桂花滞尘效应及其生理生态响应研究进展

杨建欣, 郭帅龙, 马长乐, 李瑞, 高灿, 康新玲, 李福泷

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (2) : 1-11.

PDF(1519 KB)
PDF(1519 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (2) : 1-11. DOI: 10.12302/j.issn.1000-2006.202308013
林学前沿

桂花滞尘效应及其生理生态响应研究进展

作者信息 +

Research progress on the dust retention effect and physiological-ecological response of Osmanthus fragrans

Author information +
文章历史 +

摘要

植被通过“直接”和“间接”两种方式实现对空气颗粒物的有效移除,不同作用方式和移除过程有着明显不同的作用机制。桂花(Osmanthus fragrans)是我国十大传统名花之一,广泛分布于秦岭以南的亚热带地区,对其滞尘效应的研究表明,桂花能有效滞留大气颗粒物,对消减大气颗粒物污染并改善空气质量具有重要的作用。笔者在对桂花种质资源与形态结构分析的基础上,重点关注桂花单位叶面积滞尘量、单叶滞尘量等重要量化指标,以及叶片对不同粒径颗粒物的滞留能力,综合分析了桂花滞尘效应的时空变化规律,滞尘对光谱特性、形态结构和生理生态的影响等,认为不同品种或不同生境的桂花因遗传特性和环境资源的差异,受环境大气污染程度、叶片形态结构、叶面积、叶序、叶面倾角和冠形等因素的影响,其叶片滞尘量差异较为显著,具体表现为:①单位面积滞尘量与环境污染背景值正相关;②单叶滞尘量与叶片形态特征、环境因子等因素直接相关,但单叶面积大小与滞留颗粒物能力无显著相关;③由于不同规格、不同生长季节、不同健康状况等条件下总叶面积的差异,不同城市及不同采样点桂花的单株滞尘量有较大差别;④桂花叶片对粗颗粒物的滞纳能力较细颗粒物大,且滞尘效应存在一定的时空变化规律,即日变化和季节变化特征与大气颗粒物的日变化、季节变化趋势基本一致,达到饱和滞尘量的时间有物种特异性和地域差异;⑤颗粒物的滞留可使桂花叶片光谱特性发生改变,也会影响叶形态特征和功能性状,进而影响对颗粒物的吸附能力,并对桂花生理生态、生长发育和花香产生影响,削弱其观赏价值。

Abstract

Vegetation effectively removes airborne particulate matter through “direct” and “indirect” pathways, each with distinct mechanisms and processes. Osmanthus fragrans, one of the top ten traditional flowers in China, is widely distributed in south of the Qinling Mountains across the subtropical regions. Research results indicate that this species plays a significant role in mitigating atmospheric particulate pollution and improving air quality by retaining particulate matter. We analyzed and summarized advancements in understanding the dust retention capacity of O. fragrans, emphasizing key quantitative indicators such as dust retention per unit leaf area, per single leaf, and the ability to retain particulates of various sizes. This study also explored spatiotemporal variations in dust retention and its impact on spectral characteristics, morphological structure, and physiological ecology. Differences in dust retention among O. fragrans varieties and habitats were attributed to genetic traits and environmental factors, including air pollution levels, leaf morphology, leaf area, phyllotaxy, inclination angle and crown shape. Key findings include the following:(1) Correlation with environmental pollution. Dust retention per unit leaf area was positively correlated with the background level of air pollution. (2) Influence of morphological traits: dust retention per single leaf was determined by leaf morphology and environmental conditions, though no significant correlation was found between single-leaf area and particulate retention capacity. (3) Plant-level variation. Total dust retention varied significantly among plants due to differences in leaf area across growth stages, health conditions, and locations. (4) Particulate size specificity. Leaves retained coarse particulates more effectively than fine ones, and dust retention showed predictable spatiotemporal variation. Diurnal and seasonal trends aligned with fluctuations in airborne particulate matter, with species- and region-specific saturation times. (5) Impact on leaf traits. Particulate retention altered leaf spectral characteristics, affecting morphology, functional traits, and adsorption capacity. These changes influenced physiological ecology, growth, floral fragrance, and ornamental value.

