南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (3): 14-24.doi: 10.12302/j.issn.1000-2006.202308030
• 专题报道Ⅰ:“双碳”目标下的土壤碳研究 • 上一篇 下一篇
宋成功1(), 王克勤1,2, 宋娅丽1,2,*(
), 张乃木1
收稿日期:
2023-08-16
接受日期:
2023-11-13
出版日期:
2025-05-30
发布日期:
2025-05-27
通讯作者:
*宋娅丽(songyali19851205@sina.com),副教授。作者简介:
宋成功(scg19990505@sina.com)。
基金资助:
SONG Chenggong1(), WANG Keqin1,2, SONG Yali1,2,*(
), ZHANG Naimu1
Received:
2023-08-16
Accepted:
2023-11-13
Online:
2025-05-30
Published:
2025-05-27
摘要:
【目的】探究氮沉降下滇中高原地带性森林土壤特性的改变对土壤呼吸的影响,阐明滇中高原地带性森林土壤呼吸对氮沉降的响应机制,为准确评估亚热带森林生态系统碳含量收支及物质循环提供理论依据。【方法】以滇中高原常绿阔叶林和高山栎林两种地带性森林土壤为研究对象,设置4个氮处理梯度:对照[施氮量0 g/(m2·a),CK]、低氮[施氮量10 g/(m2·a),LN]、中氮[施氮量20 g/(m2·a),MN]和高氮[施氮量25 g/(m2·a),HN],研究施氮后土壤呼吸(RS)、温度(T)、湿度(W)和有机碳(TOC)、全氮(TN)、全磷(TP)、硝态氮($\mathrm{NO}_{3}^{-}-\mathrm{N}$)、铵态氮($\mathrm{NH}_{4}^{+}-\mathrm{N}$)含量及微生物生物量碳、氮(MBC、MBN)的动态变化特征,分析氮沉降对土壤呼吸的影响。【结果】①与CK处理相比,常绿阔叶林土壤呼吸在LN处理下增加,在MN、HN处理下降低;高山栎林土壤呼吸随施氮量增加而增大。②旱季时两种林分土壤呼吸低于雨季,雨季较旱季分别增长了155.15%(高山栎林)和181.78%(常绿阔叶林)。③不同季节两种林分土壤TOC、TN、$\mathrm{NO}_{3}^{-}-\mathrm{N}$、$\mathrm{NH}_{4}^{+}-\mathrm{N}$含量均随施氮量增加而增加,雨季时两种林分土壤MBC在各施氮处理下均低于CK。④旱季和雨季常绿阔叶林土壤呼吸与pH、TP含量、MBN存在一定的正相关(P>0.05不显著,下同);高山栎林土壤呼吸与TOC、TN、$\mathrm{NO}_{3}^{-}-\mathrm{N}$ 和$\mathrm{NH}_{4}^{+}-\mathrm{N}$含量存在一定正相关关系(P>0.05),与TP含量、MBC和MBN呈现一定的负相关关系(P>0.05),并与pH显著负相关(P<0.05)。【结论】氮沉降可通过影响土壤TOC、TN、TP、$\mathrm{NO}_{3}^{-}-\mathrm{N}$、$\mathrm{NH}_{4}^{+}-\mathrm{N}$含量及MBC和MBN使土壤呼吸发生改变,适量的氮沉降对土壤呼吸具有促进作用,过量的氮添加会抑制土壤呼吸。
中图分类号:
宋成功,王克勤,宋娅丽,等. 氮沉降对滇中高原地带性森林土壤呼吸的影响[J]. 南京林业大学学报(自然科学版), 2025, 49(3): 14-24.
SONG Chenggong, WANG Keqin, SONG Yali, ZHANG Naimu. Effects of nitrogen deposition on soil respiration in zonal forests in the central Yunnan Plateau[J].Journal of Nanjing Forestry University (Natural Science Edition), 2025, 49(3): 14-24.DOI: 10.12302/j.issn.1000-2006.202308030.
