五大连池熔岩孤丘土壤腐殖化对凋落叶分解主场优势的响应

姜明月, 黄庆阳, 杨帆, 谢立红, 曹宏杰, 沙刚

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (3) : 190-196.

PDF(1621 KB)
PDF(1621 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (3) : 190-196. DOI: 10.12302/j.issn.1000-2006.202308011
研究论文

五大连池熔岩孤丘土壤腐殖化对凋落叶分解主场优势的响应

作者信息 +

Response of soil humification degree in Wudalianchi kipuka to the decomposition of foliar litter in the home-field advantage

Author information +
文章历史 +

摘要

【目的】研究五大连池火山熔岩孤丘特殊生境中针叶林和阔叶林不同种类凋落叶下土壤腐殖化程度的差异,分析凋落叶分解过程中主场(原来的森林生境)优势对土壤腐殖化的影响,为探究五大连池火山地区不同森林生境土壤成土过程和养分积累提供理论依据。【方法】2016年9月下旬在五大连池火山熔岩孤丘针叶林与阔叶林中分别设置3个分解样地,采集山杨(Populus davidiana)、白桦(Betula platyphylla)和落叶松(Larix gmelinii)3种优势树种当年凋落叶,分别在凋落叶分解袋中装入10 g单一凋落叶,进行凋落叶互换实验(即每个分解样地同时放置3种凋落叶分解袋),于2017—2019每年5和10月的15日,分别从分解样地中取回凋落物分解袋的正下方0~10 cm土壤,对土壤腐殖质进行光学性能指标检测,以此来探究土壤腐殖化程度对凋落叶在主客场分解的响应差异。【结果】①凋落叶在客场分解改变了土壤腐殖质的光密度(E4/E6)、色调系数(ΔlogK)和相对色度(RF)值的变化趋势。②白桦与山杨凋落叶下土壤腐殖质E4/E6ΔlogK值主场均高于客场,RF值主场低于客场,落叶松凋落叶下土壤腐殖质E4/E6ΔlogK和RF值主场均低于客场。③分解时间和森林类型均对土壤腐殖质的E4/E6ΔlogK和RF值有显著影响,凋落叶种类对RF值无显著影响,对E4/E6ΔlogK值有显著影响,时间-森林类型、时间-凋落叶种类及时间-森林类型-凋落叶种类交互作用显著。【结论】阔叶凋落叶和针叶凋落叶分解均表现为针叶林土壤腐殖化程度高于阔叶林土壤,针叶植物凋落叶分解对土壤腐殖化产生“主场优势”影响,而阔叶植物凋落叶分解对土壤腐殖化无明显“主场优势”影响。

Abstract

【Objective】The study aimed to investigate the differences in the degree of soil humification in the presence of foliar litter from different plant species in coniferous and broad-leaved forests in the special habitat of Wudalianchi volcanic kipuka, analyze the influence of soil humification in the home-field advantage during the decomposition of foliar litter, and provide a theoretical basis for exploring the process of soil formation and nutrient accumulation in different habitats in the volcanic forest of Wudalianchi. 【Method】Three decomposition plots were separately established in the coniferous and broad-leaved forests of Wudalianchi volcanic kipuka in late September 2016. The fresh leaves of three dominant trees, namely, Populus davidiana, Betula platyphylla and Larix gmelinii, were collected from the coniferous and broad-leaved forests. Then 10 g of the foliar litter was transferred to separate foliar litter decomposition bags. The litter decomposition interactive transfer experiment was established by transferring three foliar litter decomposition bags in separate litter plots at the same time. Then 0-10 cm of the soil directly underneath the foliar litter decomposition bags was retrieved from the decomposition plots from 2017 to 2019, around the 15th of May and October each year. The optical performance indices of the soil humus substances were detected, and the optical characteristics of the soil humus substances under different foliar litter were analyzed. The differences in the degree of soil humification following foliar litter decomposition in the home and away fields were also analyzed. 【Result】The decomposition of foliar litter in the away field altered the soil optical density (E4/E6), hue coefficient (ΔlogK), and relative chromaticity (RF) values of the humus substances during the 3-year decomposition period. The E4/E6 and ΔlogK values of the soil humification substances under the foliar litter of P. davidiana and B. platyphylla were higher in the home field than in the away field. However, the RF values of the soil humification substances were lower in the home field than in the away field, and the E4/E6, ΔlogK, and RF values under the foliar litter of L. gmelinii were lower in the home field than in the away field. The duration of decomposition and forest type had a significant effect on the E4/E6, ΔlogK, and RF values of the soil humification substances. Although the foliar litter species had no significant effect on the RF values, they significantly affected the values of E4/E6 and ΔlogK. The time-forest type, time-litter species, and time-forest type-litter species interactions were found to be significant.【Conclusion】Analysis of the decomposition of the foliar litter of broad-leaved and coniferous forests revealed that the degree of soil humification in the coniferous forest was higher than that in the broad-leaved forest. The decomposition of foliar litter in the coniferous forest exerted a “home-field advantage” on soil humification, which was not observed in the broad-leaved forest.