关键词

桂花 / 滞尘效应 / 大气颗粒物 / 形态特征 / 生理响应

Key words

Osmanthus fragrans / dust-retention effect / air particulate matter / morphological characteristics / physiological response

引用本文

导出引用
杨建欣, 郭帅龙, 马长乐, . 桂花滞尘效应及其生理生态响应研究进展[J]. 南京林业大学学报(自然科学版). 2025, 49(2): 1-11 https://doi.org/10.12302/j.issn.1000-2006.202308013
YANG Jianxin, GUO Shuailong, MA Changle, et al. Research progress on the dust retention effect and physiological-ecological response of Osmanthus fragrans[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(2): 1-11 https://doi.org/10.12302/j.issn.1000-2006.202308013
中图分类号: S685.13;S731.2   

参考文献

[1]
KIM K, JEON J, JUNG H, et al. PM2.5 reduction capacities and their relation to morphological and physiological traits in 13 landscaping tree species[J]. Urban For Urban Green, 2022,70:127526.DOI: 10.1016/j.ufug.2022.127526.
[2]
SONG Y S, MAHER B A, LI F, et al. Particulate matter deposited on leaf of five evergreen species in Beijing,China:source identification and size distribution[J]. Atmos Environ, 2015, 105:53-60.DOI: 10.1016/j.atmosenv.2015.01.032.
[3]
MCDONALD A G, BEALEY W J, FOWLER D, et al. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations[J]. Atmos Environ, 2007, 41(38):8455-8467.DOI: 10.1016/j.atmosenv.2007.07.025.
[4]
殷杉, 蔡静萍, 陈丽萍, 等. 交通绿化带植物配置对空气颗粒物的净化效益[J]. 生态学报, 2007, 27(11):4590-4595.
YIN S, CAI J P, CHEN L P, et al. Effects of vegetation status in urban green spaces on particles removal in a canyon street atmosphere[J]. Acta Ecol Sin, 2007, 27(11):4590-4595.DOI: 10.3321/j.issn:1000-0933.2007.11.026.
[5]
臧德奎, 向其柏. 中国桂花品种分类研究[J]. 中国园林, 2004, 20(11):40-49.
ZANG D K, XIANG Q B. Studies on the cultivar classification of Chinese sweet Osmanthus[J]. J Chin Landsc Archit, 2004, 20(11):40-49. DOI: 10.3969/j.issn.1000-6664.2004.11.011.
[6]
郑涛. 福建省桂花古树资源调查与园林应用研究[D]. 北京: 中国林业科学研究院, 2015.
ZHENG T. Fujian Province ancient sweet Osmanthus trees resource investigation and landscape application research[D]. Beijing: Chinese Academy of Forestry, 2015.
[7]
郑妍妍. 广东桂花资源调查与遗传分析[D]. 广州: 华南农业大学, 2020.
ZHENG Y Y. Investigation and genetic analysis on resources of Osmanthus fragrans in Guangdong Province[D]. Guangzhou: South China Agricultural University, 2020.
[8]
张灵艺. 城市主干道路绿带滞尘效应研究[D]. 重庆: 西南大学, 2015.
ZHANG L Y. Research on dust-retention effect of urban road greenbelts[D]. Chongqing: Southwest University, 2015.
[9]
刘宇, 张楠, 王晓立, 等. 冬季苏北8种常绿乔木吸滞颗粒物能力与叶表微结构关系[J]. 西北林学院学报, 2021, 36(3):80-87,127.
LIU Y, ZHANG N, WANG X L, et al. The relationship between the adsorption capacity of 8 evergreen arbors in northern Jiangsu Province and the micro structure of leaf surface[J]. J Northwest For Univ, 2021, 36(3):80-87,127.DOI: 10.3969/j.issn.1001-7461.2021.03.12.
[10]
