长白山北坡植物群落β多样性及其组分驱动因素分析

丛明珠, 刘琪璟, 孙震, 董淳超, 钱尼澎

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (2) : 99-106.

PDF(2340 KB)
PDF(2340 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (2) : 99-106. DOI: 10.12302/j.issn.1000-2006.202308048
研究论文

长白山北坡植物群落β多样性及其组分驱动因素分析

作者信息 +

Interpretation of environmental factors affecting β diversity and its components in plant communities on the northern slope of Changbai Mountain

Author information +
文章历史 +

摘要

【目的】探究长白山北坡植物群落β多样性及其组分的格局与环境驱动因素,为长白山生物多样性保护和生态系统管理提供理论依据。【方法】采用R语言betapart工具包对长白山北坡植物群落β多样性进行组分(周转和嵌套)分解,使用广义相异性模型 (GDM) 探讨β多样性及其组分与环境因子之间的关系。【结果】据β多样性及其组分计算结果,长白山北坡植物群落β多样性以周转组分为主,即物种更替导致群落间物种组成的差异。本研究GDM模型输出结果表明,用于建模的13个环境因子可解释长白山北坡植物群落β多样性及其周转组分的32.63%~66.52%;年均气温对乔木β多样性影响显著。此外,当年降水量>710.00 mm、土壤容重>1.07 g/cm3时,年降水量和土壤容重对其产生显著影响;乔木周转组分主要受年均气温、土壤容重和坡度的影响,超过阈值后随其值的增大,周转速率增加;随着气温季节性变化、坡度和年均气温的增加,灌木β多样性及其周转组分的增长速率分别呈减缓、不变和加快的趋势;而草本β多样性及其周转组分随主要影响因子的梯度变化表现为:随海拔的升高而增大,随等温性的升高而减小,随土壤有机碳含量的升高先增大后减小。【结论】整体上长白山北坡植物群落物种组成以周转模式变化,启示生物多样性保护工作应多物种、多区域展开。环境因子是长白山北坡植物群落β多样性格局的关键影响因素,其中乔木β多样性及其周转组分主要受年均气温的影响,灌木β多样性及其周转组分主要受气温季节性变化的影响,而草本β多样性及其周转组分主要受海拔的限制。

Abstract

【Objective】This study explored the patterns and environmental factors that drived β diversity and its components in plant communities on the northern slope of Changbai Mountain, to provide a theoretical basis for biodiversity conservation and ecosystem management in the area.【Method】The betapart package of R was used to decompose the components (turnover and nestedness) of β diversity. The generalized dissimilarity modelling (GDM) was used to explore the environmental factors that drived β diversity and its components.【Result】Decomposition of the β diversity components revealed that the β diversity of the plant communities was dominated by the turnover, indicating that species replacement leads to differences in species composition among communities. The results of GDM analysis showed that 13 environmental variables explained 32.63%-66.52% of the β diversity and the turnover components of the plant communities. The mean annual air temperature significantly influenced the arbor β diversity. The arbor β diversity was significantly affected by the annual precipitation and soil bulk density when they reached values higher than 710.00 mm and 1.07 g/cm3, respectively. The turnover components of arbor β diversity were primarily affected by the mean annual air temperature, soil bulk density, and slope. The turnover rate increased with an increase in the values of the predictive variables once the threshold was surpassed. The growth rate of shrub β diversity and its turnover components exhibited a downward, constant and upward trend, respectively, for shrub plants following an increase in air temperature seasonality, slope and mean annual air temperature. However, in response to the major determinants, the gradient changes in the β diversity of herbs and its turnover components increased with altitude, decreased with rising isothermality, and initially increased and then decreased following an increase in soil organic carbon.【Conclusion】Altogether, the findings revealed a turnover pattern in the species composition of plant communities in the northern slope of Changbai Mountain, indicating that biodiversity conservation efforts should focus on multiple species and at multiple regions. The β diversity patterns are primarily affected by environmental factors. The arbor β diversity and its turnover components are primarily affected by the mean annual air temperature, while those of shrub plants are mainly affected by seasonal variations in air temperature, and those of herbs are primarily limited by the altitude.

