基于BP神经网络的城市蓝绿开放空间社会介质属性评价

徐海顺, 钱宸, 秦雪

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6) : 193-200.

PDF(2238 KB)
PDF(2238 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6) : 193-200. DOI: 10.12302/j.issn.1000-2006.202306020
研究论文

基于BP神经网络的城市蓝绿开放空间社会介质属性评价

作者信息 +

Evaluating the social media attributes of urban blue-green open space using a back propagation neural network

Author information +
文章历史 +

摘要

【目的】通过对城市蓝绿开放空间中使用者使用需求和活动方式的分析,识别城市蓝绿开放空间服务于人的社会介质属性,科学构建评价体系,为丰富“人-蓝绿开放空间-社会”关系的研究及相应管理规划提供参考。【方法】基于文献分析、网络数据抓取及实地调查,从蓝绿开放空间作为城市社会介质的视角出发,构建城市蓝绿开放空间社会介质属性评价模型,并以南京市的3个城市公园为例,运用BP神经网络进行模型验证及指标权重定量分析。【结果】基于样本构建的评价模型包含4项一级指标、12项二级指标,其中一级指标包括空间本底、连接类型、参与方式和空间意义,空间本底(权重0.440)是评价社会介质水平的关键要素;二级指标中影响较大的是自然支持水平(权重0.157),其次是基础设施完善度(权重0.127)、微气候舒适度(权重0.125)和地方认同(权重0.121),其余参数的影响相对较小。分析认为,空间本底质量是吸引使用者进行社会活动的基础,“人-蓝绿开放空间-社会”的亲近关系有助于提升空间的社会介质水平。【结论】采用BP神经网络通过对调查数据的学习,能够实现对城市蓝绿开放空间社会介质属性的评价。将社会学与风景园林领域理论与实践相耦合,从人与空间关系的角度出发,可为城市蓝绿开放空间社会效益的识别与评价提供新的研究思路和方法。

Abstract

【Objective】Through the analysis of the needs and activity patterns of urban blue-green open space (BGOS) users, the social media attributes of urban BGOS can best serve people were identified. The aim was to construct a scientifically based evaluation system that enhanced the “People-BGOS-Society” relationship and provide a reference for corresponding management planning.【Method】Based on literature research, field surveys, and network data collection, from the perspective of BGOS as the urban social medium, an evaluation model of the social media attributes of urban BGOS was constructed based on four dimensions: space background, connection type, participation mode, and spatial significance. Taking three urban parks in Nanjing as an examples, a back propagation (BP) neural network model was used for model verification and a weighted quantitative analysis.【Result】By studying the survey data, the BP neural network evaluated the social media attributes of urban BGOS. The evaluation model included four first-level indicators and 12 second-level indicators. The first-level indicators included spatial background, connection type, participation mode, and spatial significance, among which spatial background (weight 0.440) was the key factor for evaluating the social media attributes. Among the secondary indicators, the natural support level (weight 0.157) had the greatest impact, followed by infrastructure perfection (weight 0.127), microclimate comfort (weight 0.125), and local identity (weight 0.121), while the remaining parameters showed relatively little impact. The quality of the spatial background was the basis for attracting users to carry out social activities. The close “People-BGOS-Society” relationship helped to improve the spatial level of social media attributes.【Conclusion】This study combined sociology with the field of landscape architecture. From the perspective of the relationship between people and space, the application of a BP neural network model was a novel research concept and methods were developed for the identification and evaluation of the social benefits of BGOS.

关键词

蓝绿开放空间 / BP神经网络 / 社会介质 / 属性评价 / 南京市

Key words

blue-green open space (BGOS) / BP neural network / social media / attribute evaluation / Nanjing City

引用本文

导出引用
徐海顺, 钱宸, 秦雪. 基于BP神经网络的城市蓝绿开放空间社会介质属性评价[J]. 南京林业大学学报(自然科学版). 2024, 48(6): 193-200 https://doi.org/10.12302/j.issn.1000-2006.202306020
XU Haishun, QIAN Chen, QIN Xue. Evaluating the social media attributes of urban blue-green open space using a back propagation neural network[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(6): 193-200 https://doi.org/10.12302/j.issn.1000-2006.202306020
中图分类号: TU984.115   