刘延惠, 侯贻菊, 舒德远, 等. 贵阳市主要绿化树种叶面吸滞颗粒物特征及其时空变化[J]. 林业科学, 2020, 56(6):12-25.
LIU Y H, HOU Y J, SHU D Y, et al. Properties and spatio-temporal variation of leaf retained particulate matters of the main tree species planted in Guiyang City[J]. Sci Silvae Sin, 2020, 56(6):12-25.DOI: 10.11707/j.1001-7488.20200602.
[11]
郭若妍, 王会霞, 石辉. 模拟降雨对常绿植物叶表面滞留颗粒物的影响[J]. 生态学杂志, 2019, 38(7):1991-1999.
GUO R Y, WANG H X, SHI H. Effects of simulated rainfall on leaf particulate matter of different size fractions of evergreen plants[J]. Chin J Ecol, 2019, 38(7):1991-1999.DOI: 10.13292/j.1000-4890.201907.018.
[12]
SUN Y, LIN W P, LI Y, et al. Dust deposition on vegetation leaves in Shanghai,China[J]. Int J Environ Health Res,2020:1-14.DOI: 10.1080/09603123.2020.1714559.
[13]
高丹丹. 武汉市主要绿化植物滞尘及含硫能力分析[D]. 武汉: 湖北大学, 2017.
GAO D D. The Analysis about main plants dust and sulfur capacity in Wuhan City[D]. Wuhan: Hubei University, 2017.
[14]
吴艳. 桂花园林应用价值及其前景探析[J]. 园艺与种苗, 2023, 43(1):44-45,48.
WU Y. Discussion on garden application value and prospect of Osmanthus fragrans[J]. Hortic Seed, 2023, 43(1):44-45,48.DOI: 10.16530/j.cnki.cn21-1574/s.2023.01.018.
[15]
金文芬, 方晰, 唐志娟. 3种园林植物对土壤重金属的吸收富集特征[J]. 中南林业科技大学学报, 2009, 29(3):21-25.
JIN W F, FANG X, TANG Z J. Absorption and accumulation characteristics of 3 ornamental plants to soil heavy metals[J]. J Cent South Univ For Technol, 2009, 29(3):21-25.DOI: 10.3969/j.issn.1673-923X.2009.03.008.
[16]
赵宏波, 郝日明, 胡绍庆. 中国野生桂花的地理分布和种群特征[J]. 园艺学报, 2015, 42(9):1760-1770.
ZHAO H B, HAO R M, HU S Q. Geographic distribution and population characteristics of Osmanthus fragrans[J]. Acta Hortic Sin, 2015, 42(9):1760-1770.DOI: 10.16420/j.issn.0513-353x.2014-0939.
[17]
武耀星, 张梅, 杨勇, 等. 气候变化对桂花分布的影响研究[J]. 西北林学院学报, 2022, 37(4):129-134.
WU Y X, ZHANG M, YANG Y, et al. Effects of climate changes on the distribution of Osmanthus fragrans[J]. J Northwest For Univ, 2022, 37(4):129-134.DOI: 10.3969/j.issn.1001-7461.2022.04.17.
[18]
NOWAK D J, HIRABAYASHI S, BODINE A, et al. Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects[J]. Environ Pollut, 2013, 178:395-402.DOI: 10.1016/j.envpol.2013.03.050.
[19]
陈徵尼, 凌雷, 仲怡铭, 等. 甘肃省典型树种滞尘能力及影响因子[J]. 西北林学院学报, 2023, 38(2):235-242.
CHEN Z N, LING L, ZHONG Y M, et al. Dust retention capacity and influencing factors of typical tree species in Gansu Province[J]. J Northwest For Univ, 2023, 38(2):235-242.DOI: 10.3969/j.issn.1001-7461.2023.02.33.
[20]
XIE C K, GUO J K, YAN L B, et al. The influence of plant morphological structure characteristics on PM2.5 retention of leaves under different wind speeds[J]. Urban For Urban Green, 2022,71:127556.
[21]
谢延翠, 赵明, 何静, 等. 不同径阶青杄林和油松林滞尘能力研究[J]. 西北林学院学报, 2020, 35(6):17-24.
