典型黑土区水土保持树种生态化学计量特征及其异速关系

李婷婷, 邹青勤, 蒋治岩, 王秀伟

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (5) : 45-54.

PDF(1815 KB)
PDF(1815 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (5) : 45-54. DOI: 10.12302/j.issn.1000-2006.202307032
专题报道:土壤碳汇与养分元素循环利用研究(执行主编 张金池 薛建辉 阮宏华)

典型黑土区水土保持树种生态化学计量特征及其异速关系

作者信息 +

Characteristics of ecological stoichiometry of soil and water conservation tree species of typical black soil region and their allometric relationship

Author information +
文章历史 +

摘要

【目的】通过研究典型黑土区水土保持树种生态化学计量特征,明确其养分利用特征及其生理适应策略。【方法】从物质分配角度,以典型黑土区常用的水土保持树种小叶锦鸡儿(Caragana microphylla)、榆叶梅(Prunus triloba)、白桦(Betula platyphylla)、糖槭(Acer saccharinum)、红皮云杉(Picea koraiensis)和樟子松(Pinus sylvestris var. mongholica)为研究对象,包括常绿乔木、落叶灌木和落叶乔木3种生活型,测定其叶、皮、枝、干、细根和粗根的碳、氮、磷质量分数[分别以c(C)、c(N)、c(P)表示],分析碳氮磷化学计量比及其异速生长关系。【结果】总体来看,碳的稳定性大于氮和磷,且落叶树种地下部分碳稳定性大于地上部分;氮的稳定性在3种生活型中均表现为地上大于地下;磷则在灌木的叶片中有最大的变异系数。c(C)表现为地上总量大于地下总量,氮、磷具有一致的分配策略,均表现为细根中含量大于粗根中含量。相关性分析表明,乔木树种的c(C)与c(N)呈正相关,与c(P)的相关性不显著;灌木树种的c(C)与c(N)呈极显著负相关,与c(P)呈显著负相关。C-N和C-P在不同器官间具有显著异速生长关系,C的积累速度大部分表现为小于N和P的积累速度;而N-P在器官间的异速生长关系差异明显,常绿乔木除皮和细根外表现为等速生长,落叶灌木的叶呈等速生长,落叶乔木的6种器官间均呈等速生长关系,且N的积累速度均小于P,落叶灌木的干和粗根以及落叶乔木的N积累速度接近于P的积累速度。【结论】植物各器官对养分元素的吸收利用具有一定的协同性,且联系紧密,可以通过研究元素之间的耦合效应来研究植物的适应策略,但限制性元素N和P的生理代谢过程在不同生活型幼苗间存在差异,因其物种本身特性差异的影响,会形成不同的营养元素分配模式及化学计量比特征。本研究结果可为水土保持植物的科学培育和典型黑土区的水土保持林营造提供理论依据。

Abstract

【Objective】This study aimed to clarify the nutrient-use characteristics and physiological adaptation strategies of six commonly used soil and water conservation tree species in a typical black soil region.【Method】From the perspective of biomass allocation, six species were selected: Caragana microphylla, Prunus triloba, Betula platyphylla, Acer saccharinum, Picea koraiensis, and Pinus sylvestris var. mongholica, representing three life forms (evergreen arbors, deciduous shrubs, and deciduous trees). Mass fractions of carbon (C), nitrogen (N), and phosphorus (P) were measured in leaves, bark, branches, stems, fine roots, and coarse roots. Stoichiometric ratios (C/N, C/P, N/P) were calculated, and correlation analyses and allometric models were applied to examine relationships among element concentrations and their accumulation rates across organs.【Result】Carbon mass fractions exhibited greater stability than N and P; for deciduous species, belowground carbon stability exceeded that of aboveground parts. Nitrogen stability was consistently higher aboveground than belowground across all life forms, while the coefficient of variation for P was highest in shrub leaves. Total C mass fraction was greater in aboveground than belowground organs, whereas both N and P followed the same allocation strategy, with fine-root concentrations exceeding those in coarse roots. In tree species, C and N concentrations were positively correlated (P < 0.05), while C-P correlations were not significant; in shrub species, C correlated very significantly negatively with N (P < 0.01) and significantly negatively with P (P < 0.05). Significant allometric relationships were found for C-N and C-P across organs, with C accumulation rates generally lower than those of N and P. In contrast, N-P allometries varied by life form: evergreen arbors showed isometric growth between N and P in all organs except bark and fine roots; deciduous shrubs exhibited isometry only in leaves; deciduous trees displayed isometric N-P relationships across all six organs, with N accumulation rates consistently lower than those of P, while in stems and coarse roots of deciduous shrubs and across organs of deciduous trees, N accumulation rates were close to those of P. 【Conclusion】Nutrient uptake and utilization across plant organs are coordinated and tightly coupled, but the physiological metabolism of limiting elements N and P differ among seedlings of different life forms. Species-specific traits give rise to distinct nutrient-allocation patterns and stoichiometric characteristics. These findings provide a theoretical basis for the scientific cultivation of soil and water conservation species and the establishment of conservation forests in the typical black soil region of China.

