[1] |
WANG Y, YANG X B, ZHANG L, et al. Individual tree segmentation and tree-counting using supervised clustering[J]. Comput Electron Agric, 2023, 205:107629.DOI: 10.1016/j.compag.2023.107629.
|
[2] |
YANG X B, HUA Z C, ZHANG L, et al. Preferred vector machine for forest fire detection[J]. Pattern Recognit, 2023, 143:109722.DOI: 10.1016/j.patcog.2023.109722.
|
[3] |
ZHANG J G, LI W B, HAN N, et al. Forest fire detection system based on a ZigBee wireless sensor network[J]. Front For China, 2008, 3(3):369-374.DOI: 10.1007/s11461-008-0054-3.
|
[4] |
伍小洁, 陈利明, 张洁, 等. 林火监测技术分析与综合应用[J]. 卫星应用, 2017(5):24-28.
|
|
WU X J, CHEN L M, ZHANG J, et al. Analysis and comprehensive application of forest fire monitoring technology[J]. Satell Appl, 2017(5):24-28.DOI: 10.3969/j.issn.1674-9030.2017.05.005.
|
[5] |
XU Y S, REN F Y, HE T, et al. Real-time routing in wireless sensor networks[J]. ACM Trans Sen Netw, 2013, 9(3):1-24.DOI: 10.1145/2480730.2480738.
|
[6] |
XU R, LIN H, LU, K, et al. A forest fire detection system based on ensemble learning[J]. Forests 2021, 12:217. DOI:10.3390/f12020217.
|
[7] |
MARBACH G, LOEPFE M, BRUPBACHER T. An image processing technique for fire detection in video images[J]. Fire Saf J, 2006, 41(4):285-289.DOI: 10.1016/j.firesaf.2006.02.001.
|
[8] |
杨秋霞, 罗传文. 基于稀疏表示的森林火灾火焰识别研究[J]. 安徽农业科学, 2014, 42(30):10777-10779.
|
|
YANG Q X, LUO C W. Recognition of forest fire flame based on sparse representation[J]. J Anhui Agric Sci, 2014, 42(30):10777-10779.DOI: 10.13989/j.cnki.0517-6611.2014.30.121.
|
[9] |
MUHAMMAD K, AHMAD J, MEHMOOD I, et al. Convolutional neural networks based fire detection in surveillance videos[J]. IEEE Access, 2018, 6:18174-18183.DOI: 10.1109/access.2018.2812835.
|
[10] |
PAN H Y, BADAWI D, ZHANG X, et al. Additive neural network for forest fire detection[J]. Signal Image Video Process, 2020, 14(4):675-682.DOI: 10.1007/s11760-019-01600-7.
|
[11] |
HU Y W, ZHAN J L, ZHOU G X, et al. Fast forest fire smoke detection using MVMNet[J]. Knowl Based Syst, 2022, 241:108219.DOI: 10.1016/j.knosys.2022.108219.
|
[12] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28,2014,Columbus,OH,USA.IEEE, 2014:580-587.DOI: 10.1109/CVPR.2014.81.
|
[13] |
REN S, HE K, GIRSHI C K, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the Advances in Neural Information Processing Systems, December 7-12, 2015,Montreal, QC, Canada. DOI: 10.1109/tpami.2016.2577031.
|
[14] |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision (ICCV), October 22-29,2017,Venice,Italy.IEEE, 2017:2980-2988.DOI: 10.1109/ICCV.2017.322.
|
[15] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// European Conference on Computer Vision. Springer: Cham, Switzerland, 2016. DOI: arxiv-1512.02325.
|
[16] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4:optimal speed and accuracy of object detection[EB/OL]. 2020:2004.10934. https://arxiv.org/abs/2004.10934v1.
|
[17] |
TAN M X, PANG R M, LE Q V. EfficientDet:scalable and efficient object detection[EB/OL]. 2019[2023-03-16]. https://arxiv.org/abs/1911.09070v7.
|
[18] |
王寅凯, 曹磊, 钱佳晨, 等. 一种改进YOLOv5的多尺度像素林火识别算法[J]. 林业工程学报, 2023, 8(2):159-165.
|
|
WANG Y K, CAO L, QIAN J C, et al. Multi-scale forest fire recognition using improved YOLOv5 algorithm[J]. J For Eng, 2023, 8(2):159-165.DOI: 10.13360/j.issn.2096-1359.202208019.
|
[19] |
叶铭亮, 周慧英, 李建军. 基于改进Swin Transformer的森林火灾检测算法[J]. 中南林业科技大学学报, 2022, 42(8):101-110.
|
|
YE M L, ZHOU H Y, LI J J. Forest fire detection algorithm based on an improved Swin Transformer[J]. J Cent South Univ For Technol, 2022, 42(8):101-110.DOI: 10.14067/j.cnki.1673-923x.2022.08.010.
|
[20] |
蔡魏斌. 基于卷积神经网络的视频烟雾监测系统研究[D]. 西安: 长安大学, 2022.
|
|
CAI W B. Research on video smoke monitoring system based on convolutional neural network[D]. Xi’an: Chang’an University, 2022.DOI: 10.26976/d.cnki.gchau.2022.001852.
|
[21] |
张倩, 周平平, 王公堂, 等. 基于合成图像的Faster R-CNN森林火灾烟雾检测[J]. 山东师范大学学报(自然科学版), 2019, 34(2):180-185.
|
|
ZHANG Q, ZHOU P P, WANG G T, et al. Faster R-CNN forest fire smoke detection based on synthetic images[J]. J Shandong Norm Univ (Nat Sci), 2019, 34(2):180-185.DOI: 10.3969/j.issn.1001-4748.2019.02.010.
|
[22] |
CHEN J R, KAO S H, HE H, et al.Run, don’t walk:chasing higher FLOPS for faster neural networks[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 17-24,2023,Vancouver,BC,Canada.IEEE, 2023:12021-12031.DOI: 10.1109/CVPR52729.2023.01157.
|
[23] |
LI H, LI J, WEI H, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv preprint arXiv, 2022, 2206:02424.DOI: arxiv-2206.02424.
|
[24] |
LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[M]// Lecture notes in computer science. Cham: Springer International Publishing, 2018:404-419.DOI: 10.1007/978-3-030-01252-6_24.
|
[25] |
WOO S, PARK J, LEE J Y, et al. CBAM:convolutional block attention module[M]//Lecture notes in computer science. Cham: Springer International Publishing, 2018:3-19.DOI: 10.1007/978-3-030-01234-2_1.
|
[26] |
MEHTA S, RASTEGARI M. MobileViT:light-weight,general-purpose,and mobile-friendly vision transformer[EB/OL]. 2021[2023-04-15]. https://arxiv.org/abs/2110.02178v2.
|
[27] |
WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet:a new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 14-19,2020,Seattle,WA,USA.IEEE, 2020:1571-1580.DOI: 10.1109/CVPRW50498.2020.00203.
|