表1
磨盘山各森林类型样地基本情况"
森林类型 forest type | 样地编号 plot No. | 海拔/m altitude | 坡度/ (°) slope | 坡向 aspect | 平均 林龄/a mean tree age | 平均 胸径/cm mean DBH | 平均 树高/m mean height | 林分密度/ (株·hm-2) stem density | 郁闭度 canopy density |
---|---|---|---|---|---|---|---|---|---|
常绿阔叶林 evergreen broad-leaf forest | 1 | 2 258 | 13 | 西北 | 17 | 9.5 | 9.1 | 4 619 | 0.85 |
2 | 2 193 | 15 | 西北 | 15 | 9.0 | 9.3 | 4 747 | 0.90 | |
3 | 2 236 | 16 | 西北 | 17 | 8.9 | 9.0 | 4 533 | 0.87 | |
高山栎林 Quercus aquifolioides forest | 1 | 2 208 | 16 | 东北 | 15 | 9.0 | 4.6 | 1 038 | 0.92 |
2 | 2 373 | 14 | 东北 | 16 | 10.0 | 4.1 | 1 132 | 0.88 | |
3 | 2 281 | 15 | 东北 | 16 | 10.6 | 4.1 | 1 073 | 0.90 |
表2
两种林分土壤养分含量及微生物生物量在旱季变化特征"
森林类型 forest type | 施氮处理 nitrogen treatment | 养分质量分数/(g·kg-1) nutrient fraction | 养分质量分数/(mg·kg-1) nutrient fraction | 微生物生物量质量分数/(mg·kg-1) microbial biomass | ||||
---|---|---|---|---|---|---|---|---|
有机碳 TOC | 全氮 TN | 全磷 TP | 硝态氮 $\mathrm{NO}_{3}^{-}-\mathrm{N}$ | 铵态氮 $\mathrm{NH}_{4}^{+}-\mathrm{N}$ | 微生物生物量碳 MBC | 微生物生物量氮 MBN | ||
常绿阔叶林 evergreen broad-leaf forest | CK | 20.01±5.32 Ad | 1.68±0.29 Ab | 1.42±0.05 Aa | 1.47±0.32 Ad | 11.52±1.50 Ac | 643.98±141.19 Aa | 54.39±13.05 Aa |
LN | 27.23±7.21 Ac | 1.77±0.26 Ab | 1.08±0.13 Ab | 1.71±0.32 Ac | 14.32±1.58 Ab | 537.57±137.84 Ac | 53.42±11.53 Aa | |
MN | 34.89±10.66 Ab | 1.92±0.29 Aa | 0.81±0.21 Ac | 1.97±0.35 Ab | 17.96±1.95 Aa | 657.28±152.48 Aa | 42.06±7.17 Ab | |
HN | 39.02±8.36 Aa | 1.94±0.32 Aa | 0.56±0.02 Ad | 2.27±0.30 Aa | 18.64±2.07 Aa | 590.24±126.11 Ab | 32.20±3.18 Ac | |
高山栎林 Q. aquifolioides forest | CK | 25.60±1.78 Bc | 1.17±0.04 Bb | 0.63±0.02 Bc | 0.70±0.06 Bd | 9.98±0.53 Bd | 529.43±132.00 Ba | 57.72±10.31 Ab |
LN | 28.35±2.66 Ab | 1.26±0.03 Ba | 0.72±0.02 Bb | 1.14±0.04 Bc | 11.01±0.82 Bc | 483.97±87.78 Bb | 63.42±5.76 Ba | |
MN | 29.23±2.35 Bb | 1.28±0.03 Ba | 1.05±0.06 Ba | 1.33±0.09 Bb | 14.11±0.75 Bb | 478.14±109.48 Bb | 48.73±5.07 Bc | |
HN | 32.40±2.63 Ba | 1.33±0.04 Ba | 0.56±0.04 Ad | 1.69±0.05 Ba | 16.80±1.15 Ba | 406.25±76.59 Bc | 38.87±1.57 Bd |
表3
两种林分土壤化学性质及微生物生物量在雨季变化特征"
森林类型 forest type | 施氮处理 nitrogen treatment | 养分质量分数/(g·kg-1) nutrient mass fraction | 养分质量分数/(mg·kg-1) nutrient mass fraction | 微生物生物量质量分数/(mg·kg-1) microbial biomass | ||||
---|---|---|---|---|---|---|---|---|
有机碳 TOC | 全氮 TN | 全磷 TP | 硝态氮 $\mathrm{NO}_{3}^{-}-\mathrm{N}$ | 铵态氮 $\mathrm{NH}_{4}^{+}-\mathrm{N}$ | 微生物生物量碳 MBC | 微生物生物量氮 MBN | ||
常绿阔叶林 evergreen broad-leaf forest | CK | 39.88±13.47 Ad | 2.07±0.35 Ad | 3.99±0.06 Aa | 2.48±0.76 Ad | 17.99±3.25 Ad | 526.88±247.83 Aa | 84.74±31.03 Ac |
LN | 48.04±18.65 Ac | 2.29±0.53 Ac | 3.52±0.26 Ab | 2.87±0.64 Ac | 21.50±2.34 Ac | 502.27±202.11 Aab | 89.78±33.69 Aa | |
MN | 54.44±20.53 Ab | 2.53±0.67 Ab | 3.18±0.41 Ac | 3.16±0.67 Ab | 24.16±2.15 Ab | 487.81±221.00 Ab | 49.98±9.15 Ac | |
HN | 58.98±11.48 Aa | 2.78±0.60 Aa | 2.46±0.30 Ad | 3.58±0.35 Aa | 27.10±1.90 Aa | 428.36±99.31 Ac | 36.64±5.13 Ad | |
高山栎林 Q. aquifolioides forest | CK | 29.87±2.77 Bc | 1.63±0.07 Bc | 2.56±0.11 Bb | 2.47±0.08 Ab | 18.62±2.10 Ad | 518.29±123.82 Aa | 57.58±8.40 Bb |
LN | 32.41±2.56 Bb | 1.69±0.08 Bbc | 2.89±0.11 Ba | 2.42±0.20 Bb | 20.60±2.17 Ac | 489.04±92.03 Ab | 62.79±10.99 Ba | |
MN | 34.14±2.88 Bb | 1.75±0.11 Bb | 2.88±0.23 Ba | 2.53±0.26 Bb | 22.41±2.17 Bb | 455.15±89.04 Bc | 55.60±13.42 Bbc | |
HN | 39.90±5.87 Ba | 1.87±0.15 Ba | 2.15±0.21 Bc | 2.90±0.27 Ba | 26.29±6.26 Aa | 377.40±109.47 Bd | 52.28±20.46 Bc |
表4