关键词

水土保持树种 / 生态化学计量 / 养分利用特征 / 异速生长 / 黑土区

Key words

soil and water conservation tree species / ecological stoichiometry / nutrient utilization characteristics / allometric relationship / black soil region

引用本文

导出引用
李婷婷, 邹青勤, 蒋治岩, . 典型黑土区水土保持树种生态化学计量特征及其异速关系[J]. 南京林业大学学报(自然科学版). 2025, 49(5): 45-54 https://doi.org/10.12302/j.issn.1000-2006.202307032
LI Tingting, ZOU Qingqin, JIANG Zhiyan, et al. Characteristics of ecological stoichiometry of soil and water conservation tree species of typical black soil region and their allometric relationship[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(5): 45-54 https://doi.org/10.12302/j.issn.1000-2006.202307032
中图分类号: S718.5;S154.1   

参考文献

[1]
闫帮国, 刘刚才, 樊博, 等. 干热河谷植物化学计量特征与生物量之间的关系[J]. 植物生态学报, 2015, 39(8):807-815.
YAN B G, LIU G C, FAN B, et al. Relationships between plant stoichiometry and biomass in an arid-hot valley,southwest China[J]. Chinese Journal of Plant Ecology, 2015, 39(8):807-815.DOI: 10.17521/cjpe.2015.0077.
[2]
王淳, 冀盼盼, 刘璇, 等. 华北落叶松不同器官碳氮磷化学计量特征[J]. 干旱区资源与环境, 2020, 34(11):176-181.
WANG C, JI P P, LIU X, et al. Ecological C,N and P stoichiometry of the needles,twigs and fine roots in pure and mixed stands of Larix principis-rupprechtii[J]. Journal of Arid Land Resources and Environment, 2020, 34(11):176-181.DOI: 10.13448/j.cnki.jalre.2020.316.
[3]
SARDANS J, PEÑUELAS J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system[J]. Plant Physiology, 2012, 160(4):1741-1761.DOI: 10.1104/pp.112.208785.
[4]
ZHAO N, YU G R, HE N P, et al. Coordinated pattern of multi-lement variability in leaves and roots across Chinese forest biomes[J]. Global Ecology and Biogeography, 2016, 25(3):359-367.DOI: 10.1111/geb.12427.
[5]
HAN W X, FANG J Y, REICH P B, et al. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate,soil and plant functional type in China[J]. Ecology Letters, 2011, 14(8):788-796.DOI: 10.1111/j.1461-0248.2011.01641.x.
[6]
王凯, 雷虹, 王宗琰, 等. 干旱胁迫下小叶锦鸡儿幼苗C、N、P分配规律及化学计量特征[J]. 林业科学研究, 2019, 32(4):47-56.
WANG K, LEI H, WANG Z Y, et al. C,N and P distribution and stoichiometry characteristics of Caragana microphylla seedlings to drought stress[J]. Forest Research, 2019, 32(4):47-56.DOI: 10.13275/j.cnki.lykxyj.2019.04.007.
[7]
DE LA RIVA E G, VILLAR R, PÉREZ-RAMOS I M, et al. Relationships between leaf mass per area and nutrient concentrations in 98 Mediterranean woody species are determined by phylogeny,habitat and leaf habit[J]. Trees, 2018, 32(2):497-510.DOI: 10.1007/s00468-017-1646-z.
[8]
AGÜERO M L, PUNTIERI J, MAZZARINO M J, et al. Seedling response of Nothofagus species to N and P:linking plant architecture to N/P ratio and resorption proficiency[J]. Trees, 2014, 28(4):1185-1195.DOI: 10.1007/s00468-014-1029-7.
[9]
常云妮, 钟全林, 程栋梁, 等. 尤溪天然米槠林植物碳氮磷的化学计量特征及其分配格局[J]. 植物资源与环境学报, 2013, 22(3):1-10.