XIE Y C, ZHAO M, HE J, et al. Dust-retaining ability of Picea wilsonii and Pinus tabuliformis forests with different diameter classes[J]. J Northwest For Univ, 2020, 35(6):17-24.DOI: 10.3969/j.issn.1001-7461.2020.06.03.
[22]
DANG N, ZHANG H D, ABDUS SALAM M M, et al. Foliar dust particle retention and metal accumulation of five garden tree species in Hangzhou:seasonal changes[J]. Environ Pollut, 2022,306:119472.DOI: 10.1016/j.envpol.2022.119472.
[23]
查燕, 马华升, 俞祥群, 等. 城市绿化植物对不同粒径大气颗粒物的吸附特征研究[J]. 环境污染与防治, 2020, 42(7):807-811,819.
ZHA Y, MA H S, YU X Q, et al. The adsorbing characteristic of urban greening plant on depositing size-fractionated particles[J]. Environ Pollut Contr, 2020, 42(7):807-811,819.DOI: 10.15985/j.cnki.1001-3865.2020.07.002.
[24]
LI Y M, WANG S J, CHEN Q B. Potential of thirteen urban greening plants to capture particulate matter on leaf surfaces across three levels of ambient atmospheric pollution[J]. Int J Environ Res Public Health, 2019, 16(3):402.
[25]
JIA M Y, ZHOU D Q, LU S P, et al. Assessment of foliar dust particle retention and toxic metal accumulation ability of fifteen roadside tree species:relationship and mechanism[J]. Atmos Pollut Res, 2021, 12(1):36-45.DOI: 10.1016/j.apr.2020.08.003.
[26]
SGRIGNA G, SÆBØ A, GAWRONSKI S, et al. Particulate Matter deposition on Quercus ilex leaves in an industrial city of central Italy[J]. Environ Pollut, 2015, 197:187-194.DOI: 10.1016/j.envpol.2014.11.030.
[27]
俞学如. 南京市主要绿化树种叶面滞尘特征及其与叶面结构的关系[D]. 南京: 南京林业大学, 2008.
YU X R. The characteristic of foliar dust of main afforestation tree species in Nanjing and association with leaf’s surface micro-structure[D]. Nanjing: Nanjing Forestry University, 2008.
[28]
方颖, 张金池, 王玉华. 南京市主要绿化树种对大气固体悬浮物净化能力及规律研究[J]. 生态与农村环境学报, 2007, 23(2):36-40.
FANG Y, ZHANG J C, WANG Y H. Dustfall adsorbing capacity of major species of greening trees in Nanjing and its law[J]. J Ecol Rural Environ, 2007, 23(2):36-40.DOI: 10.3969/j.issn.1673-4831.2007.02.008.
[29]
吴翠蓉, 江波, 张露, 等. 杭州8种绿化树种滞纳TSP和PM1、PM2.5、PM10的效应研究[J]. 浙江林业科技, 2020, 40(5):13-20.
WU C R, JIANG B, ZHANG L, et al. Study on adsorption of TSP,PM1,PM2.5 and PM10 by 8 greening tree species in Hangzhou[J]. J Zhejiang For Sci Technol, 2020, 40(5):13-20.DOI: 10.3969/j.issn.1001-3776.2020.05.003.
[30]
张灵艺, 秦华. 城市道路行道树绿带对PM2.5的滞尘效应及其变化分析[J]. 中国园林, 2015, 31(5):106-110.
ZHANG L Y, QIN H. Analysis of dust-retention effect on PM2.5 in city avenue greenbelts[J]. Chin Landsc Archit, 2015, 31(5):106-110.DOI: 10.3969/j.issn.1000-6664.2015.05.024.
[31]
王建辉, 刘奕清, 邹敏. 永川城区主要绿化植物的滞尘效应[J]. 环境工程学报, 2013, 7(3):1079-1084.
WANG J H, LIU Y Q, ZOU M. Dust detaining effect of main urban vegetation in Yongchuan,Chongqing[J]. Chin J Environ Eng, 2013, 7(3):1079-1084.
[32]