旱季氮沉降下两种林分土壤呼吸与温、湿度关系模型参数"
森林类型 forest type | 施氮水平 nitrogen treatment | 旱季温度 dry season temperature | 旱季湿度 dry season humidity | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a1 | b1 | R2 | P | Q10 | R10 | a2 | b2 | c | R2 | P | ||
常绿阔叶林 evergreen broad-leaf forest | CK | 2.325 | 0.059 | 0.358 | 0.019 | 1.804 | 4.194 | -0.001 | 0.031 | 1.866 | 0.349 | 0.009 |
LN | 2.185 | 0.021 | 0.343 | 0.012 | 1.234 | 2.696 | -0.003 | 0.121 | 2.203 | 0.386 | 0.014 | |
MN | 1.728 | 0.017 | 0.355 | 0.021 | 1.185 | 2.048 | -0.001 | 0.032 | 1.853 | 0.344 | 0.005 | |
HN | 1.648 | 0.038 | 0.316 | 0.010 | 1.462 | 2.411 | -0.003 | 0.096 | 1.165 | 0.292 | 0.007 | |
高山栎林 Q.aquifolioides forest | CK | 0.985 | 0.048 | 0.643 | 0.007 | 1.618 | 1.593 | -0.002 | 0.101 | 0.113 | 0.435 | 0.021 |
LN | 0.928 | 0.036 | 0.871 | 0.010 | 1.433 | 1.330 | -0.002 | 0.046 | 1.228 | 0.462 | 0.019 | |
MN | 0.742 | 0.026 | 0.708 | <0.001 | 1.291 | 0.958 | -0.012 | 0.387 | -1.599 | 0.402 | 0.012 | |
HN | 2.044 | 0.036 | 0.733 | 0.006 | 1.433 | 2.930 | -0.168 | 9.919 | -143.535 | 0.443 | 0.029 |
表5
雨季氮沉降下两种林分土壤呼吸与温、湿度关系模型参数"
森林类型 forest type | 施氮水平 nitrogen treatment | 雨季温度 rainy season temperature | 雨季湿度 rainy season humidity | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a1 | b1 | R2 | P | Q10 | R10 | a2 | b2 | c | R2 | P | ||
常绿阔叶林 evergreen broad-leaf forest | CK | 2.287 | 0.064 | 0.324 | <0.001 | 1.896 | 4.338 | 0.473 | -15.739 | 136.983 | 0.338 | 0.024 |
LN | 3.483 | 0.054 | 0.471 | 0.020 | 1.716 | 5.977 | -0.003 | 0.452 | 2.953 | 0.283 | 0.010 | |
MN | 2.329 | 0.046 | 0.408 | 0.007 | 1.584 | 3.689 | -1.915 | 97.085 | -1 223.407 | 0.305 | 0.030 | |
HN | 2.344 | 0.047 | 0.350 | 0.026 | 1.600 | 3.750 | -0.081 | 4.108 | -45.004 | 0.375 | 0.001 | |
高山栎林 Q.aquifolioides forest | CK | 2.346 | 0.045 | 0.385 | <0.001 | 1.576 | 3.698 | 0.017 | -0.724 | 11.527 | 0.374 | <0.001 |
LN | 3.013 | 0.044 | 0.466 | 0.010 | 1.553 | 4.678 | -0.064 | 2.528 | -21.071 | 0.378 | <0.001 | |
MN | 1.856 | 0.046 | 0.439 | <0.001 | 1.584 | 2.940 | -0.026 | 1.386 | -14.724 | 0.314 | <0.001 | |
HN | 1.760 | 0.028 | 0.390 | <0.001 | 1.320 | 2.323 | -0.003 | -0.299 | 13.314 | 0.526 | 0.010 |
表6
不同季节下两种林分土壤呼吸与土壤化学性质及微生物生物量的相关性"
季节 season | 森林类型 forest type | pH | TOC | TN | TP | $\mathrm{NO}_{3}^{-}-\mathrm{N}$ | $\mathrm{NH}_{4}^{+}-\mathrm{N}$ | MBC | MBN |
---|---|---|---|---|---|---|---|---|---|
旱季 dry season | 常绿阔叶林evergreen broad-leaf forest | 0.41 | -0.30 | -0.34 | 0.28 | -0.35 | -0.30 | -0.77 | 0.58 |
高山栎林Q. aquifolioides forest | -0.98* | 0.88 | 0.77 | -0.47 | 0.83 | 0.88 | -0.93 | -0.86 | |
雨季 rainy season | 常绿阔叶林evergreen broad-leaf forest | 0.17 | -0.22 | -0.30 | 0.23 | -0.23 | -0.22 | 0.22 | 0.64 |
高山栎林Q. aquifolioides forest | -0.74 | 0.82 | 0.76 | -0.95 | 0.93 | 0.77 | -0.81 | -0.65 |
[40] | 白英辰, 陈晶, 康峰峰, 等. 模拟氮沉降下不同凋落物处理对太岳山华北落叶松林土壤呼吸的影响[J]. 中南林业科技大学学报, 2017, 37(4):92-99. |
BAI Y C, CHEN J, KANG F F, et al. Effect of different litter treatment under simulated nitrogen deposition on soil respiration in Larix principis-rupprechtii Mayr.plantation in the Taiyue Mountain,China[J]. Journal of Central South University of Forestry & Technology, 2017, 37(4):92-99.DOI: 10.14067/j.cnki.1673-923x.2017.04.016. | |
[41] | PENG S S, PIAO S L, WANG T, et al. Temperature sensitivity of soil respiration in different ecosystems in China[J]. Soil Biology and Biochemistry, 2009, 41(5):1008-1014.DOI: 10.1016/j.soilbio.2008.10.023. |
