南方丘陵区典型混交林树种水分来源对降水的适应性

武文杰, 吴朝明, 朱骊, 王琳棋, 戈禹, 张潭, 刘自强

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6) : 121-128.

PDF(2411 KB)
PDF(2411 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6) : 121-128. DOI: 10.12302/j.issn.1000-2006.202306009
研究论文

南方丘陵区典型混交林树种水分来源对降水的适应性

作者信息 +

Adaptation of typical mixed forest species in the southern hilly region to precipitation variation via water source changes

Author information +
文章历史 +

摘要

【目的】基于全球气候变化背景下极端天气事件频发对植物水分利用的影响,探讨不同降水条件下南方丘陵区混交林树种对水分来源的适应性变化,为科学实施森林精准经营管理措施提供理论依据。【方法】采集不同降水量梯度下南方丘陵区麻栎(Quercus acutissima)和马尾松(Pinus massoniana)混交林的土壤和植物同位素样品,借助多元线性混合模型,对比分析不同降水梯度下麻栎和马尾松的水分利用来源。【结果】①麻栎在无降水时主要利用[10,30) cm土层的水分,利用率为62.0%;随着降水量的增加,其水源转向[80,100) cm土层的水分和地下水,大雨条件下的利用率分别为34.2%和44.6%。②马尾松在无降水时主要利用地下水和[80,100) cm土层水分,利用率分别为21.2%和21.1%;随降水量增加其水分来源逐渐向(0,10) cm和[10,30) cm土层转移,利用率分别为27.2%和53.3%。【结论】麻栎和马尾松的水分来源对降水的适应性不同,不同降水梯度下两者对土壤水分利用深度能较好地互补。在极端降水频发条件下,不同的水分利用模式有利于减少树种间水分竞争。

Abstract

【Objective】The frequent extreme weather events that are likely to be associated with global climate change may have an impact on plant water use. The aim of this study was to explore how mixed forest species adapt by accessing different water sources in the southern hilly region of China under different precipitation conditions.【Method】The stable hydrogen and oxygen isotopes in the xylem, soil, and groundwater from mixed Quercus acutissima and Pinus massoniana forests in the southern hilly region were measured and multi-source linear mixed models (Iso-Source) used to compare and analyze the water use in the forest under different precipitation gradients.【Result】Q. acutissima was found to mainly use soil water from the shallow layer ([10,30) cm) under low precipitation conditions, with a utilization rate of 62.0%; however, under heavier rain the species turns to deep soil water ([80,100) cm) and groundwater, with utilization rates of 34.2% and 44.6%, respectively. P. massoniana mainly uses groundwater and deep soil water ([80,100) cm) with utilization rates of 21.2% and 21.1%, respectively, under low precipitation conditions; however, the species changes to use soil water from depths of (0,10) cm and [10,30) cm layers, with utilization rates of 27.2% and 53.3%, respectively, when precipitation increases.【Conclusion】Q. acutissima and P. massoniana adapt differently to precipitation changes in terms of the water source used, and the depth from which water is sourced changes under different precipitation gradients. The different water use patterns of these species will reduce water competition under the expected frequent extreme precipitation events expected in the future. The results of the study provide a theoretical basis for the implementation of improved forest management.

关键词

麻栎 / 马尾松 / 降水梯度 / 水分来源 / 氢氧同位素

Key words

Quercus acutissima / Pinus massoniana / precipitation gradient / water source / hydrogen and oxygen isotopes

引用本文

导出引用
武文杰, 吴朝明, 朱骊, . 南方丘陵区典型混交林树种水分来源对降水的适应性[J]. 南京林业大学学报(自然科学版). 2024, 48(6): 121-128 https://doi.org/10.12302/j.issn.1000-2006.202306009
WU Wenjie, WU Chaoming, ZHU Li, et al. Adaptation of typical mixed forest species in the southern hilly region to precipitation variation via water source changes[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(6): 121-128 https://doi.org/10.12302/j.issn.1000-2006.202306009
中图分类号: S715   

