南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1): 1-10.doi: 10.12302/j.issn.1000-2006.202307028
• 特邀专论(执行主编 李萍萍 李维林) • 下一篇
刘璨1,2(), 刘浩2, 朱文清2, 王雁斌2, 张寒3,*(
)
收稿日期:
2023-07-21
修回日期:
2024-05-15
出版日期:
2025-01-30
发布日期:
2025-01-21
通讯作者:
* 张寒(hanzhang@nwafu.edu.cn),教授。作者简介:
刘璨(sfa1sfa1sfa1@163.com),研究员。
基金资助:
LIU Can1,2(), LIU Hao2, ZHU Wenqing2, WANG Yanbin2, ZHANG Han3,*(
)
Received:
2023-07-21
Revised:
2024-05-15
Online:
2025-01-30
Published:
2025-01-21
摘要:
【目的】中国粮食安全问题受到高度关注,迫切需要科学评估退耕还林工程对中国粮食生产的影响,为决策者提供退耕还林工程后续政策思路,进一步巩固好退耕还林成果。【方法】基于1995—2020年31省(自治区、直辖市)的宏观样本和6省(区)15县(市)72个乡镇、171个村的5 223个农户微观样本,采用系统GMM模型估计了退耕还林工程对各省区市粮食生产和样本农户粮食播种面积的动态影响,采用固定效应模型估计了退耕还林工程对样本农户粮食生产行为的影响。【结果】退耕还林工程对样本省区市粮食产量和样本农户粮食播种面积产生了负向影响,且影响呈现出显著的粮食品种、时间和区域等异质性;若考虑到退耕还林工程对农户粮食生产行为的动态调整,以及新增森林生态系统服务和生产的森林食品,实施退耕还林工程对粮食生产的影响不显著。【结论】退耕还林工程未对中国粮食安全产生显著负面影响,需要与时俱进、分区分类地完善退耕还林政策。
中图分类号:
刘璨,刘浩,朱文清,等. 退耕还林工程对中国粮食生产动态影响研究[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 1-10.
LIU Can, LIU Hao, ZHU Wenqing, WANG Yanbin, ZHANG Han. The dynamic effects of the Sloping Land Conversion to Forests Program on grain production in China[J].Journal of Nanjing Forestry University (Natural Science Edition), 2025, 49(1): 1-10.DOI: 10.12302/j.issn.1000-2006.202307028.
表1
主要变量及定义"
宏观样本变量 variable for sample province | 量符号 code | 微观样本变量 variable for sample rural household | 量符号 code |
---|---|---|---|
粮食产量/万t grain production | GGP | 农户粮食播种面积/hm2 crop area | MMGA |
玉米产量/万t corn production | GGPC | 农户的耕地劳动力投入/(人·d-1) labor input on farmland | GGlabor |
水稻产量/万t rice production | GGPR | 农户的耕地资本投入/元 investment on farmland | GGCAP |
小麦产量/万t wheat production | GGPW | 是否退耕(是=1;否则=0)whether enrolled in the SLCPA (yes=1; otherwise=0) | D' |
是否退耕(是=1;否则=0)whether enrolled in the SLCP (yes=1; otherwise=0) | D | 累计退耕地造林面积/hm2 area enrolled in the SLCP | SSLCPA |
累计退耕地造林面积/万hm2 area enrolled in the SLCP | SSLCPA | 村级户均林地面积/hm2 the forest area of farmers in the village level | FFS2 |
森林覆盖率/% forest coverage rate | FFS1 | 粮食价格(上一年=100)grain price (the previous year=100) | Pw1 |
全年降水量/mm annual rainfall | N1 | 经济林产品价格(上一年记为100)economic forest products price | Pw3 |
年平均气温/℃ annual mean temperature | N2 | 油料价格(上一年记为100)oil price | Pw4 |
受灾面积/万hm2 natural disaster area | N3 | 劳动力价格/(元·人-1·d-1)labor price | Pw6 |
油料作物种植面积/万hm2 area of oil | PH1 | 1年期贷款利率/% one-year loan interest rate | Pw7 |
蔬菜种植面积/万hm2 area of vegetable | PH2 | 木材价格(上一年记为100)timber price (the previous year=100) | Pw8 |
果种植面积/万hm2 area of fruit | PH3 | 种植业补贴标准/(元·hm-2)agricultural subsidy standard | TTS1 |
粮食价格(上一年记为100)grain price (the previous year=100) | PH4 | 农业税费比例/% agricultural tax and fee ratio | TTS2 |
农资价格(上一年记为100)price of agricultural material inputs supplies (the previous year=100) | PH5 | 户主年龄/岁 age of head of household | X1 |