关键词

火山 / 熔岩孤丘 / 森林类型 / 凋落叶 / 腐殖化 / 主场优势 / 五大连池

Key words

volcano / kipuka / forest type / foliar litter / humification / home-field advantage (HFA) / Wudalianchi

引用本文

导出引用
姜明月, 黄庆阳, 杨帆, . 五大连池熔岩孤丘土壤腐殖化对凋落叶分解主场优势的响应[J]. 南京林业大学学报(自然科学版). 2025, 49(3): 190-196 https://doi.org/10.12302/j.issn.1000-2006.202308011
JIANG Mingyue, HUANG Qingyang, YANG Fan, et al. Response of soil humification degree in Wudalianchi kipuka to the decomposition of foliar litter in the home-field advantage[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(3): 190-196 https://doi.org/10.12302/j.issn.1000-2006.202308011
中图分类号: S718.5;Q89   

参考文献

[1]
COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The microbial efficiency-matrix stabilization (mems) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4): 988-995. DOI: 10.1111/gcb.12113.
[2]
ONO K, HIRADATE S, MORITA S, et al. Humification processes of needle litters on forest floors in Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) plantations in Japan[J]. Plant & Soil, 2011, 338(1): 171-181. DOI: 10.1007/s11104-010-0397-z.
[3]
NEUMANN M, UKONMAANAHO L, JOHNSON J, et al. Quantifying carbon and nutrient input from litterfall in European forests using field observations and modeling[J]. Global Biogeochemical Cycles, 2018, 32(5): 784-798. DOI: 10.1029/2017GB005825.
[4]
KUZYAKOV Y. Priming effects: interactions between living and dead organic matter[J]. Soil Biology & Biochemistry, 2010, 42(9): 1363-1371. DOI: 10.1016/j.soilbio.2010.04.003.
[5]
CASTELLANO M J, MUELLER K E, OLK D C, et al. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept[J]. Global Change Biology, 2015, 21(9): 3200-3209. DOI: 10.1111/gcb.12982.
[6]
FONTAINE S, MARIOTTI A, ABBADIE L. The priming effect of organic matter: a question of microbial competition?[J]. Soil Biology & Biochemistry, 2003, 35(6): 837-843. DOI: 10.1016/s0038-0717(03)00123-8.
[7]
TIAN Q S T. Form of nitrogen deposition affects soil organic matter priming by glucose and cellulose[J]. Biology and Fertility of Soils, 2019, 55(4): 383-391. DOI: 10.1007/s00374-019-01357-8.
[8]
李宜浓, 周晓梅, 张乃莉, 等. 陆地生态系统混合凋落物分解研究进展[J]. 生态学报, 2016, 36(16): 4977-4987.
LI Y N, ZHOU X M, ZHANG N L, et al. The research of mixed litter effects on litter decomposition in terrestrial ecosystems[J]. Acta Ecologica Sinica, 2016, 36(16): 4977-4987. DOI: 10.5846/stxb201501200165.
[9]
SAYER E J, HEARD M S, GRANT H K, et al. Soil carbon release enhanced by increased tropical forest litter fall[J]. Nature Climate Change, 2011, 1: 304-307. DOI: 10.1038/nclimate1190.
[10]
MUELLER-DOMBOIS D, BOEHMER H J. Origin of the Hawaiian rainforest and its transition states in long-term primary succession[J]. Biogeosciences, 2013, 10(7): 5171-5182.DOI: 10.5194/bg-10-5171-2013.
[11]
査同刚, 张志强, 孙阁, 等. 凋落物分解主场效应及其土壤生物驱动[J]. 生态学报, 2012, 32(24): 7991-8000.
ZHA T G, ZHANG Z Q, SUN G, et al. Home-field advantage of litter decomposition and its soil biological driving mechanism: a review[J]. Acta Ecologica Sinica, 2012, 32(24): 7991-8000. DOI: 10.5846/stxb201204020461.
[12]
王亚菲, 张青青, 江康威, 等. 凋落物及土壤浸提液对西伯利亚落叶松种子萌发的影响[J]. 森林工程, 2024, 40 (2): 1-9.
WANG Y F, ZHANG Q Q, JIANG K W, et al. Effect of litter and soil extracts on seed germination of Larix sidirica[J]. Forest Engineering, 2024, 40(2):1-9.
[13]
EDWARD A, HEIDI S, SIMMONS B L, et al. Home-field advantage accelerates leaf litter decomposition in forests[J]. Soil Biology & Biochemistry, 2009, 41(3): 606-610. DOI: 10.1016/j.soilbio.2008.12.022.
[14]
