杂种鹅掌楸花粉母细胞减数分裂进程及染色体异常行为研究

王宁, 彭冶, 陈金慧

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (5) : 131-136.

PDF(2163 KB)
PDF(2163 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (5) : 131-136. DOI: 10.12302/j.issn.1000-2006.202308044
研究论文

杂种鹅掌楸花粉母细胞减数分裂进程及染色体异常行为研究

作者信息 +

Meiosis and abnormal chromosomal behavior of pollen mother cells in Liriodendron ×sinoamericanum

Author information +
文章历史 +

摘要

【目的】杂种鹅掌楸(Liriodendron × sinoamericanum)有超越其亲本的优良特性,目前有关其有性生殖与种子败育机理的报道甚少,对于其花粉母细胞减数分裂进程及染色体行为的研究也鲜见报道。笔者详细观测杂种鹅掌楸花粉母细胞减数分裂的染色体行为规律,为鹅掌楸属非整倍体育种、杂交育种以及种质资源的保护提供重要的细胞学参考。【方法】以杂种鹅掌楸为材料,采用压片法观察花粉母细胞减数分裂进程及染色体行为变异。【结果】①杂种鹅掌楸花粉母细胞可以进行正常的减数分裂,其中80%的花粉母细胞可以完成减数分裂过程,产生形态正常的花粉;②花粉母细胞的减数分裂有明显的不同步性,在同一花托上下不同部位花药中的花粉母细胞分别处于不同的发育阶段,同一花粉母细胞中也存在减数分裂不同步情况;③约有20%的花粉母细胞在减数分裂过程中出现明显的染色体异常行为,如染色体滞后、染色体提前分离或微核;④在减数分裂过程中存在纺锤体行为的多样性,主要有平行纺锤体、垂直纺锤体和60° 或120° 纺锤体等多种纺锤体。【结论】尽管杂种鹅掌楸花粉母细胞减数分裂过程中存在染色体异常行为,但多数花粉母细胞能完成正常的减数分裂,产生形态正常的花粉,这暗示杂种鹅掌楸是一种可以用于杂交育种与非整倍体育种的优良材料。

Abstract

【Objective】Liriodendron hybrids (L. ×sinoamericanum) have excellent characteristics beyond their parents. Currently, little is known about their sexual reproduction and seed abortion mechanisms, and there are few reports on the meiosis process and chromosome behavior of their pollen mother cells. This study provides a detailed observation of the chromosomal behavior of meiosis in pollen mother cells of L. × sinoamericanum hybrids. The results can provide important cytological basis for aneuploid breeding, hybrid breeding, and germplasm resource protection of Liriodendron.【Method】The collected anthers were squashed and stained with Carbol fuchsin before microscope study. Photographs of freshly prepared slides were taken with the automatic camera of Nikon Eclipse 50i microscope. 【Result】(1) Pollen mother cells of L. × sinoamericanum can undergo normal meiosis, 80% of which can complete the meiotic process, and produce normal pollen; (2) meiosis of pollen mother cells is asynchronous. The pollen mother cells in different parts of anthers above and below the same receptacles are in different stages, and meiotic asynchrony also exists within the same pollen mother cells. (3) 20% of pollen mother cells have obvious chromosomal abnormalities in the process of meiosis, including laggard chromosomes, prematurely separated chromosomes, and micronuclei; (4) there is a diversity of spindle behavior during meiosis, with a variety of spindles, such as parallel spindles, vertical spindles and 60° or 120° spindles. 【Conclusion】Despite the abnormal chromosome behavior during meiosis of L. hybrids pollen mother cells, most of the pollen mother cells are able to complete normal meiosis and produce pollen with normal morphology, which implies that L. hybrids is an excellent material that can be used for hybrid breeding and aneuploid breeding.

关键词

杂种鹅掌楸 / 花粉母细胞 / 减数分裂 / 染色体 / 异常行为 / 结合体

Key words

Liriodendron hybrids (L. × sinoamericanum) / pollen mother cell / meiosis / chromosome / chromosamal abnormalities / spindle

引用本文

导出引用
王宁, 彭冶, 陈金慧. 杂种鹅掌楸花粉母细胞减数分裂进程及染色体异常行为研究[J]. 南京林业大学学报(自然科学版). 2025, 49(5): 131-136 https://doi.org/10.12302/j.issn.1000-2006.202308044
WANG Ning, PENG Ye, CHEN Jinhui. Meiosis and abnormal chromosomal behavior of pollen mother cells in Liriodendron ×sinoamericanum[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(5): 131-136 https://doi.org/10.12302/j.issn.1000-2006.202308044
中图分类号: S722   