[42] | KIM Y, NISHINA K, CHAE N, et al. Constraint of soil moisture on CO2 efflux from tundra lichen,moss,and tussock in Council,Alaska,using a hierarchical Bayesian model[J]. Biogeosciences, 2014, 11(19):5567-5579.DOI: 10.5194/bg-11-5567-2014. |
[43] | 张雨鉴, 宋娅丽, 王克勤. 滇中亚高山森林乔木层各器官生态化学计量特征[J]. 生态学杂志, 2019, 38(6):1669-1678. |
ZHANG Y J, SONG Y L, WANG K Q. Ecological stoichiometry of various organs in the tree layer of subalpine forests in central Yunnan,China[J]. Chinese Journal of Ecology, 2019, 38(6):1669-1678.DOI: 10.13292/j.1000-4890.201906.014. | |
[44] | 张建华, 唐志尧, 沈海花, 等. 氮添加对北京东灵山地区灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1):81-94. |
ZHANG J H, TANG Z Y, SHEN H H, et al. Effects of nitrogen addition on soil respiration in shrublands in Mt.Dongling,Beijing,China[J]. Chinese Journal of Plant Ecology, 2017, 41(1):81-94. | |
[45] | 涂利华, 戴洪忠, 胡庭兴, 等. 模拟氮沉降对华西雨屏区撑绿杂交竹林土壤呼吸的影响[J]. 应用生态学报, 2011, 22(4):829-836. |
TU L H, DAI H Z, HU T X, et al. Effects of simulated nitrogen deposition on soil respiration in a Bambusa pervariabilis × Dendrocala mopsi plantation in rainy area of west China[J]. Chinese Journal of Applied Ecology, 2011, 22(4):829-836.DOI: 10.13287/j.1001-9332.2011.0079. | |
[46] | MO J M, ZHANG W, ZHU W X, et al. Response of soil respiration to simulated N deposition in a disturbed and a rehabilitated tropical forest in Southern China[J]. Plant and Soil, 2007, 296(1):125-135.DOI: 10.1007/s11104-007-9303-8. |
[1] | LI Q, SONG X Z, CHANG S X, et al. Nitrogen depositions increase soil respiration and decrease temperature sensitivity in a Moso bamboo forest[J]. Agricultural and Forest Meteorology, 2019, 268:48-54.DOI: 10.1016/j.agrformet.2019.01.012. |
[2] | 杨赛兰, 耿庆宏, 许崇华, 等. 加拿大一枝黄花入侵对杨树人工林土壤呼吸的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(5):117-124. |
YANG S L, GENG Q H, XU C H, et al. Effects of Solidago canadensis L.invasion on soil respiration in poplar plantations (Populus deltoides)[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(5):117-124. | |
[3] | 江原, 甘小玲, 曹丰丰, 等. 短期氮磷添加对祁连山亚高山草地土壤呼吸组分的影响[J]. 环境科学, 2023, 44(4):2283-2292. |
JIANG Y, GAN X L, CAO F F, et al. Effects of short-term nitrogen and phosphorus addition on soil respiration components in a subalpine grassland of Qilian Mountains[J]. Environmental Science, 2023, 44(4):2283-2292.DOI: 10.13227/j.hjkx.202205177. | |
[4] | 高伟峰, 史宝库, 金光泽. 模拟氮沉降对典型阔叶红松林土壤呼吸的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(1):8-14. |
GAO W F, SHI B K, JIN G Z. Effect of simulated nitrogen deposition on soil respiration in the typical mixed broadleaved-Korean pine forest[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(1):8-14.DOI: 10.3969/j.issn.1000-2006.2016.01.002. | |
[5] | GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle:recent trends,questions,and potential solutions[J]. Science, 2008, 320(5878):889-892.DOI: 10.1126/science.1136674. |
[6] | LIU X J, DUAN L, MO J M, et al. Nitrogen deposition and its ecological impact in China:an overview[J]. Environmental Pollution, 2011, 159(10):2251-2264.DOI: 10.1016/j.envpol.2010.08.002. |
[7] | 叶彦辉, 刘云龙, 韩艳英, 等. 氮沉降对西藏高山灌丛草甸土壤理化性质的短期影响[J]. 草地学报, 2017, 25(5):973-981. |
YE Y H, LIU Y L, HAN Y Y, et al. Short-term effects of nitrogen deposition on soil physical and chemical properties of alpine shrub meadow in Tibet[J]. Acta Agrestia Sinica, 2017, 25(5):973-981. | |
[47] | 张雪, 梅莉, 宋利豪, 等. 模拟氮沉降对马尾松土壤微生物群落结构及温室气体释放的影响[J]. 生态学报, 2019, 39(6):1917-1925. |