SÆBØ A, POPEK R, NAWROT B, et al. Plant species differences in particulate matter accumulation on leaf surfaces[J]. Sci Total Environ, 2012, 427/428:347-354.DOI: 10.1016/j.scitotenv.2012.03.084.
[33]
肖慧玲. 粉尘污染下园林植物的光谱特征及光合特性研究[D]. 武汉: 华中农业大学, 2013.
XIAO H L. Research on the spectral and photosynthetic characteristics of landscape plants under dust pollution[D]. Wuhan: Huazhong Agricultural University, 2013.
[34]
朱天燕. 南京雨花台区主要绿化树种滞尘能力与绿地花境建设[D]. 南京: 南京林业大学, 2007.
ZHU T Y. Dust retention ability of main greening tree species and the construction of green flower border in Yuhuatai District of Nanjing[D]. Nanjing: Nanjing Forestry University, 2007.
[35]
李冰冰. 长沙市常见行道树固碳释氧滞尘效益研究[D]. 长沙: 中南林业科技大学, 2012.
LI B B. The Study on common street trees fixing carbon and releasing oxygen sluggish dust benefits in Changsha[D]. Changsha: Central South University of Forestry & Technology, 2012.
[36]
王珍珍. 南昌市道路绿地的植物配置及滞尘效应[D]. 南昌: 东华理工大学, 2019.
WANG Z Z. Plant configuration and dust retention effect of road green space in Nanchang City[D]. Nanchang: East China University of Technology, 2019.
[37]
吴中能, 于一苏, 边艳霞. 合肥主要绿化树种滞尘效应研究初报[J]. 安徽农业科学, 2001, 29(6):780-783.
WU Z N, YU Y S, BIAN Y X. Preliminary report on dust retention effect of main greening trees in Hefei[J]. J Anhui Agric Sci, 2001, 29(6):780-783.DOI: 10.13989/j.cnki.0517-6611.2001.06.042.
[38]
SCHAUBROECK T, DECKMYN G, NEIRYNCK J, et al. Multilayered modeling of particulate matter removal by a growing forest over time,from plant surface deposition to washoff via rainfall[J]. Environ Sci Technol, 2014, 48(18):10785-10794.DOI: 10.1021/es5019724.
[39]
余新晓. 森林对PM2.5等颗粒物的调控功能与技术[M]. 北京: 科学出版社, 2017.
YU X X. Regulatory function of forest on PM2.5 and other particulate matters & related technology[M]. Beijing: Science Press, 2017.
[40]
李海梅, 党宁, 禹靓倩, 等. 5个园林树种滞尘能力与叶表形态及颗粒物粒径的关系[J]. 林业科学研究, 2021, 34(4):84-94.
LI H M, DANG N, YU L Q, et al. The relationships between the dust-olding capacity and the leaf surface structure & particle size in five evergreen tree species locates in Hangzhou[J]. For Res, 2021, 34(4):84-94.DOI: 10.13275/j.cnki.lykxyj.2021.04.010.
[41]
LI X L, ZHANG T R, SUN F B, et al. The relationship between particulate matter retention capacity and leaf surface micromorphology of ten tree species in Hangzhou,China[J]. Sci Total Environ, 2021,771:144812.DOI: 10.1016/j.scitotenv.2020.144812.
[42]
张俊叶, 邹明, 刘晓东, 等. 南京城市森林植物叶面颗粒物的含量特征[J]. 环境污染与防治, 2019, 41(7):837-843.
ZHANG J Y, ZOU M, LIU X D, et al. Content characteristics of particulate matter on the leaf surface of Nanjing urban forest plant[J]. Environ Pollut Contr, 2019, 41(7):837-843.DOI: 10.15985/j.cnki.1001-3865.2019.07.019.
[43]
李巧云, 黄雅奇, 刘艳, 等. 中亚热带绿化植物滞留颗粒物效应[J]. 西北林学院学报, 2021, 36(6):79-84.