劳动力价格/(元·工-1)labor price | PH6 | 家庭人口/人 household size | X2 |
贷款1年期利率/% one-year loan interest rate | PH7 | 户主受教育年限/a education years for the head of household | X3 |
灌溉面积/万hm2 irrigated area | S1 | 户主是否为男性(是=1;否=0)whether the head of the household is male (yes=1;otherwise=0) | X4 |
农用机械总动力/万kW total power of agricultural machinery | S2 | 户主是否为干部(是=1;否=0)whether the head of the household is a cadre (yes=1;otherwise=0) | X5 |
表2
SSLCPA,it和Dit对宏观样本粮食产量影响估计"
变量 variable | 粮食总产量aggregative grain production | 分类粮食产量 grain production by type | |||||
---|---|---|---|---|---|---|---|
模型Ⅰ model Ⅰ | 模型Ⅱ model Ⅱ | 模型Ⅲ model Ⅲ | 模型Ⅳ model Ⅳ | 模型Ⅴ model Ⅴ | 模型Ⅵ model Ⅵ | 模型Ⅶ model Ⅶ | |
ln GGP,i(t-1) or ln GGPR,i(t-1) or ln GGPW,i(t-1) or ln GGPC,i(t-1) | 0.791***(0.068) | 0.823***(0.080) | 0.746***(0.085) | 0.769***(0.052) | 0.069**(0.030) | 0.381***(0.030) | 0.391***(0.019) |
ln SSLCPA,it | -0.003***(0.001) | -0.001(0.002) | -0.007***(0.002) | -0.006***(0.002) | |||
ln SSLCPAK,it | -0.005***(0.001) | ||||||
ln SSLCPAX,it | 0.001(0.008) | ||||||
ln SSLCPAB,it | -0.004**(0.002) | ||||||
ln SSLCPAE,it | -0.003(0.005) | ||||||
ln SSLCPAM,it | -0.004***(0.001) | ||||||
ln SSLCPAW,it | -0.003(0.003) | ||||||
ln SSLCPAN,it | -0.003(0.003) | ||||||
ln SSLCPAS,it | -0.003**(0.001) | ||||||
FFS1,it | 0.004**(0.002) | 0.004*(0.002) | 0.003(0.005) | 0.003*(0.002 | 0.020***(0.007) | -0.007(0.007) | -0.024(0.021) |
截距intercept | 0.659(0.702) | 0.460(1.151) | 0.522(1.184) | 0.866(1.399) | 2.123(3.248) | -3.887(2.579) | -1.721(2.356) |
控制变量control variables | 已控制 | 已控制 | 已控制 | 已控制 | 已控制 | 已控制 | 已控制 |
J检验 J test (χ2) | 21.385 | 21.698 | 21.217 | 21.208 | 26.157 | 15.538 | 20.381 |
Arellano-Bond二阶序列检验 Arellano-Bond second-order series test | 0.827 | 0.880 | 0.946 | 0.905 | 1.225 | -0.742 | 1.033 |
ln GGP,i(t-1) or ln GGPR,i(t-1) or ln GGPW,i(t-1) or ln GGPC,i(t-1) | 0.798***(0.054) | 0.751***(0.179) | 0.560***(0.127) | 0.797***(0.127) | 0.074***(0.025) | 0.419***(0.030) | 0.405***(0.032) |
Dit | -0.057***(0.014) | -0.073(0.057) | -0.201***(0.065) | -0.129**(0.064) | |||
DDK,it | -0.339(0.307) | ||||||
DDX,it | -0.105(0.517) | ||||||
DDB,it | 0.244(0.353) | ||||||
DDE,it | -0.343(0.213) | ||||||
DDM,it | -0.488(0.336) | ||||||
DDW,it | -0.402(0.315) | ||||||
DDN,it | -0.060(0.118) | ||||||
DDS,it | -0.056(0.177) | ||||||
FFS1,t | 0.004**(0.002) | 0.001(0.004) | -0.000(0.004) | 0.004*(0.002) | 0.021***(0.006) | -0.012(0.008) | -0.005(0.006) |
截距 inception | 0.679(0.639) | 1.262(1.338) | 2.163**(1.088) | 0.694(0.813) | 2.229(3.575) | -0.788(1.849) | 0.172(1.428) |
控制变量 control variables | 已控制 | 已控制 | 已控制 | 已控制 | 已控制 | 已控制 | 已控制 |
J检验 J test (χ2) | 21.573 | 21.085 | 17.441 | 21.600 | 25.576 | 16.767 | 20.792 |
二阶序列检验 second-order series test | 0.835 | 0.023 | -0.384 | 0.908 | 1.342 | -0.698 | 1.017 |
表3
SSLCPA,it和Dit对样本农户粮食播种面积的影响"
变量 variable | 不分区 all samples | 主产区+非主产区 main + non-main production regions | 分地貌 topography | 长江流域+黄河流域 Yangtze River + Yellow River catchment | 不分区 all samples | 主产区+非主产区 main + non-main production regions | 分地貌 topography | 长江流域+黄河流域 Yangtze River + Yellow River catchment |
---|---|---|---|---|---|---|---|---|
ln GGA,i(t-1) | 0.907***(0.006) | 0.893***(0.007) | 0.907***(0.006) | 0.906***(0.006) | 0.909***(0.006) | 0.900***(0.006) | 0.911***(0.006) | 0.910***(0.006) |
ln SSLCPA,it | -0.011***(0.003) | |||||||
ln SSLCPAK,it | -0.003(0.003) | |||||||
ln SSLCPANK,it | -0.022***(0.004) | |||||||
ln SSLCPAP,it | -0.005(0.005) | |||||||
ln SSLCPAH,it | 0.006(0.005) | |||||||
ln SSLCPAM,it | -0.012***(0.003) | |||||||
ln SSLCPCAJ,it | -0.010***(0.003) | |||||||
ln SSLCPAHH,it | -0.014***(0.003) | |||||||
Dit | -0.068***(0.019) | |||||||
DDK,it | -0.014(0.017) | |||||||
DDNK,it | -0.141***(0.030) | |||||||
DDP,it | -0.014(0.045) | |||||||
DDH,it | -0.009(0.029) | |||||||
DDS,it | -0.064***(0.020) | |||||||
DDCJ,it | -0.063***(0.022) | |||||||
DDHH,it | -0.073***(0.027) | |||||||
Pw1,it | 0.468***(0.035) | 0.432***(0.041) | 0.433***(0.041) | 0.467***(0.033) | 0.472***(0.036) | 0.440***(0.042) | 0.442***(0.043) | 0.474***(0.035) |
Pw3,it | -0.073***(0.026) | -0.071**(0.028) | -0.097***(0.026) | -0.075***(0.026) | -0.073***(0.027) | -0.068**(0.029) | -0.084***(0.026) | -0.074***(0.027) |
Pw4,it | 0.215***(0.052) | 0.205***(0.051) | 0.232***(0.053) | 0.219***(0.052) | 0.220***(0.051) | 0.220***(0.048) | 0.229***(0.052) | 0.219***(0.051) |
ln Pw6,it | -0.153***(0.011) | -0.160***(0.013) | -0.137***(0.011) | -0.153***(0.012) | -0.152***(0.011) | -0.160***(0.013) | -0.140***(0.010) | -0.151***(0.012) |
Pw7,t | 0.003(0.003) | 0.007**(0.003) | 0.003(0.004) | 0.003(0.003) | 0.003(0.003) | 0.007**(0.004) | 0.004(0.004) | 0.003(0.003) |
Pw8,it | 0.292***(0.032) | 0.302***(0.031) | 0.307***(0.026) | 0.301***(0.033) | 0.295***(0.034) | 0.298***(0.032) | 0.299***(0.030) | 0.300***(0.035) |
FFS2,it | 0.020***(0.004) | 0.017***(0.004) | 0.021***(0.004) | 0.020***(0.003) | 0.023***(0.003) | 0.021***(0.004) | 0.023***(0.004) | 0.024***(0.003) |
ln PPCIN,it | 0.437***(0.039) | 0.451***(0.042) | 0.410***(0.047) | 0.439***(0.041) | 0.454***(0.038) | 0.466***(0.043) | 0.432***(0.044) | 0.450***(0.042) |
ln TTS1,it | 0.009***(0.002) | 0.008***(0.002) | 0.008***(0.003) | 0.009***(0.002) | 0.010***(0.002) | 0.009***(0.002) | 0.008***(0.002) | 0.010***(0.002) |
TTS2,it | -0.766***(0.280) | 0.042(0.375) | -1.110*(0.648) | -0.928***(0.286) | -0.423(0.314) | 0.257(0.405) | -0.850(0.583) | -0.545*(0.328) |
ln X1,it | -0.537***(0.168) | -0.422**(0.172) | -0.615***(0.213) | -0.509***(0.164) | -0.562***(0.189) | -0.502***(0.192) | -0.619***(0.221) | -0.544***(0.188) |