ZHANG X, MEI L, SONG L H, et al. Effects of simulated nitrogen deposition on microbial community and greenhouse gases emission of Pinus massoniana soil[J]. Acta Ecologica Sinica, 2019, 39(6):1917-1925.DOI: 10.5846/stxb201809262087. | |
[48] | 付若仙, 余景松, 张云彬, 等. 氮添加下城市森林土壤呼吸动态变化及其影响因素[J]. 应用生态学报, 2020, 31(3):744-752. |
FU R X, YU J S, ZHANG Y B, et al. Dynamics of soil respiration and its influencing factors in urban forests under nitrogen addition[J]. Chinese Journal of Applied Ecology, 2020, 31(3):744-752.DOI: 10.13287/j.1001-9332.202003.037. | |
[49] | 王铭, 刘兴土, 李秀军, 等. 松嫩平原西部草甸草原典型植物群落土壤呼吸动态及影响因素[J]. 应用生态学报, 2014, 25(1):45-52. |
WANG M, LIU X T, LI X J, et al. Soil respiration dynamics and its controlling factors of typical vegetation communities on meadow steppes in the western Songnen Plain[J]. Chinese Journal of Applied Ecology, 2014, 25(1):45-52.DOI: 10.13287/j.1001-9332.2014.01.007. | |
[50] | 陈书涛, 刘巧辉, 胡正华, 等. 不同土地利用方式下土壤呼吸空间变异的影响因素[J]. 环境科学, 2013, 34(3):1017-1025. |
CHEN S T, LIU Q H, HU Z H, et al. Factors influencing the spatial variability in soil respiration under different land use regimes[J]. Environmental Science, 2013, 34(3):1017-1025.DOI: 10.13227/j.hjkx.2013.03.014. | |
[51] | 苏梓锐, 曾发旭, 郑成洋. 氮添加对亚热带常绿阔叶林土壤有机碳及土壤呼吸的影响[J]. 北京大学学报(自然科学版), 2022, 58(3):517-525. |
SU Z R, ZENG F X, ZHENG C Y. Effects of nitrogen addition on soil organic carbon and soil respiration in subtropical evergreen broad-leaved forest[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(3):517-525.DOI: 10.13209/j.0479-8023.2022.017. | |
[52] | 于辉, 陈燕, 张欢, 等. 添加无机氮对山西太岳山油松林土壤氮素及温室气体通量的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(3):85-91. |
[8] | 张雨鉴, 宋娅丽, 王克勤, 等. 模拟氮沉降对滇中高山栎林凋落物碳氮磷释放和生态化学计量特征的影响[J]. 西北农林科技大学学报(自然科学版), 2022, 50(11):70-80,92. |
ZHANG Y J, SONG Y L, WANG K Q, et al. Effects of simulated nitrogen deposition on C,N and P release from litter and ecological stoichiometry in Quercus aquifolioides forest in central Yunnan[J]. Journal of Northwest A & F University (Natural Science Edition), 2022, 50(11):70-80,92.DOI: 10.13207/j.cnki.jnwafu.2022.11.009. | |
[9] | TIAN D, JIANG L, MA S H, et al. Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China[J]. Science of The Total Environment, 2017, 607:1367-1375.DOI: 10.1016/j.scitotenv.2017.06.057. |
[10] | 王泽西, 陈倩妹, 黄尤优, 等. 川西亚高山森林土壤呼吸和微生物生物量碳氮对施氮的响应[J]. 生态学报, 2019, 39(19):7197-7207. |
WANG Z X, CHEN Q M, HUANG Y Y, et al. Response of soil respiration and microbial biomass carbon and nitrogen to nitrogen application in subalpine forests of western Sichuan[J]. Acta Ecologica Sinica, 2019, 39(19):7197-7207.DOI: 10.5846/stxb201805271164. | |
[11] | FU R X, XU X N, YU Y C, et al. Forest soil respiration response to increasing nitrogen deposition along an urban-rural gradient[J]. Global Ecology and Conservation, 2021,27:e01575.DOI: 10.1016/j.gecco.2021.e01575. |
[12] | 周世兴, 黄从德, 向元彬, 等. 氮沉降和降水变化对华西雨屏区天然常绿阔叶林土壤呼吸的影响[J]. 西北农林科技大学学报(自然科学版), 2017, 45(4):94-101,110. |
ZHOU S X, HUANG C D, XIANG Y B, et al. Effects of nitrogen deposition and precipitation change on soil respiration in natural evergreen broad-leaved forest in the rainy area of western China[J]. Journal of Northwest A & F University (Natural Science Edition), 2017, 45(4):94-101,110.DOI: 10.13207/j.cnki.jnwafu.2017.04.014. | |
[13] | ZHENG S, BIAN H F, QUAN Q, et al. Effect of nitrogen and acid deposition on soil respiration in a temperate forest in China[J]. Geoderma, 2018, 329:82-90.DOI: 10.1016/j.geoderma.2018.05.022. |