关键词

β多样性 / 周转 / 嵌套 / 广义相异性模型 (GDM) / 环境异质性

Key words

β diversity / turnover / nestedness / generalized dissimilarity modelling (GDM) / environmental heterogeneity

引用本文

导出引用
丛明珠, 刘琪璟, 孙震, . 长白山北坡植物群落β多样性及其组分驱动因素分析[J]. 南京林业大学学报(自然科学版). 2025, 49(2): 99-106 https://doi.org/10.12302/j.issn.1000-2006.202308048
CONG Mingzhu, LIU Qijing, SUN Zhen, et al. Interpretation of environmental factors affecting β diversity and its components in plant communities on the northern slope of Changbai Mountain[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(2): 99-106 https://doi.org/10.12302/j.issn.1000-2006.202308048
中图分类号: S718   

参考文献

[1]
QIAN H, RICKLEFS R E, WHITE P S. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern north America[J]. Ecol Lett, 2005, 8(1):15-22.DOI: 10.1111/j.1461-0248.2004.00682.x.
[2]
TISSEUIL C, LEPRIEUR F, GRENOUILLET G, et al. Projected impacts of climate change on spatio-temporal patterns of freshwater fish beta diversity: a deconstructing approach[J]. Glob Ecol Biogeogr, 2012, 21(12):1213-1222.DOI: 10.1111/j.1466-8238.2012.00773.x.
[3]
SOCOLAR J B, GILROY J J, KUNIN W E, et al. How should beta-diversity inform biodiversity conservation?[J]. Trends Ecol Evol, 2016, 31(1):67-80.DOI: 10.1016/j.tree.2015.11.005.
[4]
HARRISON S, ROSS S J, LAWTON J H. Beta diversity on geographic gradients in Britain[J]. J Anim Ecol, 1992, 61(1):151.DOI: 10.2307/5518.
[5]
WILLIAMS P H. Mapping variations in the strength and breadth of biogeographic transition zones using species turnover[J]. Proc R Soc B, 1996, 263(1370):579-588.DOI: 10.1098/rspb.1996.0087.
[6]
BASELGA A. Partitioning the turnover and nestedness components of beta diversity[J]. Glob Ecol Biogeogr, 2010, 19(1):134-143.DOI: 10.1111/j.1466-8238.2009.00490.x.
[7]
李明家, 吴凯媛, 孟凡凡, 等. 西藏横断山区溪流细菌beta多样性组分对气候和水体环境的响应[J]. 生物多样性, 2020, 28(12):1570-1580.
LI M J, WU K Y, MENG F F, et al. Beta diversity of stream bacteria in Hengduan Mountains:the effects of climatic and environmental variables[J]. Biodivers Sci, 2020, 28(12):1570-1580.DOI: 10.17520/biods.2019390.
[8]
GUTIÉRREZ-CÁNOVAS C, MILLÁN A, VELASCO J, et al. Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms[J]. Glob Ecol Biogeogr, 2013, 22(7):796-805.DOI: 10.1111/geb.12060.
[9]
WANG J J, SOININEN J, ZHANG Y, et al. Patterns of elevational beta diversity in micro-and macroorganisms[J]. Glob Ecol Biogeogr, 2012, 21(7):743-750.DOI: 10.1111/j.1466-8238.2011.00718.x.
[10]
MORI A S, SHIONO T, HARAGUCHI T F, et al. Functional redundancy of multiple forest taxa along an elevational gradient:predicting the consequences of non-random species loss[J]. J Biogeogr, 2015, 42(8):1383-1396.DOI: 10.1111/jbi.12514.
[11]
SÁNCHEZ-GONZÁLEZ A, LÓPEZ-MATA L. Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada,Mexico[J]. Divers Distrib, 2005, 11(6):567-575.DOI: 10.1111/j.1366-9516.2005.00186.x.
[12]
MEDINSKI T V, MILLS A J, ESLER K J, et al. Do soil properties constrain species richness? Insights from boundary line analysis across several biomes in south western Africa[J]. J Arid Environ, 2010, 74(9):1052-1060.DOI: 10.1016/j.jaridenv.2010.03.004.
