南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1): 225-234.doi: 10.12302/j.issn.1000-2006.202308047

• 研究论文 • 上一篇    下一篇

基于卷积神经网络的林火小目标和烟雾检测模型

薛震洋(), 林海峰*(), 焦万果   

  1. 南京林业大学信息科学技术学院,江苏 南京 210037
  • 收稿日期:2023-08-27 修回日期:2024-06-06 出版日期:2025-01-30 发布日期:2025-01-21
  • 通讯作者: * 林海峰(haifeng.lin@njfu.edu.cn),研究员。
  • 作者简介:

    薛震洋(xuezhenyang@njfu.edu.cn)。

  • 基金资助:
    江苏省重点研发计划(BE2021716)

Convolutional neural network-based small target and smoke detection model for forest fires

XUE Zhenyang(), LIN Haifeng*(), JIAO Wanguo   

  1. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
  • Received:2023-08-27 Revised:2024-06-06 Online:2025-01-30 Published:2025-01-21

摘要:

【目的】由于火焰和烟雾都是动态目标,使得航拍视角下的森林火焰小目标和烟雾检测变得富有挑战性。基于卷积神经网络的林火小目标和烟雾检测模型构建对于平衡森林火灾小目标和烟雾目标的参数量和检测精度具有重要意义。【方法】根据林火检测实时性要求,对基于高实时性的FasterNet进行改进,并构建了FRSCnet的主干网络层。利用分组洗牌卷积(group shuffle convolution,GSConv)构建了FRSCnet的颈部网络层。在头部网络中,引入了卷积块注意力模块(CBAM)注意力机制。最后,在颈部网络的第1层添加了感受野阻滞(receptive field block,RFB)特征提取模块。【结果】FasterNet采用独特的部分卷积(partial convolution,PConv)技术,有效减少了冗余计算和内存访问,从而保证了模型在处理航拍图像时的高速检测性能。GSConv能够平衡模型的参数量和特征融合性能,从而在保证检测精度的同时减少了模型的复杂度。通过CBAM注意力机制,在尽可能少地增加参数量的情况下,模型能够更好地关注森林火灾小目标和烟雾目标,提高检测性能。RFB特征提取模块,可增大模型的感受野,更好地提取航拍视角下的森林火灾小目标和烟雾目标。实验结果表明,提出的FRSCnet模型的平均精度(mAP@0.5)达到了89.2%,比YOLOv7-tiny和YOLOv5-s模型分别提高了2.9%和5.3%,但是参数量比YOLOv7-tiny和YOLOv5-s模型低。【结论】提出的FRSCnet林火小目标和烟雾目标检测模型,在参数量和检测精度之间取得了较好的平衡。

关键词: 林火识别, 烟雾识别, 目标检测, 卷积神经网络

Abstract:

【Objective】Since both flame and smoke are dynamic targets, it makes forest fire small targets and smoke detection in aerial view challenging. The construction of forest fire small target and smoke detection model based on convolutional neural network has positive significance in balancing the number of parameters and detection accuracy of forest fire small target and smoke target.【Method】For the real-time requirements, the high real-time based FasterNet is improved and the backbone network layer of FRSCnet was constructed. The neck network layer of FRSCnet was constructed using group shuffle convolution (GSConv). In the head network, the convolutional block attention module (CBAM) was introduced. Finally, receptive field block (RFB) feature extraction module was added to the first layer of the neck network. 【Result】FasterNet employs a unique partial convolution (PConv) technique that effectively reduce redundant computations and memory accesses, thus ensuring the high-speed detection performance of the model when processing aerial images.GSConv is able to balance the number of parameters of the model with the performance of the feature fusion, thus reducing the complexity of the model while ensuring the detection accuracy. GSConv is able to balance the number of parameters and feature fusion performance of the model, thus reducing the complexity of the model while ensuring detection accuracy. With the CBAM attention mechanism, the model is able to better focus on forest fire small targets and smoke targets to improve the detection performance while increasing the number of parameters as little as possible. To increase the receptive field of the model to better extract forest fire small targets and smoke targets in aerial view.RFB (receptive field block) feature extraction module, which can increase the receptive field of the model to better extract forest fire small targets and smoke targets in aerial view. The experimental results show that the proposed FRSCnet model achieves a performance of 89.2% in terms of average accuracy (mAP@0.5), which is 2.9% and 5.3% better than YOLOv7-tiny and YOLOv5-s, respectively, but the number of parameter counts is lower than YOLOv7-tiny and YOLOv5-s. 【Conclusion】The proposed FRSCnet forest fire small target and smoke target detection model strikes a good balance between the number of parameters and detection accuracy.

Key words: forest fire recognition, smoke recognition, target detection, convolutional neural network

中图分类号: