文冠果XsWRI1基因克隆、转录活性及组织特异性表达分析

张薇, 李麟坤, 梁重钧, 王利兵

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (2) : 23-30.

PDF(3311 KB)
PDF(3311 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (2) : 23-30. DOI: 10.12302/j.issn.1000-2006.202309001
专题报道:推进乡村全面振兴视域下的多功能油用树种文冠果研究(执行主编 尹佟明 李维林)

文冠果XsWRI1基因克隆、转录活性及组织特异性表达分析

作者信息 +

Cloning, transcriptional activation, and tissue expression analysis of XsWRI1 from Xanthoceras sorbifolium

Author information +
文章历史 +

摘要

【目的】表征文冠果(Xanthoceras sorbifolium)中WRINKLED1(WRI1)转录因子的序列同一性、转录激活活性和功能域,为探究其在种子油生物合成中的调控作用提供参考。【方法】利用cDNA末端快速扩增(RACE)技术从成熟文冠果胚乳组织中克隆XsWRI1全长cDNA序列,利用生物信息学工具分析蛋白质序列特性。构建pGBKT7-XsWRI1载体,并将其转化到Y2HGold酵母感受态验证转录激活活性。通过实时荧光定量PCR技术(qRT-PCR)对根、茎、叶、花瓣、雄蕊和发育中的种仁组织特异性表达模式进行定量分析。【结果】XsWRI1基因(GenBank登录号:OR500287)全长1 688 bp,编码414个氨基酸,为亲水性不稳定蛋白。酵母活性检测证实XsWRI1具有较强的转录激活活性。组织特异性表达分析显示,XsWRI1的表达在发育胚乳中占主导地位,营养器官(根、茎、叶)和其他生殖器官(花瓣、雄蕊)中的表达水平可以忽略不计。结构预测确定了2个保守的AP2/EREBP DNA结合结构域(残基76-148和177-238)和一个核定位信号。【结论】本研究阐明XsWRI1在文冠果中的分子特征和组织特异性调控作用,突出了其在脂质生物合成途径中的潜在作用。这些发现为有针对性的基因操作,以增强木本油料作物的种子油积累奠定了基础。

Abstract

【Objective】This study aimed to characterize the sequence identity, transcriptional activation potential, and functional domains of the WRINKLED1 (WRI1) transcription factor in Xanthoceras sorbifolium (yellowhorn), providing insights into its regulatory role in seed oil biosynthesis. 【Method】The full-length cDNA of XsWRI1 was cloned from endosperm tissues of mature yellowhorn using rapid amplification of cDNA ends (RACE). Bioinformatics tools were employed to analyze protein sequence properties. A recombinant pGBKT7-XsWRI1 vector was constructed and transformed into Y2HGold yeast cells to assess transcriptional activation activity. Tissue-specific expression patterns were quantified via quantitative real-time PCR (qRT-PCR) across the root, stem, leaf, petal, stamen and developing embryo tissues. 【Result】The XsWRI1 gene (GenBank accession: OR500287) spans 1 688 bp, encoding a hydrophilic and unstable protein of 414 amino acids. Yeast activity testing confirmed strong transcriptional activation activity of XsWRI1. Tissue-specific expression analysis revealed predominant XsWRI1 expression in developing embryos, with negligible levels in vegetative organs (root, stem, leaf) and reproductive structures (petal, stamen). Structural prediction identified two conserved AP2/EREBP DNA-binding domains (residues 76-148 and 177-238) and a nuclear localization signal. 【Conclusion】This study elucidates the molecular characteristics and tissue-specific regulatory role of XsWRI1 in yellowhorn, highlighting its potential function in lipid biosynthesis pathways. These findings establish a foundation for targeted genetic manipulation to enhance seed oil accumulation in woody oil crops.