参考文献

[1]
WANG Y C, SHEN J K, XIANG W N. Ecosystem service of green infrastructure for adaptation to urban growth:function and configuration[J]. Ecosyst Health Sustain, 2018, 4(5):132-143.DOI: 10.1080/20964129.2018.1474721.
[2]
吴雪飞, 谭传东. 武汉中心城区生态系统服务额外需求量化评估:缘起绿色基础设施供需错配[J]. 中国园林, 2020, 36(5):127-132.
WU X F, TAN C D. Evaluation of ecosy-stem services excess demand in the central area of Wuhan:a discussion based on mismatches between supply and demand of green infrastructure[J]. Chin Landsc Archit, 2020, 36(5):127-132.DOI: 10.19775/j.cla.2020.05.0127.
[3]
SANDER H A, ZHAO C. Urban green and blue:who values what and where?[J]. Land Use Policy, 2015, 42:194-209.DOI: 10.1016/j.landusepol.2014.07.021.
[4]
常俪. 关于移动社交对日常活动空间影响的实证研究:基于对手机用户的调查数据[J]. 广告大观(理论版), 2013(6):77-87.
CHANG L. Research of daily activity impacted by mobile social network:based on mobile phone users data[J]. J Advert Study (Acad Ed), 2013(6):77-87.
[5]
LENG L Y, MAO X H, JIA H F, et al. Performance assessment of coupled green-grey-blue systems for Sponge City construction[J]. Sci Total Environ, 2020,728:138608.DOI: 10.1016/j.scitotenv.2020.138608.
[6]
ZHOU W, CAO W, WU T, et al. The win-win interaction between integrated blue and green space on urban cooling[J]. Sci Total Environ, 2023,863:160712.DOI: 10.1016/j.scitotenv.2022.160712.
[7]
曹先磊, 刘高慧, 张颖, 等. 城市生态系统休闲娱乐服务支付意愿及价值评估:以成都市温江区为例[J]. 生态学报, 2017, 37(9):2970-2981.
CAO X L, LIU G H, ZHANG Y, et al. Willingness-to-pay for recreation services of urban ecosy stem and its value assessment:a case study in the Wenjiang District of Chengdu City,China[J]. Acta Ecol Sin, 2017, 37(9):2970-2981.DOI: 10.5846/stxb201602010228.
[8]
JIAO X X, ZHAO Z M, LI X, et al. Advances in the blue-green space evaluation index system[J]. Ecohydrology, 2023, 16(3):2527.DOI: 10.1002/eco.2527.
[9]
JIANG X R, LARSEN L, SULLIVAN W. Connections-between daily greenness exposure and health outcomes[J]. Int J Environ Res Public Health, 2020, 17(11):3965.DOI: 10.3390/ijerph17113965.
[10]
WANG K, SUN Z H, CAI M, et al. Impacts of urban blue-green space on residents’ health:a bibliometric review[J]. Int J Environ Res Public Health, 2022, 19(23):16192.DOI: 10.3390/ijerph192316192.
[11]
MACKERRON G, MOURATO S. Happiness is greater in natural environments[J]. Glob Environ Change, 2013, 23(5):992-1000.DOI: 10.1016/j.gloenvcha.2013.03.010.
[12]
SIKHULULEKILE N, SCOTT A. Influence of blue-green and grey infrastructure combinations on natural and human-derived capital in urban drainage planning[J]. Sustainability, 2021, 13(5):2571.DOI: 10.3390/SU13052571.
[13]
杨青娟, 梅瑞狄斯·弗朗西丝·多比. 雨洪管理多功能景观文化生态系统服务的重要性-满意度研究[J]. 景观设计学, 2019, 7(1):52-67.
YANG Q J, DOBBIE M F. Importance-satisfaction analysis of cultural ecosystem services of multi-functional landscapes designed for stormwater management[J]. Landsc Archit Front, 2019, 7(1):52-67.DOI: 10.15302/J-LAF-20190105.
[14]
刘颂, 杨莹, 贾虎, 等. 基于多源数据的上海城市公园使用满意度关键影响因素[J]. 中国城市林业, 2020, 18(2):51-56.
LIU S, YANG Y, JIA H, et al. Research on influe-ncing factors to Shanghai urban parks satisfaction based on multi-source data[J]. J Chin Urban For, 2020, 18(2):51-56.DOI: 10.12169/zgcsly.2019.11.20.0004.
[15]
AYALA-AZCÁRRAGA C, DIAZ D, ZAMBRANO L. Characteristics of urban parks and their relation to user well-being[J]. Landsc Urban Plan, 2019, 189:27-35.DOI: 10.1016/j.landurbplan.2019.04.005.
[16]
郭庭鸿. 城市绿色空间健康效益的社会生态调节因素研究[J]. 西部人居环境学刊, 2019, 34(3):35-41.
GUO T H. Study on social-ecological moderators differing the relation between urban green space and human health[J]. J Hum Settl West China, 2019, 34(3):35-41.DOI: 10.13791/j.cnki.hsfwest.20190305.
[17]
秦诗文, 杨俊宴, 冯雅茹, 等. 基于多源数据的城市公园时空活力与影响因素测度:以南京为例[J]. 中国园林, 2021, 37(1):68-73.
QIN S W, YANG J Y, FENG Y R, et al. Spatio-temporal vitality and influencing factors of urban parks based on multi-source data:a case study of Nanjing[J]. Chin Landsc Archit, 2021, 37(1):68-73.DOI: 10.19775/j.cla.2021.01.0068.
