瓦雷兹芽孢杆菌HZM9对榉树生长及其根部土壤微生物的影响

杨浩业, 徐腾, 郁世军, 尚楚, 王克春, 樊奔

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (3) : 213-219.

PDF(1944 KB)
PDF(1944 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (3) : 213-219. DOI: 10.12302/j.issn.1000-2006.202308042
研究论文

瓦雷兹芽孢杆菌HZM9对榉树生长及其根部土壤微生物的影响

作者信息 +

Effects of Bacillus velezensis HZM9 on tree growth of Zelkova schneideriana and microbial communities in their root soil

Author information +
文章历史 +

摘要

【目的】使用生防菌剂对尖孢镰刀菌(Fusarium oxysporum)造成的榉树(Zelkova schneideriana)枯萎病进行防治处理,研究其应用效果以及对榉树根部周围土壤微生物的影响。【方法】使用瓦雷兹芽孢杆菌(Bacillus velezensis)HZM9,对江苏句容市某种植园中遭受尖孢镰刀菌侵袭的榉树林进行抗病促生防治。一年后测定榉树胸径等生长指标,同时对榉树根部周围土壤采样,测定了土壤脲酶、碱性磷酸酶、过氧化氢酶、蔗糖酶等4种土壤酶活性以及土壤微生物的群落组成。【结果】相比于不加菌剂的对照,HZM9菌株处理使榉树胸径生长平均加快了10%,榉树的死亡率由8.7%降至5.3%,但对土壤酶活性的影响均不显著。此外,HZM9菌剂改变了土壤微生物的群落结构,显著提高了被孢霉等有益微生物的相对丰度。【结论】HZM9菌株对榉树生长具有明显抗病促生作用,同时能够显著影响榉树根部土壤微生物的群落结构,有望对榉树生产发挥长期的积极作用。

Abstract

【Objective】The study aimed to determine the effects of a biocontrol agent used to treat zelkova (Zelkova schneideriana) wilt disease caused by Fusarium oxysporum on the microorganisms in the rhizospheric soil of zelkova. 【Method】The disease control efficiency and growth promoting effects of Bacillus velezensis HZM9 on zelkova trees challenged by F. oxysporum in a plantation in Jurong City, Jiangsu Province, were determined in this study. The diameter at breast height (DBH) and death rate of the zelkova trees were analyzed after one year of treatment. Samples of rhizospheric soil were collected from the region around the roots of zelkova trees, following which the activities of four enzymes (soil urease, alkaline phosphatase, catalase, and sucrase) and the structure of the microbial community in the soil were analyzed. 【Result】Compared to that of the untreated control, B. velezensis HZM9 treatment increased the DBH of zelkova trees by 17%, and reduced their death rate from 8.7% to 5.3%. Treatment with B. velezensis HZM9 had little influence on the activities of soil enzymes but increased the soil microbial diversity. In particular, the relative abundance of the beneficial microbial groups, including Mortierella sp., improved significantly. 【Conclusion】The findings indicated that B. velezensis HZM9 can significantly promote the growth of zelkova trees and alter the structure of the soil microbial community, which may benefit the long-term production of zelkova trees.

关键词

尖孢镰刀菌 / 榉树 / 枯萎病 / 土壤微生物群落结构 / 土壤真菌 / 土壤细菌

Key words

Fusarium oxysporum / Zelkova schneideriana / wilt disease / soil microbial community structure / soil fungi / soil bacteria

引用本文

导出引用
杨浩业, 徐腾, 郁世军, . 瓦雷兹芽孢杆菌HZM9对榉树生长及其根部土壤微生物的影响[J]. 南京林业大学学报(自然科学版). 2025, 49(3): 213-219 https://doi.org/10.12302/j.issn.1000-2006.202308042
YANG Haoye, XU Teng, YU Shijun, et al. Effects of Bacillus velezensis HZM9 on tree growth of Zelkova schneideriana and microbial communities in their root soil[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(3): 213-219 https://doi.org/10.12302/j.issn.1000-2006.202308042
中图分类号: S476.9   

参考文献

[1]
刘侃诚, 许伟, 郁世军, 等. 榉树枯萎病的发生为害调查及病原鉴定[J]. 南京林业大学学报(自然科学版), 2015, 39(6):24-28.
LIU K C, XU W, YU S J, et al. Investigations on blight disease of Zelkova schneideriana and pathogen identification[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(6):24-28.DOI: 10.3969/j.issn.1000-2006.2015.06.005.
[2]
刘侃诚, 许伟, 郁世军, 等. 防治榉树枯萎病室内杀菌剂的筛选[J]. 林业科技开发, 2015(2):127-129.
LIU K C, XU W, YU S J, et al. Screening on effective fungicide for blight disease of Zelkova on culture medium[J]. China Forestry Science and Technology, 2015(2):127-129.DOI: 10.13360/j.issn.1000-8101.2015.02.031.
[3]
周明国, 叶钟音, 刘经芬. 杀菌剂抗性研究进展[J]. 南京农业大学学报, 1994, 17(3):33-41.
ZHOU M G, YE Z Y, LIU J F. Progress of fungicide resistance research[J]. Journal of Nanjing Agricultural University, 1994, 17(3):33-41. DOI: 10.7685/j.issn.1000-2030.1994.03.005.
[4]
CHEN X H, KOUMOUTSI A, SCHOLZ R, et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42[J]. Nature Biotechnology, 2007, 25(9):1007-1014.DOI: 10.1038/nbt1325.
[5]
FAN B, WANG C, SONG X F, et al. Bacillus velezensis FZB42 in 2018:The gram-positive model strain for plant growth promotion and biocontrol[J]. Frontiers in Microbiology, 2018,9:2491.DOI: 10.3389/fmicb.2018.02491.
[6]
HAN X S, SHEN D X, XIONG Q, et al. The plant-beneficial rhizobacterium Bacillus velezensis FZB42 controls the soybean pathogen Phytophthora sojae due to bacilysin production[J]. Applied and Environmental Microbiology, 2021, 87(23):e0160121.DOI: 10.1128/AEM.01601-21.
[7]
XU Z H, MANDIC-MULEC I, ZHANG H H, et al. Antibiotic bacillomycin D affects iron acquisition and biofilm formation in Bacillus velezensis through a btr-mediated FeuABC-dependent pathway[J]. Cell Reports, 2019, 29(5):1192-1202.e5.DOI: 10.1016/j.celrep.2019.09.061.
[8]
HUANG R, FENG H C, XU Z H, et al. Identification of adhesins in plant beneficial rhizobacteria Bacillus velezensis SQR9 and their effect on root colonization[J]. Molecular Plant-Microbe Interactions, 2022, 35(1):64-72.DOI: 10.1094/MPMI-09-21-0234-R.
[9]
SHAO J H, LIU Y, XIE J Y, et al. Annulment of bacterial antagonism improves plant beneficial activity of a Bacillus velezensis consortium[J]. Applied and Environmental Microbiology, 2022, 88(8):e0024022.DOI: 10.1128/aem.00240-22.
[10]
WANG C Q, ZHAO D Y, QI G Z, et al. Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis rehd. and inhibiting Fusarium verticillioides[J]. Frontiers in Micro-biology, 2020,10:2889.DOI: 10.3389/fmicb.2019.02889.
[11]
MENG J X, ZHANG X Y, HAN X S, et al. Application and development of biocontrol agents in China[J]. Pathogens, 2022, 11(10):1120.DOI: 10.3390/pathogens11101120.
[12]
樊奔, 李昱龙, 祁奇. 瓦雷兹芽孢杆菌FZB42菌株拮抗两种树木病原真菌及其机理研究[J]. 南京林业大学学报(自然科学版), 2016, 40(6):103-108.