NI X Y, YANG W Q, TAN B, et al. Accelerated foliar litter humification in forest gaps: dual feedbacks of carbon sequestration during winter and the growing season in an alpine forest[J]. Geoderma: Global Journal of Soil Science, 2015, 241-242: 136-144. DOI: 10.1016/j.geoderma.2014.11.018.
[15]
WATANABE A, SARNO, RUMBANRAJA J, et al. Humus composition of soils under forest, coffee and arable cultivation in hilly areas of south Sumatra, Indonesia[J]. Opean Journal of Soil Science, 2001, 52(4): 599-606. DOI: 10.1046/j.1365-2389.2001.00410.x.
[16]
IKEYA K, WATANABE A. Direct expression of an index for the degree of humification of humic acids using organic carbon concentration[J]. Soil Science and Plant Nutrition, 2003, 49(1): 47-53. DOI: 10.1080/00380768.2003.10409978.
[17]
NI X Y, YANG W Q, TAN B, et al. Forest gaps slow the sequestration of soil organic matter: a humification experiment with six foliar litters in an alpine forest[J]. Scientific Reports, 2016, 6: 19744. DOI: 10.1038/srep19744.
[18]
卫芯宇, 倪祥银, 谌亚, 等. 三种不同类型亚高山森林凋落物输入对土壤腐殖化的影响[J]. 生态学报, 2021, 41(20): 8266-8275.
WEI X Y, NI X Y, CHEN Y, et al. Effects of litter fall on soil humification in three subalpine forests[J]. Acta Ecologica Sinica, 2021, 41(20): 8266-8275. DOI: 10.5846/stxb202011012794.
[19]
王军, 满秀玲. 去除凋落物和草毡层对寒温带典型森林土壤氮素的短期影响[J]. 森林工程, 2023, 39 (4): 1-9.
WANG J, MAN X L. Short term effects of litter and sod layer removal on soil nitrogen in typical forests in cold temperate zone[J]. Forest Engineering, 2023, 39(4):1-9.
[20]
CHOMEL M, GUITTONNY-LARCHEVÊQUE M, DESROCHERS A, et al. Home field advantage of litter decomposition in pure and mixed plantations under boreal climate[J]. Ecosystems, 2015, 18(6): 1014-1028. DOI: 10.1007/s10021-015-9880-y.
[21]
LI Y B, LI Q, YANG J J, et al. Home-field advantages of litter decomposition increase with increasing N deposition rates: a litter and soil perspective[J]. Functional Ecology, 2017, 31(9): 1792-1801. DOI: 10.1111/1365-2435.12863.
[22]
JOHN M G S, ORWIN K H, DICKIE I A. No ‘home’ versus ‘away’ effects of decomposition found in a grassland-forest reciprocal litter transplant study[J]. Soil Biology & Biochemistry, 2011, 43(7): 1482-1489. DOI: 10.1016/j.soilbio.2011.03.022.
[23]
PONGE J F. Plant-soil feedbacks mediated by humus forms: a review[J]. Soil Biology Biochemistry, 2013, 57(1): 1048-1060. DOI: 10.1016/j.soilbio.2012.07.019.
[24]
窦森, TARDY Y, 张晋京, 等. 土壤胡敏酸与富里酸热力学稳定性及其驱动因素初步研究[J]. 土壤学报, 2010, 47(1): 71-76.
DOU S, TARDY Y, ZHANG J J, et al. Thermodynamic stability of humic acid and fulvic acid in soil and its driving factors[J]. Acta Pedologica Sinica, 2010, 47(1): 71-76. DOI: 10.11766/trxb200804300111.
[25]
WANG Q K, ZHONG M C, HE T X. Home-field advantage of litter decomposition and nitrogen release in forest ecosystems[J]. Biology Fertility of Soils, 2013, 49(4): 427-434. DOI: 10.1007/s00374-012-0741-y.
[26]
李嘉欣, 韩有志, 刘奋武, 等. 秸秆、枝条堆肥及堆肥产品中重金属在蚯蚓体内的富集行为[J]. 生物加工过程, 2024, 22(3):309-317.
LI J X, HAN Y Z, LIU F W, et al. Accumulation of heavy metals in earthworms from compost products of straw,branch composting[J]. Chinese Journal of Bio process Engineering, 2024, 22(3):309-317. DOI:10.3969/j.issn.1672-3678.2024.03.009.
[27]
徐国良, 莫江明, 周国逸, 等. 氮沉降下鼎湖山森林凋落物分解及与土壤动物的关系[J]. 生态环境, 2005, 14(6): 901-907.
XU G L, MO J M, ZHOU G Y, et al. Litter decomposition under N deposition in Dinghushan forests and its relationship with soil fauna[J]. Ecology and Environmental Sciences, 2005, 14(6): 901-907. DOI: 10.16258/j.cnki.1674-5906.2005.06.022.

基金

黑龙江省自然科学基金项目(LH2021C079)
黑龙江省省属科研院所科研业务费项目(ZNBZ2022ZR02)

编辑: 王国栋
PDF(1621 KB)

Accesses

Citation

Detail

段落导航
相关文章

/