[14] | 李超, 刘苑秋, 王翰琨, 等. 庐山毛竹扩张及模拟氮沉降对土壤N2O和CO2排放的影响[J]. 土壤学报, 2019, 56(1):146-155. |
LI C, LIU Y Q, WANG H K, et al. Effects of Moso bamboo (Phyllostachys edulis) expansion and simulated nitrogen deposition on emission of soil N2O and CO2 in Lushan Mountain[J]. Acta Pedologica Sinica, 2019, 56(1):146-155.DOI: 10.11766/trxb201804240215. | |
[15] | 邢进梅, 王克勤, 宋娅丽, 等. 常绿阔叶林凋落叶、枝分解过程对模拟N沉降的响应[J]. 中南林业科技大学学报, 2023, 43(4):123-133. |
XING J M, WANG K Q, SONG Y L, et al. Responses of leaf and twig litter decomposition to simulated N deposition in the evergreen broad-leaved forest[J]. Journal of Central South University of Forestry & Technology, 2023, 43(4):123-133.DOI: 10.14067/j.cnki.1673-923x.2023.04.013. | |
[16] | 陆姣云, 张鹤山, 田宏, 等. 氮沉降影响草地生态系统土壤氮循环过程的研究进展[J]. 草业学报, 2022, 31(6):221-234. |
LU J Y, ZHANG H S, TIAN H, et al. Research progress on effects of nitrogen deposition on soil nitrogen cycling in grassland ecosystems[J]. Acta Prataculturae Sinica, 2022, 31(6):221-234. | |
[17] | 肖春艳, 胡情情, 陈晓舒, 等. 基于文献计量的大气氮沉降研究进展[J]. 生态学报, 2023, 43(3):1294-1307. |
XIAO C Y, HU Q Q, CHEN X S, et al. Research progress of atmospheric nitrogen deposition based on bibliometrics[J]. Acta Ecologica Sinica, 2023, 43(3):1294-1307.DOI: 10.5846/stxb202201070055. | |
[18] | 铁烈华, 张仕斌, 熊梓岑, 等. 华西雨屏区常绿阔叶林凋落叶分解过程中木质素降解对模拟氮、硫沉降的响应[J]. 林业科学研究, 2019, 32(2):25-31. |
TIE L H, ZHANG S B, XIONG Z C, et al. Effects of simulated nitrogen and sulfur deposition on lignin degradation during foliar litter decomposition in evergreen broad-leaved forest in the rainy area of west China[J]. Forest Research, 2019, 32(2):25-31.DOI: 10.13275/j.cnki.lykxyj.2019.02.004. | |
[19] | 黄幸然, 郭萍萍, 吴旺旺, 等. 模拟氮沉降增加对不同树种土壤微生物群落结构的影响[J]. 生态学杂志, 2016, 35(6):1420-1426. |
HUANG X R, GUO P P, WU W W, et al. Influence of simulated nitrogen deposition enhancement on soil microbial community of different tree species[J]. Chinese Journal of Ecology, 2016, 35(6):1420-1426.DOI: 10.13292/j.1000-4890.201606.025. | |
[20] | 水新利, 白云玉, 张英洁, 等. 氮沉降对长白山3种苔原类型凋落物早期分解的影响[J]. 植物科学学报, 2021, 39(6):580-591. |
SHUI X L, BAI Y Y, ZHANG Y J, et al. Effects of nitrogen deposition on early decomposition of three tundra litter types in Changbai Mountains[J]. Plant Science Journal, 2021, 39(6):580-591.DOI: 10.11913/PSJ.2095-0837.2021.60580. | |
[21] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
BAO S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. | |
[22] | 潘禹, 宋娅丽, 王克勤, 等. 模拟N沉降对滇中亚高山典型森林凋落物分解及土壤微生物的影响[J]. 林业科学研究, 2021, 34(3):88-97. |
PAN Y, SONG Y L, WANG K Q, et al. Effects of simulated nitrogen deposition on litter decomposition and soil microorganisms of typical subalpine forests in central Yunnan,China[J]. Forest Research, 2021, 34(3):88-97.DOI: 10.13275/j.cnki.lykxyj.2021.03.010. | |
[23] | 孙海燕, 赵俊平, 肖艳玲, 等. 模拟氮沉降对武夷山亚热带常绿阔叶林土壤呼吸的影响[J]. 生态环境学报, 2018, 27(9):1632-1638. |
SUN H Y, ZHAO J P, XIAO Y L, et al. Soil respiration and its response to simulated nitrogen deposition in a subtropical evergreen broad-leaved forest in mount Wuyi[J]. Ecology and Environmental Sciences, 2018, 27(9):1632-1638.DOI: 10.16258/j.cnki.1674-5906.2018.09.007. | |
[24] | 武倩, 韩国栋, 王瑞珍, 等. 模拟增温对草地植物、土壤和生态系统碳交换的影响[J]. 中国草地学报, 2016, 38(4):105-114. |
WU Q, HAN G D, WANG R Z, et al. Effects of simulated warming on grassland plants,soil and ecosystem carbon exchange[J]. Chinese Journal of Grassland, 2016, 38(4):105-114.DOI: 10.16742/j.zgcdxb.2016-04-16. | |
