[1] |
AGGARWAL P, MISHRA N K, FATIMAH B, et al. COVID-19 image classification using deep learning:advances,challenges and opportunities[J]. Comput Biol Med, 2022,144:105350.DOI: 10.1016/j.compbiomed.2022.105350.
|
[2] |
PAYMODE A S, MALODE V B. Transfer learning for multi-crop leaf disease image classification using convolutional neural network VGG[J]. Artif Intell Agric, 2022, 6:23-33.DOI: 10.1016/j.aiia.2021.12.002.
|
[3] |
蔡茂, 刘芳. 基于细粒度图像分类算法的新冠CT图像分类[J]. 吉林大学学报(信息科学版), 2023, 41(4):676-684.
|
|
CAI M, LIU F. CT image classification of COVID-19 based on fine-grained image classification algorithms[J]. J Jilin Univ (Inf Sci Ed), 2023, 41(4):676-684.DOI: 10.19292/j.cnki.jdxxp.2023.04.004.
|
[4] |
ZHANG S W, ZHANG C L. Modified U-Net for plant diseased leaf image segmentation[J]. Comput Electron Agric, 2023,204:107511.DOI: 10.1016/j.compag.2022.107511.
|
[5] |
张俊威. 基于深度学习的图像分割方法[J]. 数字技术与应用, 2023, 41(3):120-122,154.
|
|
ZHANG J W. Image segmentation method based on deep learning[J]. Digit Technol Appl, 2023, 41(3):120-122,154.DOI: 10.19695/j.cnki.cn12-1369.2023.03.36.
|
[6] |
金燕, 薛智中, 姜智伟. 基于循环残差卷积神经网络的医学图像分割算法[J]. 计算机辅助设计与图形学学报, 2022, 34(8):1205-1215.
|
|
JIN Y, XUE Z Z, JIANG Z W. Medical image segmentation based on recurrent residual convolution neural network[J]. J Comput Aided Des Comput Graph, 2022, 34(8):1205-1215.DOI: 10.3724/SP.J.1089.2022.19153.
|
[7] |
WEN L, CHENG Y, FANG Y, et al. A comprehensive survey of oriented object detection in remote sensing images[J]. Expert Syst Appl, 2023,224:119960.DOI: 10.1016/j.eswa.2023.119960.
|
[8] |
MAJID S, ALENEZI F, MASOOD S, et al. Attention based CNN model for fire detection and localization in real-world images[J]. Expert Syst Appl, 2022,189:116114.DOI: 10.1016/j.eswa.2021.116114.
|
[9] |
袁翔, 程塨, 李戈, 等. 遥感影像小目标检测研究进展[J]. 中国图象图形学报, 2023, 28(6):1662-1684.
|
|
YUAN X, CHENG G, LI G, et al. Progress in small object detection for remote sensing images[J]. J Image Graph, 2023, 28(6):1662-1684.DOI: 10.11834/jig.221202.
|
[10] |
魏铭辰, 刘立波, 王晓丽. 2020—2021年宁夏野生鸟类细粒度分类研究图像数据集[J]. 中国科学数据(中英文网络版), 2022, 7(3):142-148.
|
|
WEI M C, LIU L B, WANG X L. 2020-2021 Image dataset for fine-grained classification of wild birds in Ningxia[J]. Chinese Scientific Data (Chinese-English Online Edition), 2022, 7(3):142-148. DOI: 10.11922/11-6035.nasdc.2021.0059.zh
|
[11] |
解丹, 陈立潮, 曹玲玲, 等. 基于卷积神经网络的车辆分类与检测技术研究[J]. 软件工程, 2023, 26(4):10-13.
|
|
XIE D, CHEN L C, CAO L L, et al. Research on vehicle classification and detection technology based on convolutional neural network[J]. Softw Eng, 2023, 26(4):10-13.DOI: 10.19644/j.cnki.issn2096-1472.2023.004.003.
|
[12] |
LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]//2015 IEEE International Conference on Computer Vision (ICCV). December 7-13,2015, Santiago,Chile: IEEE, 2015:1449-1457.DOI: 10.1109/ICCV.2015.170.
|
[13] |
WOO S, PARK J, LEE J Y, et al. CBAM:convolutional block attention module[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing,2018:3-19.DOI: 10.1007/978-3-030-01234-2_1.
|
[14] |
HAN K, WANG Y H, CHEN H T, et al. A survey on vision transformer[J]. IEEE Trans Pattern Anal Mach Intell, 2023, 45(1):87-110.DOI: 10.1109/TPAMI.2022.3152247.
|
[15] |
朱张莉, 饶元, 吴渊, 等. 注意力机制在深度学习中的研究进展[J]. 中文信息学报, 2019, 33(6):1-11.
|
|
ZHU Z L, RAO Y, WU Y, et al. Research progress of attention mechanism in deep learning[J]. J Chin Inf Process, 2019, 33(6):1-11.DOI: 10.3969/j.issn.1003-0077.2019.06.001.
|
[16] |
WANG W Y, CUI Y C, LI G S, et al. A self-attention-based destruction and construction learning fine-grained image classification method for retail product recognition[J]. Neural Comput Appl, 2020, 32(18):14613-14622.DOI: 10.1007/s00521-020-05148-3.
|
[17] |
赵国川, 王姮, 张华, 等. 基于完全自注意力的水电枢纽缺陷识别方法[J]. 计算机工程, 2022, 48(9):277-285.
|
|
ZHAO G C, WANG H, ZHANG H, et al. Hydropower complex defect recognition method based on pure self-attention[J]. Comput Eng, 2022, 48(9):277-285.DOI: 10.19678/j.issn.1000-3428.0062577.
|
[18] |
HORVÁTH J, BAIREDDY S, HAO H X, et al. Manipulation detection in satellite images using vision transformer[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).June 19-25,2021, Nashville,TN,USA: IEEE,2021:1032-1041.DOI: 10.1109/CVPRW53098.2021.00114.
|
[19] |
YE Q L, HUANG P, ZHANG Z, et al. Multiview learning with robust double-sided twin SVM[J]. IEEE Trans Cybern, 2022, 52(12):12745-12758.DOI: 10.1109/TCYB.2021.3088519.
|
[20] |
ABNAR S, ZUIDEMA W. Quantifying attention flow in transformers[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Online.Stroudsburg,PA, USA: Association for Computational Linguistics, 2020:4190-4197.DOI: 10.18653/v1/2020.acl-main.385.
|