ln X2,it | 0.204***(0.066) | 0.210***(0.068) | 0.190***(0.069) | 0.183**(0.079) | 0.203***(0.074) | 0.212***(0.076) | 0.184***(0.071) | 0.193**(0.082) |
ln X3,it | -0.395***(0.067) | -0.335***(0.064) | -0.392***(0.065) | -0.360***(0.056) | -0.395***(0.065) | -0.359***(0.066) | -0.392***(0.063) | -0.378***(0.055) |
0.217(0.179) | 0.271(0.185) | 0.206(0.180) | 0.196(0.178) | 0.278(0.176) | 0.336*(0.183) | 0.295*(0.173) | 0.265(0.174) | |
0.675***(0.249) | 0.698***(0.269) | 0.548**(0.277) | 0.694**(0.280) | 0.645***(0.244) | 0.664**(0.266) | 0.497*(0.272) | 0.659**(0.277) | |
t | 0.024***(0.005) | 0.022***(0.006) | 0.022***(0.006) | 0.024***(0.005) | 0.025***(0.005) | 0.023***(0.006) | 0.024***(0.006) | 0.025***(0.005) |
截距 inception | -1.838***(0.709) | -2.602***(0.790) | -1.212(0.843) | -2.100***(0.685) | -1.782**(0.753) | -2.205***(0.829) | -1.252(0.884) | -1.857**(0.743) |
J检验 test (χ2) | 60.000* | 59.004 | 58.907 | 60.739* | 59.038 | 59.227 | 58.396 | 59.337 |
二阶序列检验 second-order series test | -1.267 | -1.325 | -1.292 | -1.263 | -1.280 | -1.319 | -1.287 | -1.280 |
表4
划分SLCP参与年度对样本农户粮食生产劳动力和资本投入的影响"
变量 variable | ln GGlabor,it | ln GGCAP,it |
---|---|---|
ln GGA,it | 0.717***(0.005) | 0.738***(0.006) |
ln X1,it | 0.218***(0.058) | 0.302***(0.069) |
ln X2,it | 0.204***(0.034) | -0.009(0.041) |
ln X3,it | 0.006(0.009) | 0.018*(0.011) |
X4,it | 0.297***(0.090) | 0.118(0.107) |
Pw1,it | -0.108(0.135) | 0.087(0.161) |
Pw3,it | 0.532***(0.096) | -0.124(0.114) |
Pw4,it | 0.512***(0.155) | 0.176(0.184) |
ln Pw6,it | -0.342***(0.099) | -0.345***(0.118) |
Pw7,it | 0.061***(0.007) | -0.098***(0.008) |
Pw8,it | 0.174*(0.093) | 0.037(0.110) |
D0(若是当年退耕=1;否则=0) | 0.173***(0.064) | 0.058(0.076) |
D1(若是退耕后第1年=1;否则=0) | 0.340***(0.066) | 0.006(0.078) |
D2(若是退耕后第2年=1;否则=0) | 0.442***(0.068) | 0.125(0.081) |
D3(若是退耕后第3年=1;否则=0) | 0.739***(0.070) | 0.107(0.084) |
D4(若是退耕后第4年=1;否则=0) | 0.496***(0.071) | -0.012(0.085) |
D5(若是退耕后第5年=1;否则=0) | 0.397***(0.074) | 0.012(0.088) |
D6(若是退耕后第6年=1;否则=0) | 0.257***(0.075) | -0.290***(0.089) |
D7(若是退耕后第7年=1;否则=0) | 0.052(0.077) | -0.302***(0.092) |
D8(若是退耕后第8年=1;否则=0) | -0.128*(0.077) | -0.548***(0.092) |
D9(若是退耕后第9年=1;否则=0) | -0.108(0.080) | -0.692***(0.095) |
D10(若是退耕后第10年=1;否则=0) | -0.755***(0.085) | -0.984***(0.102) |
D11(若是退耕后第11年=1;否则=0) | -0.868***(0.082) | -0.998***(0.098) |
D12(若是退耕后第12年=1;否则=0) | -0.669***(0.078) | -0.528***(0.093) |
D13(若是退耕后第13年=1;否则=0) | -0.605***(0.077) | -0.485***(0.092) |
D14(若是退耕后第14年=1;否则=0) | -0.438***(0.079) | -0.367***(0.094) |
D15(若是退耕后第15年=1;否则=0) | -0.365***(0.081) | -0.012(0.096) |
D16(若是退耕后第16年=1;否则=0) | -0.003(0.086) | 0.470***(0.102) |
D17(若是退耕后第17年=1;否则=0) | -0.116(0.089) | 0.412***(0.107) |
D18(若是退耕后第18年=1;否则=0) | -0.117(0.102) | 0.678***(0.122) |
D19(若是退耕后第19年=1;否则=0) | -0.257**(0.125) | 0.831***(0.149) |