参考文献

[1]
孙荣卿, 董李勤, 张昆, 等. 四川若尔盖湿地国家级自然保护区水体氢氧同位素与水化学特征[J]. 南京林业大学学报(自然科学版), 2022, 46(2):169-178.
SUN R Q, DONG L Q, ZHANG K, et al. Hydrogen and oxygen isotopes and hydrochemical parameters of water samples from the Sichuan Zoige Wetland Nature Reserve[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(2):169-178.DOI: 10.12302/j.issn.1000-2006.202104021.
[2]
DAI Y, ZHENG X J, TANG L S, et al. Stable oxygen isotopes reveal distinct water use patterns of two Haloxylon species in the Gurbantonggut Desert[J]. Plant Soil, 2015, 389(1):73-87.DOI: 10.1007/s11104-014-2342-z.
[3]
DUNKERLEY D. Percolation through leaf litter:what happens during rainfall events of varying intensity?[J]. J Hydrol, 2015, 525:737-746.DOI: 10.1016/j.jhydrol.2015.04.039.
[4]
LIU Z Q, YU X X, JIA G D. Water uptake by coniferous and broad-leaved forest in a rocky mountainous area of northern China[J]. Agric For Meteorol, 2019, 265:381-389.DOI: 10.1016/j.agrformet.2018.11.036.
[5]
MEIER I C, KNUTZEN F, EDER L M, et al. The deep root system of Fagus sylvatica on sandy soil:structure and variation across a precipitation gradient[J]. Ecosystems, 2018, 21(2):280-296.DOI: 10.1007/s10021-017-0148-6.
[6]
PRECHSL U E, BURRI S, GILGEN A K, et al. No shift to a deeper water uptake depth in response to summer drought of two lowland and sub-alpine C3-grasslands in Switzerland[J]. Oecologia, 2015, 177(1):97-111.DOI: 10.1007/s00442-014-3092-6.
[7]
霍伟杰. 基于氢氧稳定同位素的西南岩溶断陷盆地石漠化地区苹果树水分来源及时空变化特征[D]. 北京: 中国地质大学(北京), 2020.
HUO W J. Using hydrogen and oxygen istope to reveal water sources and spatio-temporal variations of apple tree in rocky desertification mountionous area in Karst graben basin,southwest China[D]. Beijing: China University of Geosciences, 2020.
[8]
ELLSWORTH P Z, WILLIAMS D G. Hydrogen isotope fractionation during water uptake by woody xerophytes[J]. Plant Soil, 2007, 291(1):93-107.DOI: 10.1007/s11104-006-9177-1.
[9]
刘文娜, 贾剑波, 余新晓, 等. 北京山区松栎混交群落的植物水分来源研究[J]. 应用基础与工程科学学报, 2018, 26(1):12-22.
LIU W N, JIA J B, YU X X, et al. Water sources of the oak-pine mixed community in Beijing mountainous area[J]. J Basic Sci Eng, 2018, 26(1):12-22.DOI: 10.16058/j.issn.1005-0930.2018.01.002.
[10]
DENG W P, JIA G D, LIU Y Q, et al. Long-term study on the seasonal water uptake of Platycladus orientalis in the Beijing mountain area,northern China[J]. Agric For Meteorol, 2021,307:108531.DOI: 10.1016/j.agrformet.2021.108531.
[11]
WANG P Y, LIU W J, ZHANG J L, et al. Seasonal and spatial variations of water use among riparian vegetation in tropical monsoon region of SW China[J]. Ecohydrology, 2019, 12(4):e2085.DOI: 10.1002/eco.2085.
[12]
TIEMUERBIEKE B, MIN X J, ZANG Y X, et al. Water use patterns of co-occurring C3 and C4 shrubs in the Gurbantonggut Desert in northwestern China[J]. Sci Total Environ, 2018, 634:341-354.DOI: 10.1016/j.scitotenv.2018.03.307.
