不同截雨干旱时间对毛竹叶片氮含量时空分布的影响

曹永慧, 陈庆标, 周本智, 葛晓改, 王小明

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1) : 155-161.

PDF(1383 KB)
PDF(1383 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1) : 155-161. DOI: 10.12302/j.issn.1000-2006.202307012
研究论文

不同截雨干旱时间对毛竹叶片氮含量时空分布的影响

作者信息 +

Effects of different drought periods on the spatiotemporal distribution of nitrogen content in the leaves of Phyllostachys edulis

Author information +
文章历史 +

摘要

【目的】叶片氮含量是植物重要功能性状之一,定量分析不同截雨干旱时间对毛竹(Phyllostachys edulis)叶片氮含量影响,为季节性干旱条件下毛竹氮肥管理提供决策依据。【方法】以钱江源森林生态系统定位研究站野外毛竹林为研究对象,通过“顶棚法”人工截雨干旱处理2年试验数据测定,定量分析不同截雨干旱时间下毛竹叶片氮含量的时空分布特征及其对干旱的响应。【结果】截雨干旱处理1和2年后,干旱毛竹叶片氮含量年平均值均高于自然生长条件下(对照)。截雨干旱处理2年后的毛竹叶片氮含量年平均值比干旱处理1年后的高,但差异不显著。与对照相比,截雨干旱1年使夏季、冬季毛竹叶片氮含量增加;随着干旱处理时间延长,叶片氮含量在夏季、秋季、冬季保持稳定。截雨干旱1年后,除冬季毛竹冠层上部叶片外,夏季和冬季冠层各叶片氮含量显著比对照高(P<0.05);截雨干旱2年后,仅冬季毛竹冠层上部叶片氮含量显著高于对照。截雨干旱1年后夏季毛竹冠层上部与下部叶片氮含量显著差异(P<0.05)。随着干旱时间延长,毛竹叶片氮含量与对照差异显著且受季节和竹龄双重影响,但干旱处理下春季不同年龄毛竹叶片氮含量与对照差异不显著、冬季1度竹(1~2年生)叶片氮含量显著高于对照的趋势比较稳定。截雨干旱1年和2年后,不同年龄毛竹间春季和夏季叶片氮含量均无显著差异,但秋季和冬季1度竹叶片氮含量与4度竹(7~8年生)间差异显著(P<0.05)。相比干旱1年,较长时间干旱下老龄竹叶片年平均氮含量保持较高值。【结论】 截雨干旱处理2年的数据表明,干旱毛竹叶片平均氮含量高于对照但不显著,截雨干旱处理年限对毛竹叶片氮含量的影响受生长季节和竹龄双重调节。随着截雨干旱时间延长,毛竹叶片氮含量高于对照处理的季节发生频率增加;干旱与对照处理毛竹叶片氮含量显著差异发生的冠层部位减少,局限于个别冠层的差异显著。今后气候变化下毛竹养分管理需要考虑季节和竹龄因素。