参考文献

[1]
CHEN J H, HAO Z D, GUANG X M, et al. Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation[J]. Nature Plants, 2019, 5(1):18-25.DOI: 10.1038/s41477-018-0323-6.
[2]
LI M P, WANG D, LONG X F, et al. Agrobacterium-mediated genetic transformation of embryogenic callus in a Liriodendron hybrid (L. chinense × L. tulipifera)[J]. Frontiers in Plant Science, 2022, 13:802128.DOI: 10.3389/fpls.2022.802128.
[3]
LI R, PAN Y, HU L F, et al. PIN3 from Liriodendron may function in inflorescence development and root elongation[J]. Forests, 2022, 13(4):568.DOI: 10.3390/f13040568.
[4]
吴伟煌, 肖保荣, 黄世清, 等. 杂交鹅掌楸F1代生长性状的基因型与环境互作效应分析[J]. 分子植物育种, 2022, 20(21):7091-7099.
WU W H, XIAO B R, HUANG S Q, et al. Interaction between genotype and environment in F1 generation of Liriodendron hybrids (Liriodendron chinense × L. tulipifera)[J]. Molecular Plant Breeding, 2022,20(21):7091-7099. DOI: 10.13271/j.mpb.020.007091.
[5]
郝兆东. 鹅掌楸属基因组演化及其花色变异遗传基础研究[D]. 南京: 南京林业大学, 2020.DOI: 10.27242/d.cnki.gnjlu.2020.000031.
[6]
WANG D D, MA X X, HAO Z D, et al. Overexpression of liriodenron WOX5 in Arabidopsis leads to ectopic flower formation and altered root morphology[J]. International Journal of Molecular Sciences, 2023, 24(2):906.DOI: 10.3390/ijms24020906.
[7]
樊汝汶, 尹增芳. 中国鹅掌楸花粉母细胞减数分裂的超微结构观察[J]. 南京林业大学学报(自然科学版), 1992, 16(2):31-36.
FAN R W, YIN Z F. Observation of the ultrastructure of the meiotic in the pollen mother cell of Liriodendron chinense (Hemsl.) Sarg[J]. Journal of Nanjing Forestry University, 1992, 16(2):31-36.
[8]
尹增芳, 宁代锋, 李玉春, 等. 杂种鹅掌楸花粉发育过程中细胞游离Ca2+的动态变化[J]. 林业科学, 2007(11):27-31,175-176.
YIN Z F, NING D F, LI Y C, et al. Dynamic change of free Ca2+ during pollen development of Liriodendron tulipifera × L.chinense[J]. Scientia Silvae Sinicae, 2007(11):27-31,175-176.
[9]
徐进, 王章荣. 杂种鹅掌楸及其亲本花部形态和花粉活力的遗传变异[J]. 植物资源与环境学报, 2001, 10(2):31-34.
XU J, WANG Z R. Genetic variation of floral character and pollen viability of Liriodendron hybrid and its parents[J]. Journal of Plant Resources and Environment, 2001, 10(2):31-34.DOI: 10.3969/j.issn.1674-7895.2001.02.008.
[10]
ZHANG X Y, TONG H L, HAN Z Q, et al. Cytological and morphology characteristics of natural microsporogenesis within Camellia oleifera[J]. Physiology and Molecular Biology of Plants, 2021, 27(5):959-968.DOI: 10.1007/s12298-021-01002-5.
[11]
田菊, 牛新月, 铁英, 等. 毛新杨×银灰杨杂种花粉母细胞减数分裂及花粉形态[J]. 东北林业大学学报, 2018, 46(7):33-37,43.
TIAN J, NIU X Y, TIE Y, et al. Meiosis of microsporocyte and morphology of pollen in hybrid of(Populus tomentosa × P.bolleana) × P.canescens[J]. Journal of Northeast Forestry University, 2018, 46(7):33-37,43.DOI: 10.13759/j.cnki.dlxb.2018.07.007.
[12]
李代丽, 商静, 田菊, 等. 青黑杨杂种三倍体花粉母细胞减数分裂染色体行为及其花粉变异研究[J]. 北京林业大学学报, 2019, 41(7):75-82.
LI D L, SHANG J, TIAN J, et al. Meiotic chromosome behavior of pollen mother cells and pollen variation in triploid hybrid between section Tacamahaca and sect. Aigeiros of Populus[J]. Journal of Beijing Forestry University, 2019, 41(7):75-82.DOI: 10.13332/j.1000-1522.20190099.
[13]