[13]
ANTUNES C, DÍAZ-BARRADAS M C, ZUNZUNEGUI M, et al. Water source partitioning among plant functional types in a semi-arid dune ecosystem[J]. J Veg Sci, 2018, 29(4):671-683.DOI: 10.1111/jvs.12647.
[14]
ZHOU H, ZHAO W Z, HE Z B, et al. Variation in depth of water uptake for Pinus sylvestris var. mongolica along a precipitation gradient in sandy regions[J]. J Hydrol, 2019,577:123921.DOI: 10.1016/j.jhydrol.2019.123921.
[15]
ZHAO Y L, WANG Y Q, HE M N, et al. Transference of Robinia pseudoacacia water-use patterns from deep to shallow soil layers during the transition period between the dry and rainy seasons in a water-limited region[J]. For Ecol Manag, 2020,457:117727.DOI: 10.1016/j.foreco.2019.117727
[16]
ZHAO L J, XIE C, LIU X H, et al. Water sources of major plant species along a strong climatic gradient in the inland Heihe River basin[J]. Plant Soil, 2020, 455(1):439-466.DOI: 10.1007/s11104-020-04639-5.
[17]
刘自强, 余新晓, 贾国栋, 等. 北京山区侧柏利用水分来源对降水的响应[J]. 林业科学, 2018, 54(7):16-23.
LIU Z Q, YU X X, JIA G D, et al. Response to precipitation in water sources for Platycladus orientalis in Beijing Mountain area[J]. Sci Silvae Sin, 2018, 54(7):16-23.DOI: 10.11707/j.1001-7488.20180702.
[18]
户红红, 陈进豪, 牟洋, 等. 滇东南岩溶山地不同恢复模式云南松水分利用策略的差异[J]. 西北林学院学报, 2021, 36(1):37-44.
HU H H, CHEN J H, MOU Y, et al. Differences of water use strategies of Pinus yunnanensis in different recovery modes in Karst mountains in southeast Yunnan[J]. J Northwest For Univ, 2021, 36(1):37-44.DOI: 10.3969/j.issn.1001-7461.2021.01.06.
[19]
王佳敏, 成应杰, 陈金艺, 等. 模拟不同降雨时间格局下喀斯特垂直异质生境对桢楠幼苗光合和生长的影响[J]. 生态学报, 2021, 41(18):7348-7356.
WANG J M, CHENG Y J, CHEN J Y, et al. Effects of simulated Karst vertical heterogeneous habitat on photosynthesis and growth of Phoebe zhennan S.Lee seedlings under different rainfall temporal pattern[J]. Acta Ecol Sin, 2021, 41(18):7348-7356.DOI: 10.5846/stxb202007131824.
[20]
WU H W, ZHAO G Q, LI X Y, et al. Identifying water sources used by alpine riparian plants in a restoration zone on the Qinghai-Tibet Plateau:evidence from stable isotopes[J]. Sci Total Environ, 2019,697:134092.DOI: 10.1016/j.scitotenv.2019.134092.
[21]
LU Y J, JIANG S H, REN L L, et al. Spatial and temporal variability in precipitation concentration over mainland China,1961-2017[J]. Water, 2019, 11(5):881.DOI: 10.3390/w11050881.
[22]
周淑贞. 气象学与气候学[M].3版. 北京: 高等教育出版社,1997:74.
ZHOU S Z. Meteorology and climatology[M].3rd ed. Beijing: Higher Education Press,1997:74.
[23]
WEST A G, PATRICKSON S J, EHLERINGER J R. Water extraction times for plant and soil materials used in stable isotope analysis[J]. Rapid Commun Mass Spectrom, 2006, 20(8):1317-1321.DOI: 10.1002/rcm.2456.
[24]