FAN B, LI Y L, QI Q. Study on antagonism and mechanisms of Bacillus velezensis FZB42 strain against two species of tree fungi pathogens[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(6):103-108.DOI: 10.3969/j.issn.1000-2006.2016.06.016.
[13]
胡忠亮, 郑催云, 田兴一, 等. 解淀粉芽孢杆菌HZM9菌株发酵液的抑菌谱及稳定性测定[J]. 南京林业大学学报(自然科学版), 2017, 41(3):65-70.
HU Z L, ZHENG C Y, TIAN X Y, et al. Determination of the inhibitory spectrum and stability of culture filtrate from Bacillus amyloliquefaciens HZM9[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(3):65-70.DOI: 10.3969/j.issn.1000-2006.2017.201603053.
[14]
宁夏化学分析测试协会. 土壤脲酶活性的测定苯酚钠-次氯酸钠比色法:T/NAIA 011—2020[S]. 2020.
Ningxia Association of Chemical Analysis and Testing. Determination of soil urease activity-potassium sodium phenolate-sodium hypochlorite colorimetric method:T/NAIA 011—2020[S]. 2020.
[15]
宁夏化学分析测试协会. 土壤磷酸酶活性的测定磷酸苯二钠比色法:T/NAIA 012—2020[S]. 2020.
Ningxia Association of Chemical Analysis and Testing. Determination of soil phosphatase activity by colorimetric method of disodium phenyl phosphate:T/NAIA 012—2020[S]. 2020.
[16]
宁夏化学分析测试协会. 土壤蔗糖酶活性的测定 3,5-二硝基水杨酸比色法:T/NAIA 010—2020[S]. 2020.
Ningxia Association of Chemical Analysis and Testing. Determination of soil invertase activity by 3,5-dinitrosalicylic acid colorimetric method:T/NAIA 010—2020[S]. 2020.
[17]
杨兰芳, 曾巧, 李海波, 等. 紫外分光光度法测定土壤过氧化氢酶活性[J]. 土壤通报, 2011, 42(1):207-210.
YANG L F, ZENG Q, LI H B, et al. Measurement of catalase activity in soil by ultraviolet spectrophotometry[J]. Chinese Journal of Soil Science, 2011, 42(1):207-210.DOI: 10.19336/j.cnki.trtb.2011.01.043.
[18]
LEWIS W H, TAHON G, GEESINK P, et al. Innovations to culturing the uncultured microbial majority[J]. Nature Reviews Microbiology, 2020, 19(4):225-240.DOI: 10.1038/s41579-020-00458-8.
[19]
黄芳芳. 农药对三七根际土壤被孢霉的影响及其田间定殖能力[D]. 昆明: 云南大学, 2017.
HUANG F F. Effect of pesticides on Mortierella in rhizospheric soil of Panax notoginseng and their colonization ability in the field[D]. Kunming: Yunnan University, 2017.
[20]
XU Z H, ZHANG H H, SUN X L, et al. Bacillus velezensis wall teichoic acids are required for biofilm formation and root colonization[J]. Applied and Environmental Microbiology, 2019, 85(5):e02116-18.DOI: 10.1128/AEM.02116-18.
[21]
隋凤翔, 郑义, 杨芷怡, 等. 瓦雷兹芽孢杆菌FZB42对松杉球壳孢抑菌活性的影响[J]. 东北林业大学学报, 2022, 50(4):83-88.
SUI F X, ZHENG Y, YANG Z Y, et al. Antimicrobial activity of Bacillus velezensis FZB42 against Sphaeropsis sapinea[J]. Journal of Northeast Forestry University, 2022, 50(4):83-88.DOI: 10.13759/j.cnki.dlxb.2022.04.008.
[22]
WU L M, HUANG Z Y, LI X, et al. Stomatal closure and SA-,JA/ET-Signaling pathways are essential for Bacillus amyloliquefaciens FZB42 to restrict leaf disease caused by Phytophthora nicotianae in Nicotiana benthamiana[J]. Frontiers in Microbiology, 2018,9:847.DOI: 10.3389/fmicb.2018.00847.
[23]
FAZLE RABBEE M, BAEK K H. Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications[J]. Molecules, 2020, 25(21):4973.DOI: 10.3390/molecules25214973.