D20(若是退耕后第20年=1;否则=0) | -0.436***(0.132) | 0.683***(0.157) |
D21(若是退耕后第21年=1;否则=0) | -0.373**(0.170) | 0.855***(0.202) |
截距 inception | 2.023***(0.270) | 3.271***(0.321) |
R2 | 0.264 | 0.189 |
[1] | 国务院第三次全国国土调查领导小组办公室, 自然资源部和国家统计局. 第三次全国国土调查主要数据公报[EB/OL].(2021-08-26)[2023-05-30]. http://www.gov.cn/xinwen/2021-08/26/content_5633490.htm. |
[2] | BROWN L R. Full planet, empty planes:the new geopolitics of food scarcity[M]. New York: W W Norton & Company, 2012. |
[3] | BROWN L R. Who will feed China? Wake-up call for a small planet[M]. New York: W W Norton & Company, 2005. |
[4] | FAO. The state of world’s forests 2022:forest pathways for green recovery and building inclusive, resilient and sustainable economies[R/OL]. Rome:FAO, 2022. https://doi.org/10.4060/cb9360en. |
[5] | FAO, IFAD, UNICEF, et al. The state of food security and nutrition in the world 2021:transforming food systems for food security, improved nutrition and affordable healthy diets for all[R/OL]. Rome:FAO, 2021. https://doi.org/10.4060/cb4474en. |
[6] | XU Z G, XU J T, DENG X Z, et al. Grain for green versus grain:conflict between food security and conservation set-aside in China[J]. World Dev, 2006, 34(1):130-148.DOI: 10.1016/j.worlddev.2005.08.002. |
[7] | 国家统计局课题调研组. 退耕还林对西部地区粮食生产及供求的影响[J]. 管理世界, 2004(11):97-100,108-156. |
The impact of “Farmland Re-Turning into Forest” upon grain production,supply and demand in west China[J]. Manag World, 2004(11):97-100,108-156.DOI: 10.19744/j.cnki.11-1235/f.2004.11.013. | |
[8] | 陶燕格, 王磊, 宋乃平, 等. 退耕还林对粮食问题影响分析:以宁夏回族自治区原州区为例[J]. 水土保持研究, 2007, 14(1):76-78. |
TAO Y G, WANG L, SONG N P, et al. Analysis of the effect on food problems from conversion of cropland to forest and grassland: a case study of Yuanzhou District in Ningxia Hui Autonomous Region[J]. Res Soil Water Conserv, 2007, 14(1):76-78. | |
[9] | FENG Z M, YANG Y Z, ZHANG Y Q, et al. Grain-for-green policy and its impacts on grain supply in west China[J]. Land Use Policy, 2005, 22(4):301-312.DOI: 10.1016/j.landusepol.2004.05.004. |
[10] | 黄麟, 祝萍, 曹巍. 中国退耕还林还草对生态系统服务权衡与协同的影响[J]. 生态学报, 2021, 41 (3):1178-1188. |
HUANG L, ZHU P, CAO W. The impacts of the Grain for Green Project on the trade-off and synergy relationships among multiple ecosystem services in China[J]. Acta Ecologica Sinica, 2021, 41 (3):1178-1188.DOI: 10.5846/stxb202001200156. | |
[11] | 郑子潇, 胡保安, 韩海荣, 等. 基于SD模型的晋北退耕还林工程与社会经济互馈关系研究[J]. 生态学报, 2023, 43(10):3984-3994. |
ZHENG Z X, HU B A, HAN H R, et al. Research on the relationship between Grain for Green Project and social economy in northern Shanxi based on system dynamics model[J]. Acta Ecologica Sinica, 2023, 43(10):3984-3994.DOI: 10.5846/stxb202205311534. | |
[12] | Millennium Ecosystem Assessment. Ecosystems and human well-being[M]. Washington D C: Island Press, 2005. |