CHANG Y N, ZHONG Q L, CHENG D L, et al. Stoichiometric characteristics of C,N,P and their distribution pattern in plants of Castanopsis carlesii natural forest in Youxi[J]. Journal of Plant Resources and Environment, 2013, 22(3):1-10.DOI: 10.3969/j.issn.1674-7895.2013.03.01.
[10]
KOERSELMAN W, MEULEMAN A F M. The vegetation N∶P ratio:a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6):1441.DOI: 10.2307/2404783.
[11]
马任甜, 方瑛, 安韶山. 云雾山草地植物地上部分和枯落物的碳、氮、磷生态化学计量特征[J]. 土壤学报, 2016, 53(5):1170-1180.
MA R T, FANG Y, AN S S. Ecological stoichiometry of carbon,nitrogen,phosphorus and C∶N∶P in shoots and litter of plants in grassland in Yunwu Mountain[J]. Acta Pedologica Sinica, 2016, 53(5):1170-1180.DOI: 10.11766/trxb201601210502.
[12]
XU X Z, XU Y, CHEN S C, et al. Soil loss and conservation in the black soil region of northeast China:a retrospective study[J]. Environmental Science & Policy, 2010, 13(8):793-800.DOI: 10.1016/j.envsci.2010.07.004.
[13]
牟洪涛, 朱卫平, 崔永山, 等. 东北黑土区克山农场水土流失成因研究分析[J]. 黑龙江水利科技, 2010, 38(3):65-66.
MOU H T, ZHU W P, CUI Y S, et al. Study and analysis on the causes of soil erosion in Keshan Farm in black soil area of northeast China[J]. Heilongjiang Science and Technology of Water Conservancy, 2010, 38(3):65-66. DOI:10.14122/j.cnki.hskj.2010.03.105.
[14]
田地, 严正兵, 方精云. 植物化学计量学:一个方兴未艾的生态学研究方向[J]. 自然杂志, 2018, 40(4):235-241.
TIAN D, YAN Z B, FANG J Y. Plant stoichiometry:a research frontier in ecology[J]. Chinese Journal of Nature, 2018, 40(4):235-241.DOI: 10.3969/j.issn.0253-9608.2018.04.001.
[15]
景国臣, 刘丙友, 刘绪军, 等. 黑土区主要水土保持林现状及其功能评价[J]. 水土保持应用技术, 2012(6):36-38.
JING G C, LIU B Y, LIU X J, et al. Present situation and function evaluation of main soil and water conservation forests in black soil area[J]. Technology of Soil and Water Conservation, 2012(6):36-38.DOI: 10.3969/j.issn.1673-5366.2012.06.17.
[16]
王庆彬. 漫川漫岗黑土区水土保持林树种苗木水分适应性研究[D]. 哈尔滨: 东北林业大学, 2008.
WANG Q B. Study on water adaptability of tree species of soil and water conservation forest in mangang black soil region of Manchuan[D]. Harbin: Northeast Forestry University, 2008.
[17]
顾汪明, 周金星, 王彬, 等. 冻融循环作用对黑土水稳性团聚体特征的影响[J]. 中国水土保持科学, 2020, 18(4):45-52.
GU W M, ZHOU J X, WANG B, et al. Effects of freeze-thaw cycle on the characteristics of black soil water-stable aggregates[J]. Science of Soil and Water Conservation, 2020, 18(4):45-52.DOI: 10.16843/j.sswc.2020.04.006.
[18]
张韫. 土壤·水·植物理化分析教程[M]. 北京: 中国林业出版社, 2011:53-58.
ZHANG Y. Course of soil,water and plant physical and chemical analysis[M]. Beijing: China Forestry Publishing House, 2011:53-58.
[19]
邢磊, 刘成功, 李清河, 等. 基于白刺个体大小的生态化学计量模型[J]. 应用生态学报, 2020, 31(2):366-372.
XING L, LIU C G, LI Q H, et al. An ecological stoichiometry model based on the size of Nitraria tangutorum[J]. Chinese Journal of Applied Ecology, 2020, 31(2):366-372.DOI: 10.13287/j.1001-9332.202002.019.