Abstract

【Objective】 The foliar nitrogen content is an important functional trait of plants. Herein, the effect of drought on the nitrogen content of Moso bamboo (Phyllostachys edulis) leaves was quantitatively analyzed. The study provides a theoretical basis for the sustainable and efficient management of bamboo forests under the current global climate change scenario.【Method】A wild bamboo forest located in Miaoshanwu Forest Farm of Qianjiangyuan Forest Ecosystem Research Station was selected as the research object in this study. The 2-year experimental data pertaining to precipitation exclusion in the bamboo forest, and the spatiotemporal distribution characteristics of the nitrogen content per unit mass of Phyllostachys edulis leaves under different drought periods and their response to drought stress were analyzed. 【Result】 The annual average nitrogen content per unit mass of bamboo leaves following 1 and 2 years of precipitation exclusion was high than that under natural growth conditions (CK). Although the annual average nitrogen content after 2 years of precipitation exclusion was higher than that after 1 year of exposure to drought, the difference was not significant. Exposure to drought for 1 year increased the foliar nitrogen content during summer and winter, compared to that of the CK; however, the foliar nitrogen content remained stable in summer, autumn, and winter following prolonged exposure to drought. With the exception of the nitrogen content of the leaves in the upper canopy in winter, the foliar nitrogen content following 1 year of precipitation exclusion was significantly higher than that of the CK in summer and winter (P < 0.05). The nitrogen content of the upper leaves was significantly higher than that of the CK in winter after 2 years of precipitation exclusion. The nitrogen content of the upper and lower leaves differed significantly in summer (P < 0.05) after 1 year of precipitation exclusion. The prolongation of drought exposure caused significant differences between the foliar nitrogen content of drought-exposed and CK plants, depending on the season and age of the bamboo. However, the foliar nitrogen content of different degrees of bamboo did not differ significantly from that of the CK during spring. The foliar nitrogen content of first degree (1-2 years old) bamboo plants under drought stress was significantly higher than that of the CK in winter. There were no significant differences between the foliar nitrogen content of different degrees of bamboo plants in spring and summer, following 1 or 2 years of precipitation exclusion. However, the foliar nitrogen content of the first (1-2 years old) and fourth (7-8 years old) degree bamboo plants differed significantly in autumn and winter (P < 0.05). The annual average foliar nitrogen content of the elderly bamboo plants exposed to prolonged drought was relatively high compared to that of the plants exposed to drought for 1 year. 【Conclusion】Analysis of the 2-year data obtained during precipitation exclusion demonstrated that the average foliar nitrogen content of bamboo following precipitation exclusion was higher than that of the CK, but the differences were not significant. The effects of the duration of drought exposure on the foliar nitrogen content were influenced by the season and plant age. The prolongation of precipitation exclusion increased the number of seasons during which the foliar nitrogen content of the drought-exposed plants was higher than that of the CK. Additionally, the number of canopy layers of drought-exposed and control plants that exhibited significant differences in foliar nitrogen content was reduced following the extension of precipitation exclusion, and the differences were limited to individual canopies. The season and age of the bamboo plants need to be considered for the nutrient management of Moso bamboo in future, under the current climate change situation.

关键词

毛竹 / 截雨干旱 / 叶片含氮量 / 生长季节 / 林龄 / 冠层部位

Key words

Phyllostachys edulis / precipitation exclusion / foliar nitrogen content / growing season / forest age / canopy position

引用本文

导出引用
曹永慧, 陈庆标, 周本智, . 不同截雨干旱时间对毛竹叶片氮含量时空分布的影响[J]. 南京林业大学学报(自然科学版). 2025, 49(1): 155-161 https://doi.org/10.12302/j.issn.1000-2006.202307012
CAO Yonghui, CHEN Qingbiao, ZHOU Benzhi, et al. Effects of different drought periods on the spatiotemporal distribution of nitrogen content in the leaves of Phyllostachys edulis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(1): 155-161 https://doi.org/10.12302/j.issn.1000-2006.202307012
中图分类号: S718   