刘自强, 余新晓, 娄源海, 等. 北京山区侧柏水分利用策略[J]. 生态学报, 2017, 37(11):3697-3705.
LIU Z Q, YU X X, LOU Y H, et al. Water use strategy of Platycladus orientalis in Beijing mountainous area[J]. Acta Ecol Sin, 2017, 37(11):3697-3705.DOI: 10.5846/stxb201605261017.
[25]
PHILLIPS D L, NEWSOME S D, GREGG J W. Combining sources in stable isotope mixing models:alternative methods[J]. Oecologia, 2005, 144(4):520-527.DOI: 10.1007/s00442-004-1816-8.
[26]
王小明, 周本智, 钟绍柱, 等. 不同降雨条件下天然次生林水文过程动态分析[J]. 南京林业大学学报(自然科学版), 2010, 34(6):57-60.
WANG X M, ZHOU B Z, ZHONG S Z, et al. Dynamic analysis of hydrological processes of natural secondary forest in different rainfall conditions[J]. J Nanjing For Univ (Nat Sci Ed), 2010, 34(6):57-60.DOI: 10.3969/j.issn.1000-2006.2010.06.013.
[27]
王海燕, 刘廷玺, 王力, 等. 科尔沁沙地坨甸交错区土壤水分的空间变异规律[J]. 干旱区研究, 2013, 30(3):438-443.
WANG H Y, LIU T X, WANG L, et al. Spatial variation of soil moisture content in the dune-meadow ecotone in the horqin sandy land[J]. Arid Zone Res, 2013, 30(3):438-443.DOI: 10.13866/j.azr.2013.03.006.
[28]
贾国栋. 基于稳定氢氧同位素技术的植被-土壤系统水分运动机制研究[D]. 北京: 北京林业大学, 2013.
JIA G D. Water movement mechanism of plant-soil system using stable hydrogen and oxygen isotope technology[D]. Beijing: Beijing Forestry University, 2013.
[29]
徐庆, 刘世荣, 安树青, 等. 四川卧龙亚高山暗针叶林土壤水的氢稳定同位素特征[J]. 林业科学, 2007, 43(1):8-14.
XU Q, LIU S R, AN S Q, et al. Characteristics of hydrogen stable isotope in soil water of sub-alpine dark coniferous forest in Wolong,Sichuan Province[J]. Sci Silvae Sin, 2007, 43(1):8-14.DOI: 10.3321/j.issn:1001-7488.2007.01.002.
[30]
殷建华. 南方红壤丘陵区不同植被类型土壤不同土层水分对降水的响应[J]. 东北林业大学学报, 2017, 45(11):72-77.
YIN J H. Response of soil moisture to rainfall in Pinus massoniana stands and Paspalum notatumn glassland in hilly red soil region of Southern China[J]. J Northeast For Univ, 2017, 45(11):72-77.DOI: 10.13759/j.cnki.dlxb.2017.11.014.
[31]
崔建国, 崔文山, 邓丽琴, 等. 辽西地区3种落叶栎树抗旱性的初步研究[J]. 辽宁林业科技, 2005(1):10-11,42.
CUI J G, CUI W S, DENG L Q, et al. Drought-resistance of three species of deciduous oaks in western Liaoning[J]. J Liaoning For Sci Technol, 2005(1):10-11,42.DOI: 10.3969/j.issn.1001-1714.2005.01.003.
[32]
蔡鲁, 朱婉芮, 王华田, 等. 鲁中南山地6个造林树种根系形态的比较[J]. 中国水土保持科学, 2015, 13(2):83-91.
CAI L, ZHU W R, WANG H T, et al. Root morphology of six tree species in mountain area of middle south Shandong[J]. Sci Soil Water Conserv, 2015, 13(2):83-91.DOI: 10.16843/j.sswc.2015.02.014.
[33]
LIU Z Q, JIA G D, YU X X, et al. Water use by broadleaved tree species in response to changes in precipitation in a mountainous area of Beijing[J]. Agric Ecosyst Environ, 2018, 251:132-140.DOI: 10.1016/j.agee.2017.09.021.
[34]
徐贵青, 李彦. 共生条件下三种荒漠灌木的根系分布特征及其对降水的响应[J]. 生态学报, 2009, 29(1):130-137.