[20]
杨清平, 陈双林, 郭子武, 等. 摘花和打顶措施对毛竹林下多花黄精块茎生物量积累特征的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2):165-170.
YANG Q P, CHEN S L, GUO Z W, et al. Responses of Tuber biomass accumulation and its allometry to topping and flower plucking measures of Polygonatum cyrtonema grown under Phyllostachys edulis forests[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(2):165-170.DOI: 10.12302/j.issn.1000-2006.202003013.
[21]
WARTON D I, DUURSMA R A, FALSTER D S, et al. Smatr 3-an R package for estimation and inference about allometric lines[J]. Methods in Ecology and Evolution, 2012, 3(2):257-259.DOI: 10.1111/j.2041-210x.2011.00153.x.
[22]
吴鹏, 崔迎春, 赵文君, 等. 喀斯特森林植被自然恢复过程中土壤化学计量特征[J]. 北京林业大学学报, 2019, 41(3):80-92.
WU P, CUI Y C, ZHAO W J, et al. Characteristics of soil stoichiometric in natural restoration process of Maolan Karst forest vegetation,southwestern China[J]. Journal of Beijing Forestry University, 2019, 41(3):80-92.DOI: 10.13332/j.1000-1522.20180136.
[23]
罗绪强, 张桂玲, 杜雪莲, 等. 茂兰喀斯特森林常见钙生植物叶片元素含量及其化学计量学特征[J]. 生态环境学报, 2014, 23(7):1121-1129.
LUO X Q, ZHANG G L, DU X L, et al. Characteristics of element contents and ecological stoichiometry in leaves of common calcicole species in Maolan Karst forest[J]. Ecology and Environmental Sciences, 2014, 23(7):1121-1129.DOI: 10.16258/j.cnki.1674-5906.2014.07.003.
[24]
HE J S, WANG L, FLYNN D F B, et al. Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes[J]. Oecologia, 2008, 155(2):301-310.DOI: 10.1007/s00442-007-0912-y.
[25]
杨婷, 钟全林, 李宝银, 等. 3种功能型林木幼苗叶片与细根碳氮磷化学计量特征及其异速关系[J]. 应用生态学报, 2020, 31(12):4051-4057.
YANG T, ZHONG Q L, LI B Y, et al. Stoichiometry of carbon,nitrogen and phosphorus and their allometric relationship between leaves and fine roots of three functional tree seedlings[J]. Chinese Journal of Applied Ecology, 2020, 31(12):4051-4057.DOI: 10.13287/j.1001-9332.202012.004.
[26]
宋语涵, 张鹏, 金光泽. 阔叶红松林不同演替阶段灌木叶片碳氮磷化学计量特征及其影响因素[J]. 植物生态学报, 2021, 45(9):952-960.
SONG Y H, ZHANG P, JIN G Z. Characteristics of shrub leaf carbon,nitrogen and phosphorus stoichiometry and influencing factors in mixed broadleaved-Korean pine forests at different successional stages[J]. Chinese Journal of Plant Ecology, 2021, 45(9):952-960.DOI: 10.17521/cjpe.2021.0101.
[27]
LI A, GUO D L, WANG Z Q, et al. Nitrogen and phosphorus allocation in leaves,twigs,and fine roots across 49 temperate,subtropical and tropical tree species:a hierarchical pattern[J]. Functional Ecology, 2010, 24(1):224-232.DOI: 10.1111/j.1365-2435.2009.01603.x.
[28]
NIKLAS K J. Plant allometry,leaf nitrogen and phosphorus stoichiometry,and interspecific trends in annual growth rates[J]. Annals of Botany, 2006, 97(2):155-163.DOI: 10.1093/aob/mcj021.
[29]
高凯, 朱铁霞, 刘辉, 等. 去除顶端优势对菊芋器官C、N、P化学计量特征的影响[J]. 生态学报, 2017, 37(12):4142-4148.