LI Q Y, HUANG Y Q, LIU Y, et al. Effects of particulate matter retention by common green plants in central tropical Asia[J]. J Northwest For Univ, 2021, 36(6):79-84.DOI: 10.3969/j.issn.1001-7461.2021.06.11.
[44]
夏冰, 马晓. 郑州市绿化植物滞尘效应及其生理特征响应[J]. 江苏农业科学, 2017, 45(6):127-131.
XIA B, MA X. Dust retention effect of greening plants in Zhengzhou City and its physiological characteristics response[J]. Jiangsu Agric Sci, 2017, 45(6):127-131.DOI: 10.15889/j.issn.1002-1302.2017.06.032.
[45]
高传友. 南宁市典型园林植物滞尘效应及生理特性研究[J]. 水土保持研究, 2016, 23(1):187-192.
GAO C Y. Research on dust retention capacities and physiological properties of different typical green plants in Nanning City[J]. Res Soil Water Conserv, 2016, 23(1):187-192.DOI: 10.13869/j.cnki.rswc.2016.01.028.
[46]
刘玲. 淮南市空气悬浮颗粒特征及污染物的树木监测[D]. 南京: 南京林业大学, 2013.
LIU L. Characteristics of air suspended particulate matter in Huainan and monitoring pollutant by trees[D]. Nanjing: Nanjing Forestry University, 2013.
[47]
史军娜, 张罡, 安海龙, 等. 北京市16种树木吸附大气颗粒物的差异及颗粒物研究[J]. 北京林业大学学报, 2016, 38(12):84-91.
SHI J N, ZHANG G, AN H L, et al. Differences in atmospheric particle accumulation on leaf surface in sixteen tree species in Beijing and characteristics of particles[J]. J Beijing For Univ, 2016, 38(12):84-91.DOI: 10.13332/j.1000-1522.20160053.
[48]
PRZYBYSZ A, SÆBØ A, HANSLIN H M, et al. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level,rainfall and the passage of time[J]. Sci Total Environ, 2014, 481:360-369.DOI: 10.1016/j.scitotenv.2014.02.072.
[49]
TOMASEVIC M, VUKMIROVIC Z, RAJSIC S, et al. Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area[J]. Chemosphere, 2005, 61(6):753-760.DOI: 10.1016/j.chemosphere.2005.03.077.
[50]
NOWAK D J, CRANE D E, STEVENS J C. Air pollution removal by urban trees and shrubs in the United States[J]. Urban For Urban Green, 2006, 4(3/4):115-123.DOI: 10.1016/j.ufug.2006.01.007.
[51]
江胜利. 杭州地区常见园林绿化植物滞尘能力研究[D]. 杭州: 浙江农林大学, 2012.
JIANG S L. The common green plants in landscape architecture and the study on its dust retention capacity in Hangzhou[D]. Hangzhou: Zhejiang A & F University, 2012.
[52]
王赞红, 李纪标. 城市街道常绿灌木植物叶片滞尘能力及滞尘颗粒物形态[J]. 生态环境, 2006, 15(2):327-330.
WANG Z H, LI J B. Capacity of dust uptake by leaf surface of Euonymus japonicus Thunb.and the morphology of captured particle in air polluted city[J]. Ecol Environ, 2006, 15(2):327-330.DOI: 10.16258/j.cnki.1674-5906.2006.02.027.
[53]
石登红, 黄静, 杨爱玲, 等. 贵阳学院主要绿化植物滞尘能力的研究[J]. 贵阳学院学报(自然科学版), 2014, 9(1):75-78.
SHI D H, HUANG J, YANG A L, et al. Study on the dust catching property of the campus plants in Guiyang University[J]. J Guiyang Univ (Nat Sci), 2014, 9(1):75-78.DOI: 10.16856/j.cnki.52-1142/n.2014.01.021.
[54]
闫淑君, 雷少飞, 秦一芳. 福州市常用乔木绿化树种秋季滞尘能力研究[C]// 孟兆桢,陈晓丽.中国风景园林学会2013年会论文集:下册. 北京: 中国建筑工业出版社,2013:410-415.