[13]
FRIED G, NORTON L R, REBOUD X. Environmental and management factors determining weed species composition and diversity in France[J]. Agric Ecosyst Environ, 2008, 128(1/2):68-76.DOI: 10.1016/j.agee.2008.05.003.
[14]
BYKOVA O, SAGE R F. Winter cold tolerance and the geographic range separation of Bromus tectorum and Bromus rubens, two severe invasive species in north America[J]. Glob Change Biol, 2012, 18(12):3654-3663.DOI: 10.1111/gcb.12003.
[15]
PORFIRIO L L, HARRIS R M B, LEFROY E C, et al. Improving the use of species distribution models in conservation planning and management under climate change[J]. PLoS One, 2014, 9(11):e113749.DOI: 10.1371/journal.pone.0113749.
[16]
THAKUR S, NEGI V S, DHYANI R, et al. Influence of environmental factors on tree species diversity and composition in the Indian western Himalaya[J]. For Ecol Manag, 2022,503:119746.DOI: 10.1016/j.foreco.2021.119746.
[17]
FERRIER S, MANION G, ELITH J, et al. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment[J]. Divers Distrib, 2007, 13(3):252-264.DOI: 10.1111/j.1472-4642.2007.00341.x.
[18]
MOKANY K, WARE C, WOOLLEY S N C, et al. A working guide to harnessing generalized dissimilarity modelling for biodiversity analysis and conservation assessment[J]. Global Ecol Biogeogr, 2022, 31(4):802-821.DOI: 10.1111/geb.13459.
[19]
郝占庆, 代力民, 贺红士, 等. 气候变暖对长白山主要树种的潜在影响[J]. 应用生态学报, 2001, 12(5):653-658.
HAO Z Q, DAI L M, HE H S, et al. Potential response of major tree species to climate warming in Changbai Mountain,northeast China[J]. Chin J Appl Ecol, 2001, 12(5):653-658.DOI: 10.13287/j.1001-9332.2001.0158.
[20]
LEAPER R, HILL N A, EDGAR G J, et al. Predictions of beta diversity for reef macroalgae across southeastern Australia[J]. Ecosphere, 2011, 2(7):art73.DOI: 10.1890/es11-00089.1.
[21]
PODANI J, SCHMERA D. A new conceptual and methodological framework for exploring and explaining pattern in presence-absence data[J]. Oikos, 2011, 120(11):1625-1638.DOI: 10.1111/j.1600-0706.2011.19451.x.
[22]
姜小蕾, 孙振元, 郝青, 等. 崂山次生林群落β多样性格局及其组分的驱动因素[J]. 生态学杂志, 2020, 39(10):3211-3220.
JIANG X L, SUN Z Y, HAO Q, et al. Interpretation of environmental factors affecting beta diversity and its components of secondary forest in Lao Mountain[J]. Chin J Ecol, 2020, 39(10): 3211-3220. DOI: 10.13292/j.1000-4890.202010.015
[23]
杨美华. 长白山的气候特征及北坡垂直气候带[J]. 气象学报, 1981, 39(3):311-320.
YANG M H. The climatic features of Changbaishan and its vertical climatic zone on the northern slop[J]. Acta Meteorol Sin, 1981, 39(3):311-320.DOI: 10.11676/qxxb1981.034
[24]
JONES M M, FERRIER S, CONDIT R, et al. Strong congruence in tree and fern community turnover in response to soils and climate in central Panama[J]. J Ecol, 2013, 101(2):506-516.DOI: 10.1111/1365-2745.12053.
[25]
FONTANA V, GUARIENTO E, HILPOLD A, et al. Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps[J]. Sci Rep, 2020, 10(1):12516.DOI: 10.1038/s41598-020-69569-9.
[26]
赵淑清, 方精云, 宗占江, 等. 长白山北坡植物群落组成、结构及物种多样性的垂直分布[J]. 生物多样性, 2004, 12(1):164-173.