[13] | 刘璨. 我国退耕还林工程对粮食产量影响的分析与测度[J]. 林业经济, 2015, 37(9):51-65. |
LIU C. Estimating the effects of the sloping land conversion to forestland on grain production[J]. For Econ, 2015, 37(9):51-65.DOI: 10.13843/j.cnki.lyjj.2015.09.007. | |
[14] | LIU J G, DIAMOND J. China’s environment in a globalizing world[J]. Nature, 2005, 435(7046):1179-1186.DOI: 10.1038/4351179a. |
[15] | 刘浩, 刘璨, 刘俊昌. 退耕还林工程对农户生产要素投入与收入的影响:基于长期连续跟踪大样本农户数据[J]. 改革, 2021(1):109-124. |
LIU H, LIU C, LIU J C. The impact of the sloping land conversion to forest program on farmers’ input of production factors and income:based on long-term continuous tracking of large sample farmers’ data[J]. Reform, 2021(1):109-124. | |
[16] | 黄杰龙, 邓桢柱, 王立群. 新一轮退耕还林对贫困山区农地生产力的影响研究[J]. 林业经济问题, 2021, 41(4):378-386. |
HUANG J L, DENG Z Z, WANG L Q. Study on the impact of a new-stage grain for Green Project on cultivated land productivity in poverty-stricken mountainous areas[J]. Issues of Forestry Economics, 2021, 41(4):378-386.DOI: 10.16832/j.cnki.1005-9709.20200209. | |
[17] | JOSE S, UDAWATTA R P. Agroforestry for ecosystem services:an introduction[C]// ODAWATTA R P, JOSE S. Agroforestry and Ecosystem Services.Cham:Springer, 2021:1-17.DOI:10.1007/978-3-030-80060-4_1. |
[18] | VERBEEK M. A guide to modern econometrics[M].4th ed. UK: Wiley, 2012. |
[19] | HALL A R. Generalized method of moments[M]. Oxford: Oxford University Press, 2005. |
[20] | HANSEN L P. Large sample properties of generalized method of moments estimators[J]. Econometrica, 1982, 50(4):1029.DOI: 10.2307/1912775. |
[21] | BOND S R. Dynamic panel data models:a guide to micro data methods and practice[J]. Portuguese Econ J, 2002, 1(2):141-162.DOI: 10.1007/s10258-002-0009-9. |
[22] | ARELLANO M, BOND S. Some tests of specification for panel data:monte Carlo evidence and an application to employment equations[J]. Rev Econ Stud, 1991, 58(2):277-297.DOI: 10.2307/2297968. |
[23] | ANDERSON T W, HSIAO C. Estimation of dynamic models with error components[J]. J Am Stat Assoc, 1981, 76(375):598-606.DOI: 10.1080/01621459.1981.10477691. |
[24] | SÖDERBON M, TEAL F, EBERHARDT M, et al. Empirical development economics[M]. New York: Routledge, 2015. |
[25] | BLUNDELL R, BOND S. Initial conditions and moment restrictions in dynamic panel data models[J]. J Econom, 1998, 87(1):115-143.DOI: 10.1016/S0304-4076(98)00009-8. |
[26] | BLUNDELL R, BOND S, WINDMEIJER F. Estimation in dynamic panel data models:improving on the performance of the standard GMM estimator[M]//Advances in Econometrics. Bingley: Emerald, 2000, 4:53-91. |
[27] | HAUSMAN J, TAYLOR W. Panel data and unobservable individual effects[J]. J Econom, 1981,16(1): 155.DOI: 10.1016/0304-4076(81)90085-3. |
[28] | BALTAGI B H. Econometric analysis of panel datap[M]. 4th ed. Cham: Springer International Publishing, 2013. |