GAO K, ZHU T X, LIU H, et al. Influence of apical dominance on the ecological stoichiometry of C,N,and P in Helianthus tuberosus[J]. Acta Ecologica Sinica, 2017, 37(12):4142-4148.DOI: 10.5846/stxb201603240526.
[30]
马玉珠, 钟全林, 靳冰洁, 等. 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子[J]. 植物生态学报, 2015, 39(2):159-166.
MA Y Z, ZHONG Q L, JIN B J, et al. Spatial changes and influencing factors of fine root carbon,nitrogen and phosphorus stoichiometry of plants in China[J]. Chinese Journal of Plant Ecology, 2015, 39(2):159-166.DOI: 10.17521/cjpe.2015.0015.
[31]
ZHANG J H, HE N P, LIU C C, et al. Allocation strategies for nitrogen and phosphorus in forest plants[J]. Oikos, 2018, 127(10):1506-1514.DOI: 10.1111/oik.05517.
[32]
郭浩, 庄伟伟, 李进. 古尔班通古特沙漠4种短命植物生物量与化学计量特征[J]. 西北植物学报, 2019, 39(12):2263-2270.
GUO H, ZHUANG W W, LI J. Biomass and stoichiometric characteristics of four species of ephemeral plant in the Guerbantongut Desert[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(12):2263-2270.DOI: 10.7606/j.issn.1000-4025.2019.12.2263.
[33]
ELSER J J, STERNER R W, GOROKHOVA E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3(6),540-550. DOI: 10.1046/j.1461-0248.2000.00185.x.
[34]
YUAN Z Y, CHEN H Y H, REICH P B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus[J]. Nature Communications, 2011,2:344.DOI: 10.1038/ncomms1346.
[35]
杨勇, 许鑫, 徐玥, 等. 黔北优势植物对槽谷型喀斯特生境的适应策略:基于功能性状与生态化学计量相关联的证据[J]. 地球与环境, 2020, 48(4):413-423.
YANG Y, XU X, XU Y, et al. Adaptation strategies of three dominant plants in the trough-valley Karst region of northern Guizhou Province,southwestern China, evidence from associated plant functional traits and ecostoichiometry[J]. Earth and Environment, 2020, 48(4):413-423.DOI: 10.14050/j.cnki.1672-9250.2020.48.061.
[36]
王瑞禛, 罗丽莹, 孙嘉伟, 等. 会同成熟杉木器官C∶N∶P生态化学计量的动态特征[J]. 中南林业科技大学学报, 2020, 40(4):64-71.
WANG R Z, LUO L Y, SUN J W, et al. Seasonal dynamics of leaf,branch and root C∶N∶P ecological stoichiometry of mature Cunninghamia lanceolata in Huitong[J]. Journal of Central South University of Forestry & Technology, 2020, 40(4):64-71.DOI: 10.14067/j.cnki.1673-923x.2020.04.010.
[37]
ZHANG Q, XIONG G M, LI J X, et al. Nitrogen and phosphorus concentrations and allocation strategies among shrub organs:the effects of plant growth forms and nitrogen-fixation types[J]. Plant and Soil, 2018, 427(1):305-319.DOI: 10.1007/s11104-018-3655-0.
[38]
蔡年辉, 唐军荣, 车凤仙, 等. 云南松苗木碳氮磷化学计量特征的构件效应[J]. 东北林业大学学报, 2022, 50(2):35-42,48.
CAI N H, TANG J R, CHE F X, et al. Effects of stumping treatments on C,N,and P stoichiometry in different organs of Pinus yunnanensis Franch[J]. Journal of Northeast Forestry University, 2022, 50(2):35-42,48.DOI: 10.13759/j.cnki.dlxb.2022.02.006.

基金

国家重点研发计划(2021YFD1500705)

编辑: 孟苗婧
PDF(1815 KB)

Accesses

Citation

Detail

段落导航
相关文章

/