ZHAO S Q, FANG J Y, ZONG Z J, et al. Composition,structure and species diversity of plant communities along an altitudinal gradient on the northern slope of Mt.Changbai,northeast China[J]. Chin Biodivers, 2004, 12(1):164-173.DOI: 10.3321/j.issn:1005-0094.2004.01.020.
[27]
WANG J M, WANG Y, LI M X, et al. Divergent roles of environmental and spatial factors in shaping plant β-diversity of different growth forms in drylands[J]. Glob Ecol Conserv, 2021,26:e01487.DOI: 10.1016/j.gecco.2021.e01487.
[28]
韩铭, 李华, 蔡体久. 黑龙江太平沟国家级自然保护区森林群落植物多样性特征[J]. 森林工程, 2023, 39 (5): 40-47.
HAN M, LI H, CAI T J. Plant diversity of forest community in Taipinggou National Nature Reserve, Heilongjiang Province[J]. Forest Engineering, 2023, 39(5):40-47.
[29]
XING D L, HE F L. Environmental filtering explains a U-shape latitudinal pattern in regional β-deviation for eastern north American trees[J]. Ecol Lett, 2019, 22(2):284-291.DOI: 10.1111/ele.13188.
[30]
张沛健, 徐建民, 卢万鸿, 等. 基于生长过程的海南桉树纸浆林土壤理化性质和植物多样性分析[J]. 中南林业科技大学学报, 2021, 41(5):82-92.
ZHANG P J, XU J M, LU W H, et al. Analysis of soil physiochemical properties and understory plant diversity based on growth process of Eucalyptus pulp plantation in Hainan[J]. J Cent South Univ For Technol, 2021, 41(5):82-92.DOI: 10.14067/j.cnki.1673-923x.2021.05.010.
[31]
汤靖文, 李晨晞, 彭政淋, 等. 氮磷钾肥对水曲柳雌雄株叶片光合生理及化学计量特征的影响[J]. 森林工程, 2023, 39 (2): 30-38, 46.
TANG J W, LI C X, PENG Z L, et al. Effects of nitrogen, phosphorus and potassium fertilizers on photosynthetic physiological and stoichiometric characteristics of male and female leaves of Fraxinus mandshurica[J]. Forest Engineering, 2023, 39(2):30-38.
[32]
高璐鑫, 兰天元, 赵志霞, 等. 中国中亚热带北部灌丛群落植物空间周转及其驱动因素[J]. 植物生态学报, 2022, 46(11):1411-1421.
GAO L X, LAN T Y, ZHAO Z X, et al. Spatial turnover of shrubland communities and underlying factors in northern mid-subtropical China[J]. Chin J Plant Ecol, 2022, 46(11):1411-1421.DOI: 10.17521/cjpe.2022.0288.
[33]
张剑, 王利平, 谢建平, 等. 敦煌阳关湿地土壤有机碳分布特征及其影响因素[J]. 生态学杂志, 2017, 36(9):2455-2464.
ZHANG J, WANG L P, XIE J P, et al. Distribution and influencing factors of soil organic carbon in Dunhuang Yangguan wetland[J]. Chin J Ecol, 2017, 36(9):2455-2464.DOI: 10.13292/j.1000-4890.201709.019.
[34]
HAMID M, KHUROO A A, CHARLES B, et al. Impact of climate change on the distribution range and niche dynamics of Himalayan birch,a typical treeline species in Himalayas[J]. Biodivers Conserv, 2019, 28(8):2345-2370.DOI: 10.1007/s10531-018-1641-8.
[35]
ZHANG W X, HUANG D Z, WANG R Q, et al. Altitudinal patterns of species diversity and phylogenetic diversity across temperate mountain forests of northern China[J]. PLoS One, 2016, 11(7):e0159995.DOI: 10.1371/journal.pone.0159995.
[36]
HAWKINS B A, FIELD R, CORNELL H V, et al. Energy,water,and broad-scale geographic patterns of species richness[J]. Ecology, 2003, 84(12):3105-3117.DOI: 10.1890/03-8006.

致谢

长白山国家级自然保护区管理局提供科研调查条件,研究生徐振招、郑东升、胡博,邓发昌、刘文婷、张潇、宋超杰、曾伟等参加野外调查。

基金

国家科技基础资源调查专项(2019FY101602)

编辑: 王国栋
PDF(2340 KB)

Accesses

Citation

Detail

段落导航
相关文章

/