参考文献

[1]
庞进平, 王永生. 油菜幼苗光合及叶绿素荧光参数对干旱胁迫的响应及其抗旱性分析[J]. 西北植物学报, 2023, 43(2):276-284.
PANG J P, WANG Y S. Photosynthetic and chlorophyll fluorescence responses of rape seedlings to drought stress and its drought resistance evaluation[J]. Acta Bot Boreal-Occident Sin, 2023, 43(2):276-284.DOI: 10.7606/j.issn.1000-4025.2023.02.0276.
[2]
刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学:生命科学, 2015, 45(4):325-339.
LIU X J, MA K P. Plant functional traits: concepts,applications and future directions[J]. Sci Sin Vitae, 2015, 45(4):325-339.DOI: 10.1360/N052014-00244.
[3]
夏蕾, 吉卉, 张家铱, 等. 降水差异对内蒙古温带草原植物根系和叶片功能性状的影响[J]. 西北植物学报, 2022, 42(12):2112-2122.
XIA L, JI H, ZHANG J Y, et al. Effects of different precipitation on root and leaf functional traits of plants in Inner Mongolia temperate steppe[J]. Acta Bot Boreal-Occident Sin, 2022, 42(12):2112-2122.DOI: 10.7606/j.issn.1000-4025.2022.12.2112.
[4]
戚金存, 刘大泉, 刘泓, 等. 干旱胁迫及复水对槟榔幼苗形态和生理特性的影响[J]. 江苏农业学报, 2024, 40(4):615-624.
QI J C, LIU D Q, LIU H, et al. Effects of drought stress and rehydration on the morphology and physiological characteristics of betel nut seedlings[J]. Jiangsu J of Agr Sci, 2024, 40(4):615-624.DOI: 10.3969/j.issn.1000-4440.2024.04.005.
[5]
景继鑫, 陈灿阳, 满秀玲, 等. 大兴安岭北部主要乔木树种叶片-土壤碳氮磷生态化学计量特征[J]. 森林工程, 2024, 40 (3): 1-10.
JING J X, CHEN C Y, MAN X L, et al. The foliar-soil ecostoichiometric characteristics of the principal arboreal species in the northern region of the Greater Hinggan Mountains[J]. Forest Engineering, 2024, 40 (3): 1-10.
[6]
岳喜元, 左小安, 庾强, 等. 降水量和短期极端干旱对典型草原植物群落及优势种羊草(Leymus chinensis) 叶性状的影响[J]. 中国沙漠, 2018, 38(5):1009-1016.
YUE X Y, ZUO X A, YU Q, et al. Effects of precipitation and short term extreme drought on leaf traits in Inner Mongolia typical steppe[J]. J Desert Res, 2018, 38(5):1009-1016.DOI: 10.7522/j.issn.1000-694X.2018.00031.
[7]
LOZANO Y M, AGUILAR-TRIGUEROS C A, FLAIG I C, et al. Root trait responses to drought are more heterogeneous than leaf trait responses[J]. Funct Ecol, 2020, 34(11):2224-2235.DOI: 10.1111/1365-2435.13656.
[8]
LUONG J C, HOLL K D, LOIK M E. Leaf traits and phylogeny explain plant survival and community dynamics in response to extreme drought in a restored coastal grassland[J]. J Appl Ecol, 2021, 58(8):1670-1680.DOI: 10.1111/1365-2664.13909.
[9]
马晓东, 钟小莉, 桑钰. 干旱胁迫下胡杨实生幼苗氮素吸收分配与利用[J]. 生态学报, 2018, 38(20):7508-7519.
MA X D, ZHONG X L, SANG Y. Characteristics of nitrogen absorption,distribution,and utilization by Populus euphratica seedlings under drought stress[J]. Acta Ecol Sin, 2018, 38(20):7508-7519.DOI: 10.5846/stxb201711282136.
[10]
唐晓鹿, 范少辉, 漆良华, 等. 采伐对幕布山区毛竹林土壤呼吸的影响[J]. 林业科学研究, 2013, 26(1):52-57.
TANG X L, FAN S H, QI L H, et al. Effect of cutting on soil respiration in Phyllostachy edulis forest,Mubushan,China[J]. For Res, 2013, 26(1):52-57.DOI: 10.13275/j.cnki.lykxyj.2013.01.013.
[11]
WEN G S, ZHANG L Y, ZHANG R M, et al. Temporal and spatial dynamics of carbon fixation by Moso bamboo (Phyllostachys pubescens) in subtropical China[J]. Bot Rev, 2011, 77(3):271-277.DOI: 10.1007/s12229-011-9068-x.
[12]
应叶青, 郭璟, 魏建芬, 等. 干旱胁迫对毛竹幼苗生理特性的影响[J]. 生态学杂志, 2011, 30(2):262-266.
YING Y Q, GUO J, WEI J F, et al. Effects of drought stress on physiological characteristics of Phyllostachys edulis seedlings[J]. Chin J Ecol, 2011, 30(2):262-266.DOI: 10.13292/j.1000-4890.2011.0059.