[18]
YANG B, LI M H, LI S J. Design-with-nature for multifunctional landscapes:environmental benefits and social barriers in community development[J]. Int J Environ Res Public Health, 2013, 10(11):5433-5458.DOI: 10.3390/ijerph10115433.
[19]
毛国栋. 多源数据视角下城市活力空间特征与影响机制研究[J]. 测绘技术装备, 2023, 25(2):31-38.
MAO G D. The spatial characteristic analysis and influence mechanism of urban vitality space based on multi-sourced data[J]. Geomat Technol Equip, 2023, 25(2):31-38.DOI: 10.20006/j.cnki.61-1363/P.2023.02.007.
[20]
何仲禹, 李岳昊. 基于开放数据的上海城市公园使用活跃度时空特征研究[J]. 中国园林, 2020, 36(10):45-50.
HE Z Y, LI Y H. The temporal-spatial characteristics of usage activ-eness of urban parks in Shanghai based on open data[J]. Chin Landsc Archit, 2020, 36(10):45-50.DOI: 10.19775/j.cla.2020.10.0045.
[21]
范佳辉, 张亚丽, 李明诗. 基于空间光谱信息协同的城市不透水层提取方法比较研究[J]. 南京林业大学学报(自然科学版), 2021, 45(1):212-218.
FAN J H, ZHANG Y L, LI M S. Comparing four methods for extracting impervious surfaces using spectral information in synergy with spatial heterogeneity of remotely sensed imagery[J]. J Nanjing For Univ(Nat Sci Ed), 2021, 45(1):212-218.DOI: 10.12302/j.issn.1000-2006.201911012.
[22]
刘超, 李卓欣, 陈芷凝, 等. 基于微气候模拟与人体舒适度指数的校园微更新研究:以同济大学四平路校区为例[J]. 住宅科技, 2021, 41(3):38-46.
LIU C, LI Z X, CHEN Z N, et al. Study of campus regeneration through microclimate simulation and body comfort index approaches: a case of Tongji University Siping Road campus[J]. Hous Sci, 2021, 41(3):38-46.DOI: 10.13626/j.cnki.hs.2021.03.008.
[23]
王彬, 吴海宏, 李庚华. 基于BP神经网络确定评价体系指标权重[J]. 广州航海学院学报, 2021, 29(1):55-59.
WANG B, WU H H, LI G H. Determining the index weight of the evaluation system based on BP neural network[J]. J Guangzhou Mar Univ, 2021, 29(1):55-59.DOI: 10.3969/j.issn.1009-8526.2021.01.014.
[24]
SHI X F. Tourism culture and demand forecasting based on BP neural network mining algorithms[J]. Pers Ubiquitous Comput, 2020, 24(2):299-308.DOI: 10.1007/s00779-019-01325-x.
[25]
TANG Y S, SU J H, KHAN M A. Research on sentiment analysis of network forum based on BP neural network[J]. Mob Netw Appl, 2021, 26(1):174-183.DOI: 10.1007/s11036-020-01697-y.
[26]
RÍOS-RODRÍGUEZ M L, ROSALES C, LORENZO M, et al. Influence of perceived environmental quality on the per-ceived restorativeness of public spaces[J]. Front Psychol, 2021,12:644763.DOI: 10.3389/fpsyg.2021.644763.
[27]
CHEN J R, JIN Y M, JIN H. Effects of visual landscape on subjective environmental evaluations in the open spaces of a severe cold city[J]. Front Psychol, 2022,13:954402.DOI: 10.3389/fpsyg.2022.954402.
[28]
DE BELL S, GRAHAM H, JARVIS S, et al. The importance of nature in mediating social and psychological benefits associated with visits to freshwater blue space[J]. Landsc Urban Plan, 2017, 167:118-127.DOI: 10.1016/j.landurbplan.2017.06.003.
[29]
ZHOU Y, YANG L Q, YU J N, et al. Do seasons matter?Exploring the dynamic link between blue-green space and mental restoration[J]. Urban For Urban Green, 2022,73:127612.DOI: 10.1016/j.ufug.2022.127612.
[30]
RIVERA E, TIMPERIO A, LOH V H, et al. Important park features for encouraging park visitation,physical activity and social interaction among adolescents:a conjoint analysis[J]. Health Place, 2021,70:102617.DOI: 10.1016/j.healthplace.2021.102617.
[31]
屈子雅, 张青萍, 张瑞, 等. 基于双重绩效的城市蓝绿空间布局优化研究:以上海市普陀区为例[J]. 南京林业大学学报(自然科学版), 2023, 47(4):235-243.
QU Z Y, ZHANG Q P, ZHANG R, et al. The optimization of urban blue-green spatial layout based on dual performances: a case study on Putuo District in Shanghai[J]. J Nanjing For Univ(Nat Sci Ed), 2023, 47(4):235-243.DOI: 10.12302/j.issn.1000-2006.202111019.
[32]
HONG S K, LEE S W, JO H K, et al. Impact of frequency of visits and time spent in urban green space on subjective Well-Being[J]. Sustainability, 2019, 11(15):4189.DOI: 10.3390/su11154189.

基金

教育部人文社会科学研究青年基金项目(20YJCZH190)

编辑: 郑琰燚
PDF(2238 KB)

Accesses

Citation

Detail

段落导航
相关文章

/