YAN S J, LEI S F, QIN Y F. Study on the dust retention ability of common tree greening trees in Fuzhou in autumn[C]// MENG Z Z, CHEN X L. Chinese Society of Landscape Architecture. Proceedings of the 2013 Annual Meeting of Chinese Society of Landscape Architecture:Volume II. Beijing: China Architecture and Building Press, 2013: 410-415.
[55]
江胜利, 金荷仙, 华晓莉, 等. 杭州常见绿化植物滞尘能力研究[J]. 林业科技开发, 2013, 27(5):47-50.
JIANG S L, JIN H X, HUA X L, et al. A study on the dust retention capacity of the landscape plants in Hangzhou[J]. China For Sci Technol, 2013, 27(5):47-50.DOI: 10.3969/j.issn.1001-3776.2011.06.009.
[56]
ZHENG J G. Study on the dust-retention capacity resulting from greenbelt of the main roads in Xuchang[J]. Adv Mater Res, 2013, 726/727/728/729/730/731:1805-1808.DOI: 10.4028/www.scientific.net/amr.726-731.1805.
[57]
高金晖. 北京市主要植物种滞尘影响机制及其效果研究[D]. 北京: 北京林业大学, 2007.
GAO J H. Influence mechanism and effectiveness of the plants semi-arid on detaining dust in Beijing[D]. Beijing: Beijing Forestry University, 2007.
[58]
PRAJAPATI S K, TRIPATHI B D. Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution[J]. J Environ Qual, 2008, 37(3):865-870.DOI: 10.2134/jeq2006.0511.
[59]
洪秀玲. 社区散生林木叶片滞留PM2.5等大气颗粒物研究[D]. 北京: 北京林业大学, 2015.
HONG X L. Studies on leaves of trees scattered in communities in retention of PM2.5 and other atmospheric particulate matters[D]. Beijing: Beijing Forestry University, 2015.
[60]
罗佳, 周小玲, 田育新, 等. 长沙市不同污染程度区域桂花和香樟叶表面PM2.5吸附量及其影响因素[J]. 应用生态学报, 2019, 30(2):503-510.
LUO J, ZHOU X L, TIAN Y X, et al. PM2.5 adsorption capacity of Osmanthus fragrans and Cinnamomum camphora leaf surface and influencing factors under different pollution levels in Changsha,China[J]. Chin J Appl Ecol, 2019, 30(2):503-510.DOI: 10.13287/j.1001-9332.201902.003.
[61]
王会霞, 石辉, 王彦辉, 等. 城市绿化树种女贞对PM2.5的滞留能力[J]. 生态科学, 2014, 33(4):749-753.
WANG H X, SHI H, WANG Y H, et al. PM2.5 removal by plant leaves:taking Ligustrum lucidum as an example[J]. Ecol Sci, 2014, 33(4):749-753.DOI: 10.14108/j.cnki.1008-8873.2014.04.018.
[62]
CAVANAGH J A E, ZAWAR-REZA P, WILSON J G. Spatial attenuation of ambient particulate matter air pollution within an urbanised native forest patch[J]. Urban For Urban Green, 2009, 8(1):21-30.DOI: 10.1016/j.ufug.2008.10.002.
[63]
VIIPPOLA V, WHITLOW T H, ZHAO W L, et al. The effects of trees on air pollutant levels in peri-urban near-road environments[J]. Urban For Urban Green, 2018, 30:62-71.DOI: 10.1016/j.ufug.2018.01.014.
[64]
刘启红. 武汉狮子山校园几种常见树种滞尘研究[D]. 武汉: 华中农业大学, 2018.
LIU Q H. Study on dust retention of several common tree species in Shizishan campus of Wuhan[D]. Wuhan: Huazhong Agricultural University, 2018.
[65]
李艳梅, 陈奇伯, 李艳芹, 等. 昆明10个绿化树种对不同污染区的滞尘及吸净效应[J]. 西南林业大学学报, 2016, 36(3):105-110.