[13]
袁佳丽, 温国胜, 张明如, 等. 毛竹快速生长期的水势变化特征[J]. 浙江农林大学学报, 2015, 32(5):722-728.
YUAN J L, WEN G S, ZHANG M R, et al. Water potential with Phyllostachys edulis in its fast-growth periods[J]. J Zhejiang A & F Univ, 2015, 32(5):722-728.DOI: 10.11833/j.issn.2095-0756.2015.05.010.
[14]
曹永慧, 周本智, 王小明, 等. 冠层高度对毛竹叶片光合生理特性的影响[J]. 西北植物学报, 2016, 36(11):2256-2266.
CAO Y H, ZHOU B Z, WANG X M, et al. Effects of canopy height on photosynthetic physiology characteristics of Phyllostachys pubescens leaves[J]. Acta Bot Boreal-Occident Sin, 2016, 36(11):2256-2266.DOI: 10.7606/j.issn.1000-4025.2016.11.2256.
[15]
汤靖文, 李晨晞, 彭政淋, 等. 氮磷钾肥对水曲柳雌雄株叶片光合生理及化学计量特征的影响[J]. 森林工程, 2023, 39 (2): 30-38,46.
TANG J W, LI C X, PENG Z L, et al. Effects of nitrogen, phosphorus and potassium fertilizers on photosynthetic physiological and stoichiometric characteristics of male and female leaves of Fraxinus mandshurica[J]. Forest Engineering, 2023, 39(2):30-38.
[16]
顾小平, 吴晓丽, 汪阳东. 毛竹林氮素营养诊断的研究[J]. 浙江林业科技, 2004, 24(2):1-4.
GU X P, WU X L, WANG Y D. Study on nutrient diagnoses of Phyllostachys heterocycla var.pubescens stand[J]. J Zhejiang For Sci Technol, 2004, 24(2):1-4.
[17]
高培军, 邱永华, 周紫球, 等. 氮素施肥对毛竹生产力与光合能力的影响[J]. 浙江农林大学学报, 2014, 31(5):697-703.
GAO P J, QIU Y H, ZHOU Z Q, et al. Productivity and photosynthetic ability of Phyllostachys edulis with nitrogen fertilization[J]. J Zhejiang A & F Univ, 2014, 31(5):697-703.DOI: 10.11833/j.issn.2095-0756.2014.05.006.
[18]
刘广路, 范少辉, 郭宝华, 等. 不同年龄毛竹碳氮磷化学计量特征[J]. 热带作物学报, 2016, 37(2):279-285.
LIU G L, FAN S H, GUO B H, et al. The carbon,nitrogen and phosphorus contents of Phyllostachys edulis with different ages[J]. Chin J Trop Crops, 2016, 37(2):279-285.DOI: 10.3969/j.issn.1000-2561.2016.02.011.
[19]
程平, 刘易鑫, 罗运旺, 等. 不同施肥方法对毛竹氮素吸收、分配和利用的影响[J]. 南方林业科学, 2017, 45(3):35-38.
CHENG P, LIU Y X, LUO Y W, et al. Effects on nitrogen absorption,distribution and utilization under different fertilization ways of Phyllostachys edulis[J]. Nanfang For Sci, 2017, 45(3):35-38.DOI: 10.16259/j.cnki.36-1342/s.2017.03.010.
[20]
KOMATSU H, ONOZAWA Y, KUME T, et al. Canopy conductance for a Moso bamboo (Phyllostachys pubescens) forest in western Japan[J]. Agr Forest Meteorol, 2012, 156:111-120.DOI: 10.1016/j.agrformet.2012.01.004.
[21]
CAO Y H, ZHOU B Z, WANG X M, et al. The photosynthetic characteristics of Moso bamboo (Phyllostachys pubescens) for different canopy leaves[J]. Adv Mater Res, 2013,726-731:4274-4279.DOI: 10.4028/www.scientific.net/AMR.726-731.4274.
[22]
杜满义, 范少辉, 刘广路, 等. 中国毛竹林碳氮磷生态化学计量特征[J]. 植物生态学报, 2016, 40(8):760-774.
DU M Y, FAN S H, LIU G L, et al. Stoichiometric characteristics of carbon,nitrogen and phosphorus in Phyllostachys edulis forests of China[J]. Chin J Plant Ecol, 2016, 40(8):760-774.DOI: 10.17521/cjpe.2015.0464.
[23]
CHEN S M, HU T T, LUO L H, et al. Rapid estimation of leaf nitrogen content in apple-trees based on canopy hyperspectral reflectance using multivariate methods[J]. Infrared Phys Techn, 2020, 111:103542.DOI: 10.1016/j.infrared.2020.103542.
[24]
JIANG D L, YANG B L, CHENG X L, et al. The stoichiometry of leaf nitrogen and phosphorus resorption in plantation forests[J]. Forest Ecol Manag, 2020, 483:118743.DOI: 10.1016/j.foreco.2020.118743.
[25]
殷家扬. 弃营年限对毛竹林生态系统林分结构因子和各碳库碳分配格局的影响[D]. 杭州: 浙江农林大学, 2020.