[25] | 王红, 王邵军, 李霁航, 等. 森林土壤呼吸及其主要调控因素研究进展[J]. 西北林学院学报, 2017, 32(1):92-97. |
WANG H, WANG S J, LI J H, et al. Characteristics and the influencing factors of forest soil respiration:a review[J]. Journal of Northwest Forestry University, 2017, 32(1):92-97.DOI: 10.3969/j.issn.1001-7461.2017.01.15. | |
[26] | 余景松, 付若仙, 俞元春, 等. 氮沉降对北亚热带麻栎林土壤呼吸及其温湿度敏感性的影响[J]. 生态学杂志, 2021, 40(4):1029-1037. |
YU J S, FU R X, YU Y C, et al. Effects of nitrogen deposition on soil respiration and its sensitivity to temperature and humidity in a Quercus acutissima forest in northern subtropics[J]. Chinese Journal of Ecology, 2021, 40(4):1029-1037.DOI: 10.13292/j.1000-4890.202104.019. | |
[27] | WANG Z, MCKENNA T P, SCHELLENBERG M P, et al. Soil respiration response to alterations in precipitation and nitrogen addition in a desert steppe in northern China[J]. Science of The Total Environment, 2019, 688:231-242.DOI: 10.1016/j.scitotenv.2019.05.419. |
[28] | 林雨萱, 哀建国, 宋新章, 等. 模拟氮沉降和磷添加对杉木林土壤呼吸的影响[J]. 浙江农林大学学报, 2021, 38(3):494-501. |
LIN Y X, AI J G, SONG X Z, et al. Effects of simulated nitrogen deposition and phosphorus addition on soil respiration in Chinese fir forest[J]. Journal of Zhejiang A & F University, 2021, 38(3):494-501.DOI: 10.11833/j.issn.2095-0756.20200326. | |
[29] | QU W D, XIE B H, HUA H, et al. Long-term nitrogen enrichment accelerates soil respiration by boosting microbial biomass in coastal wetlands[J]. Soil Biology and Biochemistry, 2022,175:108864.DOI: 10.1016/j.soilbio.2022.108864. |
[30] | 曾清苹, 何丙辉, 毛巧芝, 等. 重庆缙云山两种林分土壤呼吸对模拟氮沉降的季节响应差异性[J]. 生态学报, 2016, 36(11):3244-3252. |
ZENG Q P, HE B H, MAO Q Z, et al. Seasonal responses of soil respiration to simulated nitrogen deposition in a Citrus plantation and Masson pine forest in Mt.Jinyun,Chongqing,China[J]. Acta Ecologica Sinica, 2016, 36(11):3244-3252.DOI: 10.5846/stxb201506301367. | |
[31] | TRESEDER K K. Nitrogen additions and microbial biomass:a meta-analysis of ecosystem studies[J]. Ecology Letters, 2008, 11(10):1111-1120.DOI: 10.1111/j.1461-0248.2008.01230.x. |
[32] | 张婷, 周金蓉, 冯廉洁, 等. 土壤生化特性在模拟氮沉降条件下对土壤呼吸和N2O排放的影响[J]. 南京信息工程大学学报(自然科学版), 2022, 14(1):88-97. |
ZHANG T, ZHOU J R, FENG L J, et al. Effect of soil biochemical properties on soil respiration and N2O emission under simulated nitrogen deposition[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2022, 14(1):88-97.DOI: 10.13878/j.cnki.jnuist.2022.01.009. | |
[33] | VICCA S, BAHN M, ESTIARTE M, et al. Can current moisture responses predict soil CO2 efflux under altered precipitation regimes?A synthesis of manipulation experiments[J]. Biogeosciences, 2014, 11(11):2991-3013.DOI: 10.5194/bg-11-2991-2014. |
[52] | YU H, CHEN Y, ZHANG H, et al. The effect of inorganic nitrogen addition on soil nitrogen and greenhouse gas flux for the Pinus tabulaeformis forest in Taiyue Mountain,Shanxi Province[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(3):85-91.DOI: 10.3969/j.issn.1000-2006.201805047. |
[53] | 赵凯歌, 周正虎, 金鹰, 等. 长期氮添加对落叶松和水曲柳人工林土壤碳、氮、磷含量和胞外酶活性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5):177-184. |
ZHAO K G, ZHOU Z H, JIN Y, et al. Effects of long-term nitrogen addition on soil carbon,nitrogen,phosphorus and extracellular enzymes in Larix gmelinii and Fraxinus mandshurica plantations[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(5):177-184. | |