XU G Q, LI Y. Roots distribution of three desert shrubs and their response to precipitation under co-occurring conditions[J]. Acta Ecol Sin, 2009, 29(1):130-137.DOI: 10.3321/j.issn:1000-0933.2009.01.016.
[35]
张治军, 王彦辉, 于澎涛, 等. 不同优势度马尾松的生物量及根系分布特征[J]. 南京林业大学学报(自然科学版), 2008, 32(4):71-75.
ZHANG Z J, WANG Y H, YU P T, et al. Characteristics of biomass and root distribution of Pinus massoniana with different dominance[J]. J Nanjing For Univ (Nat Sci Ed), 2008, 32(4):71-75.DOI: 10.3969/j.issn.1000-2006.2008.04.016.
[36]
张成富, 何腾兵, 杨威, 等. 高原山地丘陵区马尾松近成熟林和成熟林细根的垂直分布特征[J]. 福建农林大学学报(自然科学版), 2020, 49(6):789-795.
ZHANG C F, HE T B, YANG W, et al. Vertical distribution characteristics of fine roots of near-mature and mature Pinus massoniana plantations in hilly areas in plateau mountainous region[J]. J Fujian Agric For Univ (Nat Sci Ed), 2020, 49(6):789-795.DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2020.06.012.
[37]
邢星, 陈辉, 朱建佳, 等. 柴达木盆地诺木洪地区5种优势荒漠植物水分来源[J]. 生态学报, 2014, 34(21):6277-6286.
XING X, CHEN H, ZHU J J, et al. Water sources of five dominant desert plant species in Nuomuhong area of Qaidam Basin[J]. Acta Ecol Sin, 2014, 34(21):6277-6286.DOI: 10.5846/stxb201310092427.
[38]
CUNEO I F, KNIPFER T, MANDAL P, et al. Water uptake can occur through woody portions of roots and facilitates localized embolism repair in grapevine[J]. New Phytol, 2018, 218(2):506-516.DOI: 10.1111/nph.15032.
[39]
DAWSON T E, PATE J S. Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology:a stable isotope investigation[J]. Oecologia, 1996, 107(1):13-20.DOI: 10.1007/BF00582230.
[40]
WHITE J W C, COOK E R, LAWRENCE J R, et al. The ratios of sap in trees:implications for water sources and tree ring ratios[J]. Geochimica Cosmochimica Acta, 1985, 49(1):237-246.DOI: 10.1016/0016-7037(85)90207-8.
[41]
张鑫, 邢亚娟, 闫国永, 等. 细根对降水变化响应的meta分析[J]. 植物生态学报, 2018, 42(2):164-172.
ZHANG X, XING Y J, YAN G Y, et al. Response of fine roots to precipitation change:a meta-analysis[J]. Chin J Plant Ecol, 2018, 42(2):164-172.DOI: 10.17521/cjpe.2017.0203.
[42]
FENG X, DAWSON T E, ACKERLY D D, et al. Reconciling seasonal hydraulic risk and plant water use through probabilistic soil-plant dynamics[J]. Glob Change Biol, 2017, 23(9):3758-3769.DOI: 10.1111/gcb.13640.
[43]
孙双峰. 三峡库区岸边植物水分利用研究[D]. 北京: 中国科学院研究生院(植物研究所), 2006.
SUN S F. Water use of plants along the bank of the three gorges reservoir[D]. Beijing: Institute of Botany,Chinese Academy of Sciences, 2006.
[44]
COMAS C, DEL CASTILLO J, VOLTAS J, et al. Point processes statistics of stable isotopes:analysing water uptake patterns in a mixed stand of Aleppo pine and Holm oak[J]. Forest Syst, 2015, 24(1):9.DOI: 10.5424/fs/2015241-05846.

基金

国家自然科学基金青年基金项目(42377068)
中国博士后科学基金项目(2022M720693)
百山祖国家公园科学研究项目(2022JBGS03)
百山祖国家公园科学研究项目(2021ZDLY01)

编辑: 郑琰燚
PDF(2411 KB)

Accesses

Citation

Detail

段落导航
相关文章

/