[29] | ARELLANO M, BOVER O. Another look at the instrumental variable estimation of error-components models[J]. J Econom, 1995, 68(1):29-51.DOI: 10.1016/0304-4076(94)01642-D. |
[30] | ROODMAN D. A note on the theme of too many instruments[J]. Oxf Bull Econ Stat, 2009, 71(1):135-158.DOI: 10.1111/j.1468-0084.2008.00542.x. |
[31] | ROODMAN D. How to do xtabond2:an introduction to difference and system GMM in stata[J]. Stata J, 2009, 9(1):86-136.DOI: 10.1177/1536867x0900900106. |
[32] | LIU C, LU J Z, YIN R S. An estimation of the effects of China’s Priority Forestry Programs on farmers’ income[J]. Environ Manage, 2010, 45(3):526-540.DOI: 10.1007/s00267-010-9433-2. |
[33] | LIU C, MULLAN K, LIU H, et al. The estimation of long term impacts of China’s key priority forestry programs on rural household incomes[J]. Journal of Forest Economics, 2014, 20(3):267-285.DOI:10.1016/j.jfe.2014.08.001. |
[34] | BIØRN E. Econometrics of panel data: methods and application[M]. Oxford: Oxford University Press, 2017. |
[35] | CHATTERJEE S, HADI A S. Regression analysis by example[M]. 5th ed. New York: John Wiley & Sons Inc., 2012. |
[1] | 孔凡斌, 金晨涛, 徐彩瑶. 罗霄山地区生态系统服务与居民福祉耦合协调关系变化及其影响因素[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 245-254. |
[2] | 赵晓雨, 王益明, 何旭, 刘小燕, 张佳敏, 邓懿, 冯耀, 初磊, 张增信. 基于InVEST模型的无锡市生境质量变化研究[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 165-172. |
[3] | 李思荣, 苏同向. 基于保护政策影响的抚仙湖流域景观格局变化及生态系统服务价值响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 145-154. |
[4] | 付天琴, 吉星, 张红霄. 工商资本下乡流入农户土地的收入效应及异质性分析[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 272-280. |
[5] | 鞠海琴, 张红霄, 陈甲, 吉星. 非农就业对农户生活污水排放行为的影响研究[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 245-254. |
[6] | 戚丽萍, 栾兆擎, 魏勉, 闫丹丹, 李静泰, 么秀颖, 刘垚, 谢思荧, 盛昱凤. 基于土地利用的江苏省各市生态系统服务价值时空变化研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 200-208. |
[7] | 贾艳艳, 唐晓岚, 任宇杰. 长江流域安徽段生态系统服务价值与景观生态风险时空演变及其关联分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 31-40. |
[8] | 王卫卫, 张应良. 退耕还林农户技术禀赋对经果林换种的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 215-222. |
[9] | 刘浩, 刘璨, 刘俊昌. 中国退耕还林工程对农户收入和消费不平等的影响测度[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 227-234. |
[10] | 王祥玉, 张红霄, 徐静文, 何文剑. 农地流转契约对流转农户收入的影响分析[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 205-214. |
[11] | 韩会庆,张娇艳,马庚,张新鼎,白玉梅. 气候变化对生态系统服务影响的研究进展[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 184-190. |
[12] | 陈瑶,蔡广鹏,韩会庆,罗绪强,王后阵. 居民对城市湿地公园生态系统服务功能认知的分析[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 147-152. |
[13] | 吕国屏,廖承锐,徐雁南,张婷,李海东. 基于CAMarkov模型的喀斯特地区县域生态系统服务价值动态模拟[J]. 南京林业大学学报(自然科学版), 2017, 41(05): 49-56. |
[14] | 郜红娟,罗绪强,韩会庆,王后阵. 贵州山区公路沿线生态系统服务价值变化[J]. 南京林业大学学报(自然科学版), 2016, 40(01): 135-141. |
[15] | 王岽,徐京京,周亮广,吴见. 安徽省生态系统服务价值变化及其趋势预测[J]. 南京林业大学学报(自然科学版), 2015, 39(04): 88-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||