[34] | BÁRCENAS-MORENO G, GÓMEZ-BRANDÓN M, ROUSK J, et al. Adaptation of soil microbial communities to temperature:comparison of fungi and bacteria in a laboratory experiment[J]. Global Change Biology, 2009, 15(12):2950-2957.DOI: 10.1111/j.1365-2486.2009.01882.x. |
[35] | GOMEZ-CASANOVAS N, MATAMALA R, COOK D R, et al. Net ecosystem exchange modifies the relationship between the autotrophic and heterotrophic components of soil respiration with abiotic factors in prairie grasslands[J]. Global Change Biology, 2012, 18(8):2532-2545.DOI: 10.1111/j.1365-2486.2012.02721.x. |
[36] | 张克胜, 尚晴, 刘彦春, 等. 中国不同气候带人工林与天然林的土壤呼吸差异[J]. 生态科学, 2017, 36(6):49-56. |
ZHANG K S, SHANG Q, LIU Y C, et al. Differences in soil respiration between plantation and natural forest among different climate zones in China[J]. Ecological Science, 2017, 36(6):49-56.DOI: 10.14108/j.cnki.1008-8873.2017.06.007. | |
[37] | 张俞, 熊康宁, 喻阳华, 等. 中国南方喀斯特石漠化地区3种经济林土壤呼吸日动态特征[J]. 中南林业科技大学学报, 2019, 39(1):92-99. |
ZHANG Y, XIONG K N, YU Y H, et al. Daily variations of soil respiration among three types of non-wood forest in Karst rocky desertification areas,southern China[J]. Journal of Central South University of Forestry & Technology, 2019, 39(1):92-99.DOI: 10.14067/j.cnki.1673-923x.2019.01.015. | |
[38] | 王楠, 潘小承, 白尚斌. 模拟酸雨对我国亚热带毛竹林土壤呼吸及微生物多样性的影响[J]. 生态学报, 2020, 40(10):3420-3430. |
WANG N, PAN X C, BAI S B. Effects of simulated acid rain on soil respiration and microbial diversity in Moso bamboo forest in subtropical China[J]. Acta Ecologica Sinica, 2020, 40(10):3420-3430. | |
[39] | 陈小平. 科尔沁沙丘-草甸湿地水热碳通量变化及响应机制研究[D]. 呼和浩特: 内蒙古农业大学, 2018. |
CHEN X P. Variations and influence mechanism of carbon and water flux in Horqin Dune and meadow wetland landscape[D]. Hohhot: Inner Mongolia Agricultural University, 2018. |
[1] | 邢进梅, 王克勤, 宋娅丽, 付宏伟. 滇中高原川滇高山栎凋落叶、枝分解过程对模拟氮沉降的响应[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 191-199. |
[2] | 孙劲伟, 王圣燕, 范弟武, 朱咏莉. C源与NP添加对Cd胁迫下林地土壤呼吸作用的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 140-146. |
[3] | 孙美佳, 周志勇, 王勇强, 沈颖, 夏威. 有机物添加对山西太岳山油松林土壤呼吸及碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 67-75. |
[4] | 徐晨, 阮宏华, 吴小巧, 谢友超, 杨艳. 干旱影响森林土壤有机碳周转及积累的研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 195-206. |
[5] | 赵爽, 王邵军, 杨波, 左倩倩, 曹乾斌, 王平, 张路路, 张昆凤, 樊宇翔. 西双版纳热带森林碳循环中土壤呼吸对次生演替的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 12-18. |
[6] | 张晓荣, 段广德, 郝龙飞, 刘婷岩, 张友, 张盛晰. 氮沉降和接种菌根真菌对灌木铁线莲非结构性碳水化合物及根际土壤酶活性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 171-178. |
[7] | 杨赛兰, 耿庆宏, 许崇华, 彭凡茜, 张梦华, 徐侠. 加拿大一枝黄花入侵对杨树人工林土壤呼吸的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 117-124. |
[8] | 邓小军, 唐健, 王会利, 宋贤冲, 曹继钊, 覃祚玉, 宋光桃. 猫儿山自然保护区沿海拔分布植被带土壤硝化-反硝化和呼吸作用分析[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 81-88. |
[9] | 马慧君,张雅坤,许文欢,葛之葳,阮宏华. 模拟氮沉降对杨树人工林土壤微生物群落碳源利用类型的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(05): 1-6. |
[10] | 宋蕾,林尤伟,金光泽. 模拟氮沉降对典型阔叶红松林土壤微生物群落特征的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(05): 7-12. |
[11] | 彭赛,张雅坤,葛之葳,阮宏华. 氮沉降对微生物分解森林地上凋落物过程的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(01): 1-7. |
[12] | 高伟峰,史宝库,金光泽. 模拟氮沉降对典型阔叶红松林土壤呼吸的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(01): 8-14. |
[13] | 王文娟,赵超,杨鑫,于水强,曹国华. 不同林龄杨树人工林土壤有效氮对 模拟氮沉降的初期响应[J]. 南京林业大学学报(自然科学版), 2016, 40(01): 15-21. |
[14] | 赵超,彭赛,阮宏华,张雅坤. 氮沉降对土壤微生物影响的研究进展[J]. 南京林业大学学报(自然科学版), 2015, 39(03): 149-155. |
[15] | 徐钰,许凯,王文娟,于水强,阮宏华,葛之葳,王国兵,韩强强. 不同林龄杨树细根糖化学组分对氮沉降的响应[J]. 南京林业大学学报(自然科学版), 2014, 38(03): 13-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||