南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6): 183-192.doi: 10.12302/j.issn.1000-2006.202308025

• 研究论文 • 上一篇    下一篇

基于多源数据的城市公园网络关注度时空特征与影响因素研究

叶永祥(), 崔亭亭, 陈馨, 朱里莹*()   

  1. 福建农林大学风景园林与艺术学院,福建 福州 350100
  • 收稿日期:2023-08-15 修回日期:2024-01-04 出版日期:2024-11-30 发布日期:2024-12-10
  • 通讯作者: *朱里莹(fjndzly@126.com),副教授。
  • 作者简介:

    叶永祥(2362540946@qq.com)。

  • 基金资助:
    福建省社会科学基金项目(FJ2021BF044);福建农林大学校杰青计划项目(XJQ2021S2);福建农林大学研究生项目(712018270434);福建农林大学研究生教学项目(712018270418)

Spatial and temporal characteristics and factors influencing the network attention degree of urban parks based on multi-source data

YE Yongxiang(), CUI Tingting, CHEN Xin, ZHU Liying*()   

  1. College of Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350100, China
  • Received:2023-08-15 Revised:2024-01-04 Online:2024-11-30 Published:2024-12-10

摘要:

【目的】探析城市公园网络关注度变化特征与影响因素,提出城市公园规划管理建议。【方法】借助多源数据测度了福州市主城区131个城市公园的网络关注度,识别公园网络关注度时空变化特征,构建服务功能分布、城市区位特征、周边空间特征、公园自身属性、区域分布质量、用地性质属性6组指标体系,利用地理探测器与多尺度地理加权回归模型(MGWR)分析公园网络关注度的驱动因子及其空间差异性。【结果】①福州市城市公园网络关注度月度差异显著,具有明显的波动性、突变性与周期性;②空间上呈现“一核两片”布局,Moran’s I分析结果显示,网络关注度呈现正相关的空间分布;③道路网密度是公园网络关注度的主要影响因子,公园面积的影响次之,双因子交互作用对公园网络关注度的促进更明显;④指标空间差异系数之和表现为区域分布质量(G5)> 周边空间特征(G3)> 城市区位特征(G2)> 公园自身属性(G4)。【结论】提升城市公园网络关注度水平,重在城市公园服务品质的营造,提升景观环境面貌和游客承载能力,梳理周边道路交通以便捷游客出行。结合城市公园网络关注度随时间变化特征,可为城市公园规划管理提供前瞻性思路。

关键词: 城市公园, 网络关注度, 时空特征, 多尺度地理加权回归模型(MGWR), 福州市

Abstract:

【Objective】By analyzing the change characteristics and factors influencing the network attention degree of an urban park network, we made proposals for urban park planning and management.【Method】Using the multi-source data, we assessed the network attention degree of an urban park network consisting of 131 urban parks in the main urban area of Fuzhou City. We identified the spatial and temporal characteristics of the urban park network and devised a six-group index system of service function distribution, urban location characteristics, surrounding spatial characteristics, park attributes, the quality of regional distribution, and land use nature attributes. The driving factors of the network attention degree for the urban parks and its spatial variability were determined using geographic probes and the multi-scale geographically weighted regression model.【Result】(1) The monthly differences in urban park network attention degree were significant, with obvious volatility, mutability and periodicity. (2) Spatially, there was a “one-core and two-slice” layout, and the results of a Moran’s I test showed that the network attention degree presented a positively correlated spatial distribution. (3) The road network density was the main influencing factor, and the park area was the secondary influencing factor, while the interaction of the two factors clearly promoted the network attention degree. (4) The sum of the spatial coefficients of variation of the indexes followed the order of: the quality of the regional distribution (G5) > the peripheral spatial characteristics (G3) > the characteristics of the city’s location (G2) > the attributes of the parks themselves (G4).【Conclusion】Enhancing the level of urban park network attention degree creates a focus on the creation of service quality in urban parks, improving the appearance of the landscape, increasing visitor carrying capacity and the surrounding road transport network, and facilitating tourists. Combined with the temporal changes in the characteristics of the urban park network, the study provides novel insights for the planning and management of urban parks.

Key words: urban park, network attention degree, spatio-temporal characteristics, multiscale geographically weighted regression(MGWR), Fuzhou City

中图分类号: