Sci and Techn of F Ind, 2022, 43(12): 291-298. DOI:10.13386/j.issn1002-0306.2021090283. | |
[46] | 路买林, 陈梦娇, 张嘉嘉, 等. ‘红叶’杜仲叶色转变过程中叶片生理指标变化[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 86-92. |
LU M L, CHEN M J, ZHANG J J, et al. Leaf physiological indicator changes in the transformation of leaves colorof Eucommia ulmoides‘Hongye’[J]. J of Nanjing For Univ (Nat Sci Edit), 2021, 45(1): 86-92. DOI:10.12302/j.issn.1000-2006.202002034. | |
[47] | 屠万倩, 张留记, 夏曼玉, 等. 杜仲叶清除DPPH自由基动力学特性及抗氧化活性成分筛选[J]. 中国药学杂志, 2022, 57(4): 264-268. |
TU W Q, ZHANG L J, XIA M Y, et al. DPPH kinetic characteristics and identification of antioxidant compounds in Eucommia ulmoides leaves[J]. Chin Pharm J, 2022, 57(4): 264-268. DOI:10.11669/cpj.2022.04.003. | |
[48] | 刘梦培, 李佳, 靳学远, 等. 不同乳酸菌发酵杜仲叶水提液的香气成分分析[J]. 食品工业科技, 2021, 42(9): 36-43. |
LIU M P, LI J, JIN X Y, et al. Analysis of aroma components in water extract of Eucommia ulmoides leaf fermented by different lactobacillus species[J]. Sci and Techn of F Ind, 2021, 42(9): 36-43. DOI:10.13386/j.issn1002-0306.2020070173. | |
[49] | 曾桥, 唐文洁, 温谨瑞, 等. 顶空固相微萃取-气相色谱-质谱法分析杜仲叶茯砖茶加工过程中挥发性成分[J]. 食品工业科技, 2023, 44(1): 96-108. |
ZENG Q, TANG W J, WEN J R, et al. Analysis of volatile components in the manufacturing process of Eucommia ulmoides leaves fuzhuan tea based on headspace solid phase microextraction/gas chromatography-mass spectrometry method[J]. Sci and Techn of F Ind, 2023, 44(1): 96-108. DOI:10.13386/j.issn1002-0306.2022030409. | |
[50] | 王娟, 赵江, 陈见容, 等. 红枣杜仲复合饮料的配方优化及其风味物质分析[J]. 食品工业科技, 2019, 40(2): 215-222. |
WANG J, ZHAO J, CHEN J R, et al. Formulation optimization and flavor substances analysis of Eucommia and red dates combined beverage[J]. Sci and Techn of F Ind, 2019, 40(2): 215-222. DOI:10.13386/j.issn1002-0306.2019.02.037. |
[1] | 马坛, 田野, 王书军, 李文昊, 段启英, 张庆源. 不同性别南方型黑杨无性系叶片对土壤短期间歇性干旱的生理响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 172-180. |
[2] | 沈瑒, 狄晶晶, 陈颖, 冯凯, 陆锦玲, 胡宇辰. H2S供体NaHS对渗透胁迫下美国剑麻干旱适应性及抗氧化特性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 121-128. |
[3] | 赵晓龙, 沈家怡, 刘涛, 吴家胜, 胡渊渊. 当年和越年生香榧叶片的光合效率及抗氧化特性的季节性变化[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 45-50. |
[4] | 魏溪杏, 胡渊渊, 朱光夏, 喻卫武, 张祖瑛, 吴家胜, 宋丽丽. 不同脱蒲时间对香榧种仁特征性香气和营养成分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 51-60. |
[5] | 杜庆鑫, 刘攀峰, 王璐, 杜兰英, 孙志强, 杜红岩. 杜仲新品种‘华仲23号’[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 257-封三. |
[6] | 苏泾涵, 王改萍, 刘玉华, 戚亚, 彭大庆, 李守科, 曹福亮. 叶用文冠果总多酚提取工艺及抗氧化活性分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 129-137. |
[7] | 刘相泉, 赵仁菲, 朱艳芳, 邓仕明, 李吉涛, 邓志军. 复羽叶栾树植冠种子库种子活力变化机制[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 35-41. |
[8] | 唐敏, 杨开宇, 张赛男, 陈利英, 刘洋, 张雪梅, 齐国辉. 硒对核桃种仁抗氧化酶活性及果实品质的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 127-134. |
[9] | 王艳娜, 孟学成, 赵荻, 吴家胜, 宋丽丽, 胡渊渊, 张祖瑛, 喻卫武. 四个香榧品种种仁炒制加工后香气物质分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 169-176. |
[10] | 李佳琦, 薛晓明, 高捍东. 桢楠种子脱水过程中的生理响应[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 130-136. |
[11] | 石欣隆, 杨月琴, 薛娴, 刘伟, 宋程威, 郭丽丽, 侯小改. 壳寡糖对干旱胁迫下‘凤丹’幼苗生长及生理特性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 120-126. |
[12] | 路买林, 陈梦娇, 张嘉嘉, 赵建霞, 朱景乐, 杜红岩. ‘红叶’杜仲叶色转变过程中叶片生理指标变化[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 86-92. |
[13] | 林源, 陈培, 周明明, 尚旭岚, 方升佐. 天然居群青钱柳叶主要生物活性物质及抗氧化活性研究[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 10-16. |
[14] | 陈培, 周明明, 方升佐, 刘洋, 杨万霞, 尚旭岚. 光质对不同家系青钱柳叶酚类物质积累及抗氧化活性的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 17-25. |
[15] | 岳喜良, 秦健, 洑香香, 尚旭岚, 方升佐. 氮素水平对青钱柳叶片主要次生代谢物含量和抗氧化能力的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 35-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||