LI Y M, CHEN Q B, LI Y Q, et al. Study on the effect of absorption and purification air pollution of 10 common greening species at different polluted area in Kunming[J]. J Southwest For Univ, 2016, 36(3):105-110.DOI: 10.11929/j.issn.2095-1914.2016.03.018.
[66]
DUZGOREN-AYDIN N S, WONG C S C, AYDIN A, et al. Heavy metal contamination and distribution in the urban environment of Guangzhou,SE China[J]. Environ Geochem Health, 2006, 28(4):375-391.DOI: 10.1007/s10653-005-9036-7.
[67]
孙悦. 基于多光谱影像的植被滞尘分布评估[D]. 上海: 上海师范大学, 2021.
SUN Y. Estimation of vegetation dust deposition distribution based on multispectralimage[D]. Shanghai: Shanghai Normal University, 2021.
[68]
张金恒. 植物大气污染响应高光谱监测实例研究[J]. 中国环境监测, 2008, 24(5):40-43.
ZHANG J H. Study of hyperspectral application to monitoring vegetation response of air pollution[J]. Environ Monit China, 2008, 24(5):40-43.DOI: 10.19316/j.issn.1002-6002.2008.05.011.
[69]
GARTY J, TAMIR O, HASSID I, et al. Photosynthesis,chlorophyll integrity,and spectral reflectance in lichens exposed to air pollution[J]. J Environ Qual, 2001, 30(3):884-893.DOI: 10.2134/jeq2001.303884x.
[70]
姚俊. 粉尘污染对城市典型绿化树种的生理生态影响[D]. 南京: 南京林业大学, 2009.
YAO J. The physiological and ecological impacts of urban typical afforestation trees polluted by dust[D]. Nanjing: Nanjing Forestry University, 2009.
[71]
CHEN X P, ZHOU Z X, TENG M J, et al. Accumulation of three different sizes of particulate matter on plant leaf surfaces:effect on leaf traits[J]. Arch Biol Sci, 2015, 67(4):1257-1267.DOI: 10.2298/ABS150325102C.
[72]
黄峰. 高速公路尘污染对植物叶片光合作用的影响[D]. 武汉: 武汉理工大学, 2007.
HUANG F. Effect of highway dust pollution on photosynthesis in plant leaves[D]. Wuhan: Wuhan University of Technology, 2007.
[73]
吴春燕, 王雪峰. 叶面尘对植物反射光谱及生理生态的影响研究进展[J]. 应用与环境生物学报, 2014, 20(6):1132-1138.
WU C Y, WANG X F. Effects of foliar dust on plant reflectance spectra and physiological ecology:a review[J]. Chin J Appl Environ Biol, 2014, 20(6):1132-1138.DOI: 10.3724/SP.J.1145.2014.03044.
[74]
BUI H T, ODSUREN U, KIM S Y, et al. Seasonal variations in the particulate matter accumulation and leaf traits of 24 plant species in urban green space[J]. Land, 2022, 11(11):1981.DOI: 10.3390/land11111981.
[75]
施婷婷, 杨秀莲, 王良桂. 3个桂花品种花香组分动态特征及花被片结构解剖学观测[J]. 南京林业大学学报(自然科学版), 2020, 44(4):12-20.
SHI T T, YANG X L, WANG L G. Dynamic characteristics of floral components and anatomical observation of petals in three cultivars of Osmanthus fragrans[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(4):12-20.DOI: 10.3969/j.issn.1000-2006.202003047.

基金

云南省教育厅科学研究基金项目(2023Y0757)
云南省教育厅科学研究基金项目(2023Y0743)
云南省农业联合专项面上项目(202101BD070001-100)

编辑: 郑琰燚
PDF(1519 KB)

Accesses

Citation

Detail

段落导航
相关文章

/