KUNIYOSHI D, MASUDA I, KANAOKA Y, et al. Diploid male gametes circumvent hybrid sterility between Asian and African rice species[J]. Frontiers in Plant Science, 2020, 11:579305.DOI: 10.3389/fpls.2020.579305.
[14]
LOWRY D B, MODLISZEWSKI J L, WRIGHT K M, et al. Review.The strength and genetic basis of reproductive isolating barriers in flowering plants[J]. Philosophical Transactions of the Royal Society of London.Series B,Biological Sciences, 2008, 363(1506):3009-3021.DOI: 10.1098/rstb.2008.0064.
[15]
LI X T, HUANG F, CHAI J, et al. Chromosome behavior during meiosis in pollen mother cells from Saccharum officinarum × Erianthus arundinaceus F1 hybrids[J]. BMC Plant Biology, 2021, 21(1):139.DOI: 10.1186/s12870-021-02911-z.
[16]
尹增芳, 樊汝汶. 中国鹅掌楸与北美鹅掌楸种间杂交的胚胎学研究[J]. 林业科学研究, 1995, 8(6):605-610.
YIN Z F, FAN R W. The embryological studies of interspecific hybrids between Liriodendron tulipifera L,and L.chinense(Hesml.) Sarg[J]. Forest Research, 1995, 8(6):605-610.
[17]
许雯婷, 赵健, 赵楠, 等. 欧洲黑杨花粉母细胞减数分裂观察及其不同步性分析[J]. 西北植物学报, 2011, 31(10):1981-1987.
XU W T, ZHAO J, ZHAO N, et al. Meiosis of pollen mother cells and their asynchrony in Populus nigra L[J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(10):1981-1987.
[18]
CARRIZO GARCÍA C, NEPI M, PACINI E. It is a matter of timing:asynchrony during pollen development and its consequences on pollen performance in angiosperms-a review[J]. Protoplasma, 2017, 254(1):57-73.DOI: 10.1007/s00709-016-0950-6.
[19]
LI Q F, CHEN Y G, YUE F, et al. Microspore culture reveals high fitness of B.napus-like gametes in an interspecific hybrid between Brassica napus and B.oleracea[J]. PLoS One, 2018, 13(3):e0193548.DOI: 10.1371/journal.pone.0193548.
[20]
ZHONG Y H, ZHENG Y F, XUE Y X, et al. Variation of chromosome composition in a full-sib population derived from 2x × 3x interploidy cross of Populus[J]. Frontiers in Plant Science, 2022, 12:816946.DOI: 10.3389/fpls.2021.816946.
[21]
BOLCUN-FILAS E, HANDEL M A. Meiosis:The chromosomal foundation of reproduction[J]. Biology of Reproduction, 2018, 99(1):112-126.DOI: 10.1093/biolre/ioy021.
[22]
LIU B, TAO X Y, DOU Q W. Meiotic chromosomal abnormality detected in a heterozygote of Elymus nutans[J]. Frontiers in Plant Science, 2022, 13:895437.DOI: 10.3389/fpls.2022.895437.
[23]
DE STORME N, GEELEN D. Cytokinesis in plant male meiosis[J]. Plant Signaling & Behavior, 2013, 8(3):e23394.DOI: 10.4161/psb.23394.
[24]
ZAMARIOLA L, TIANG C L, DE STORME N, et al. Chromosome segregation in plant meiosis[J]. Frontiers in Plant Science, 2014, 5:279.DOI: 10.3389/fpls.2014.00279.
[25]
HENRY I M, DILKES B P, YOUNG K, et al. Aneuploidy and genetic variation in the Arabidopsis thaliana triploid response[J]. Genetics, 2005, 170(4):1979-1988.DOI: 10.1534/genetics.104.037788.
[26]
BROWNFIELD L, YI J, JIANG H, et al. Organelles maintain spindle position in plant meiosis[J]. Nature Communications, 2015,6:6492.DOI: 10.1038/ncomms7492.

基金

国家重点研发计划(2021YFD2200103)
江苏高校优势学科建设工程资助项目(PAPD)

编辑: 吴祝华
PDF(2163 KB)

Accesses

Citation

Detail

段落导航
相关文章

/