YIN J Y. Effects of abandonment years on stand structure factors and carbon distribution patterns of carbon pools in a Moso bamboo forest ecosystem[D]. Hangzhou: Zhejiang A & F University, 2020.
[26]
曹永慧, 周本智, 葛晓改, 等. 毛竹比叶质量时空变化及对截雨干旱的响应[J]. 林业科学研究, 2019, 32(6):31-39.
CAO Y H, ZHOU B Z, GE X G, et al. Seasonal and canopy variation of leaf mass per area for Phyllostachys edulis leaves and its response to drought stress[J]. For Res, 2019, 32(6):31-39.DOI: 10.13275/j.cnki.lykxyj.2019.06.005.
[27]
黄双杰, 曹梦珍, 陈凌芝, 等. 氮素胁迫条件下茶树根系发育及生长素的响应[J]. 江苏农业学报, 2023, 39(3):814-821.
HUANG S J, CAO M Z, CHEN L Z, et al. Auxin response and tea plant roots formation regulated by nitrogen stress[J]. Jiangsu J Agr Sci, 2023, 39(3):814-821.DOI: 10.3969/j.issn.1000-4440.2023.03.023.
[28]
宗毓铮, 杨琦, 常翠翠, 等. 大气CO2浓度升高对干旱条件下冬小麦叶片光合适应的影响[J]. 应用生态学报, 2021, 32(12):43704380.
ZONG Y Z, YANG Q, CHANG C C, et al. Effects of elevated CO2 concentration on photosynthetic acclimation of winter wheat under drought condition[J]. Chin J Appl Ecol, 2021, 32(12):4370-4380.DOI: 10.13287/j.1001-9332.202112.014.
[29]
方璇, 王健, 王彬, 等. 杉木N、P代谢对模拟土壤增温及隔离降雨的响应[J]. 生态学报, 2019, 39(10):35263536.
FANG X, WANG J, WANG B, et al. Effects of simulated soil warming and precipitation exclusion on N and P metabolisms in Cunninghamia lanceolate[J]. Acta Ecol Sin, 2019, 39(10):3526-3536.DOI: 10.5846/stxb201803220570.
[30]
FULLANA-PERICÀS M, CONESA M À, DOUTHE C, et al. Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions[J]. Agr Water Manage, 2019, 223:105722.DOI: 10.1016/j.agwat.2019.105722.
[31]
程徐冰, 韩士杰, 张忠辉, 等. 蒙古栎不同冠层部位叶片养分动态[J]. 应用生态学报, 2011, 22(9):2272-2278.
CHENG X B, HAN S J, ZHANG Z H, et al. Nutrient dynamics in Quercus mongolica leaves at different canopy positions[J]. Chin J Appl Ecol, 2011, 22(9):2272-2278.DOI:10.13287/j.1001-9332.2011.0320.
[32]
田俊霞, 魏丽萍, 何念鹏, 等. 温带针阔混交林叶片性状随树冠垂直高度的变化规律[J]. 生态学报, 2018, 38(23):8383-8391.
TIAN J X, WEI L P, HE N P, et al. Vertical variation of leaf functional traits in temperate forest canopies in China[J]. Acta Ecol Sin, 2018, 38(23):8383-8391.DOI: 10.5846/stxb201801020006.
[33]
ARCHONTOULIS S V, VOS J, YIN X, et al. Temporal dynamics of light and nitrogen vertical distributions in canopies of sunflower,kenaf and cynara[J]. Field Crop Res, 2011, 122(3):186-198.DOI: 10.1016/j.fcr.2011.03.008.
[34]
HALLIK L, NIINEMETS Ü, KULL O. Photosynthetic acclimation to light in woody and herbaceous species:a comparison of leaf structure,pigment content and chlorophyll fluorescence characteristics measured in the field[J]. Plant Biology, 2012, 14(1):88-99.DOI: 10.1111/j.1438-8677.2011.00472.x.
[35]
杨甲定, 刘雨节, 冯建元, 等. 树木叶片衰老中的氮素再吸收机制研究进展[J]. 南京林业大学学报(自然科学版), 2023, 47(5):1-8.
YANG J D, LIU Y J, FENG J Y, et al. Nitrogen resorption mechanism during leaf senescence in woody plants[J]. J Nanjing For Univ (Nat Sci Ed), 2023, 47(5):1-8.DOI: 10.12302/j.issn.1000-2006.202212004.
[36]
倪霞, 吴思思, 周本智, 等. 模拟干旱处理下毛竹光响应特征分析[J]. 南京林业大学学报(自然科学版), 2018, 42(2):47-51.
NI X, WU S S, ZHOU B Z, et al. Light response characteristic of Phyllostachys edulis under drought treatment[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(2):47-51.DOI: 10.3969/j.issn.1000-2006.201611039.

基金

浙江省基础公益研究计划项目(LGF20C160001)
国家自然科学基金项目(32171774)

编辑: 王国栋
PDF(1383 KB)

Accesses

Citation

Detail

段落导航
相关文章

/