[24]
殷陶刚, 李玉泽. 土壤酶活性影响因素及测定方法的研究进展[J]. 矿产勘查, 2019, 10(6):1523-1528.
YIN T G, LI Y Z. Research progress on factors affecting soil enzyme activity and its determination methods[J]. Mineral Exploration, 2019, 10(6):1523-1528.
[25]
荆佳强, 萨仁其力莫格, 秦洁, 等. 利用方式对贝加尔针茅草原土壤微生物群落结构与土壤酶活性的影响[J]. 中国草地学报, 2022, 44(2):33-40.
JING J Q, Sarenqilimogen, QIN J, et al. Effects of utilization methods on soil microbial community structure and soil enzyme activity in Stipa baicalensis steppe[J]. Chinese Journal of Grassland, 2022, 44(2):33-40.DOI: 10.16742/j.zgcdxb.20210130.
[26]
朱海云, 马瑜, 柯杨, 等. 不同年龄时期石榴园土壤养分、微生物量及酶活性[J]. 土壤通报, 2022, 53(3):588-595.
ZHU H Y, MA Y, KE Y, et al. Soil nutrients,microbial quantities and enzyme activities in the pomegranate orchards with different age stages[J]. Chinese Journal of Soil Science, 2022, 53(3):588-595.DOI: 10.19336/j.cnki.trtb.2021090801.
[27]
CHOWDHURY S P, DIETEL K, RÄNDLER M, et al. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community[J]. PLoS One, 2013, 8(7):e68818.DOI: 10.1371/journal.pone.0068818.
[28]
李燕, 齐连芬, 侯大山, 等. 棉隆熏蒸后添加微生物菌剂对草莓连作土壤中真菌多样性的影响[J]. 中国蔬菜, 2024(2):78-87.
LI Y, QI L F, HOU D S, et al. Effect of adding microbial agent after dazoment fumigation treatment on fungal diversity in strawberry continuous cropping soil[J]. China Vegetables, 2024(2):78-87.DOI: 10.19928/j.cnki.1000-6346.2024.5002.
[29]
MÁSMELA-MENDOZA J E, MORENO-VELANDIA C A. Bacillus velezensis supernatant mitigates tomato Fusarium wilt and affects the functional microbial structure in the rhizosphere in a concentration-dependent manner[J]. Rhizosphere, 2022,21:100475.DOI: 10.1016/j.rhisph.2022.100475.
[30]
WANG C W, MICHELLE WONG J W, YEH S S, et al. Soil bacterial community may offer solutions for ginger cultivation[J]. Microbiology Spectrum, 2022, 10(5):e0180322.DOI: 10.1128/spectrum.01803-22.
[31]
SUN X L, XU Z H, XIE J Y, et al. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions[J]. The ISME Journal, 2021, 16(3):774-787.DOI: 10.1038/s41396-021-01125-3.
[32]
CHEN X R, YANG F, BAI C W, et al. Bacillus velezensis strain GUMT319 reshapes soil microbiome biodiversity and increases grape yields[J]. Biology, 2022, 11(10):1486.DOI: 10.3390/biology11101486.
[33]
OZIMEK E, HANAKA A. Mortierella species as the plant growth-promoting fungi present in the agricultural soils[J]. Agriculture, 2021, 11(1):7.DOI: 10.3390/agriculture11010007.
[34]
XIONG W, LI R, REN Y, et al. Distinct roles for soil fungal and bacterial communities associated with the suppression of Vanilla fusarium wilt disease[J]. Soil Biology and Biochemistry, 2017, 107:198-207.DOI: 10.1016/j.soilbio.2017.01.010.

基金

国家自然科学基金项目(31970097)
句容市农业技术创新基金面上项目(NY202015)

编辑: 孟苗婧
PDF(1944 KB)

Accesses

Citation

Detail

段落导航
相关文章

/