关键词

文冠果 / XsWRI1 / 基因克隆 / 转录激活 / 组织特异性表达 / 种子油生物合成

Key words

Xanthoceras sorbifolium / XsWRI1 / gene cloning / transcriptional activity / tissue-specific expression / seed oil biosynthesis

引用本文

导出引用
张薇, 李麟坤, 梁重钧, . 文冠果XsWRI1基因克隆、转录活性及组织特异性表达分析[J]. 南京林业大学学报(自然科学版). 2025, 49(2): 23-30 https://doi.org/10.12302/j.issn.1000-2006.202309001
ZHANG Wei, LI Linkun, LIANG Chongjun, et al. Cloning, transcriptional activation, and tissue expression analysis of XsWRI1 from Xanthoceras sorbifolium[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(2): 23-30 https://doi.org/10.12302/j.issn.1000-2006.202309001
中图分类号: S727.32   

参考文献

[1]
唐东慧, 阮成江, 孟婷, 等. 不同种质文冠果含油量及油中脂肪酸组成分析[J]. 中国油脂, 2017, 42(3): 77-81.
TANG D H, RUAN C J, MENG T, et al. Oil contents and fatty acid composition in different germplasm of Xanthoceras sorbifolia Bunge[J]. China Oils and Fats, 2017, 42(3): 77-81.
[2]
曹阳. 文冠果果仁含油量的测定及其果仁油脂肪酸组成分析[J]. 中国油脂, 2017, 42(6): 134-137.
CAO Y. Determination of oil content in seed kernel of Xanthoceras sorbifolia Bunge and fatty acid composition in oil[J]. China Oils and Fats, 2017, 42(6):134-137.
[3]
LIU F, WANG P, XIONG X, et al. A review of nervonic acid production in plants: prospects for the genetic engineering of high nervonic acid cultivars plants[J]. Front Plant Sci, 2021, 12: 625-626.DOI: 10.3389/fpls.2021.626625.
[4]
LIANG Q, FANG H, LIU J, et al. Analysis of the nutritional components in the kernels of yellowhorn (Xanthoceras sorbifolium Bunge) accessions[J]. J Food Compos Anal, 2021, 100: 103925.DOI: 10.1016/j.jfca.2021.103925.
[5]
MA Y, BI Q, LI G, et al. Provenance variations in kernel oil content, fatty acid profile and biodiesel properties of Xanthoceras sorbifolium Bunge in northern China[J]. Ind Crops Prod, 2020, 151: 112487.DOI: 10.1016/j.indcrop.2020.112487.
[6]
YU H Y, SIQI F, QUANXIN B, et al. Seed morphology, oil content and fatty acid composition variability assessment in yellow horn (Xanthoceras sorbifolium Bunge) germplasm for optimum biodiesel production[J]. Ind Crops Prod, 2017, 97: 425-430.DOI: 10.1016/j.indcrop.2016.12.054.
[7]
ZHAN S, JIE D, LU Y M, et al. Genetic diversity of Xanthoceras sorbifolium Bunge germplasm using morphological traits and microsatellite molecular markers[J]. PLoS ONE, 2017, 12(6): 0177577.DOI: 10.1371/journal.pone.0177577.
[8]
ZHANG H, WANG X, HE D, et al. Optimization of flavonoid extraction from Xanthoceras sorbifolia Bunge flowers, and the antioxidant and antibacterial capacity of the extract[J]. Molecules, 2021, 27(1): 113.DOI: 10.3390/molecules27010113.
[9]
HAN Y, YAN W, HOU Y, et al. Xanthoceras sorbifolia Husk extract incorporation for the improvement in physical and antioxidant properties of soy protein isolate films[J]. Foods, 2023, 12(15): 2842.DOI: 10.3390/foods12152842.
[10]
KUMAR N, CHAUDHARY A, SINGH D, et al. Transcriptional regulation of seed oil accumulation in Arabidopsis thaliana: role of transcription factors and chromatin remodelers[J]. J Plant Biochem Biot, 2020, 29(4): 754-768.DOI: 10.1007/s13562-020-00616-2.
[11]
ANDRE C, FROEHLICH J E, MOLL M R, et al. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis[J]. Plant Cell, 2007, 19(6): 2006-2022.DOI: 10.1105/tpc.106.048629.
[12]
BAUD S, MENDOZA M S, TO A, et al. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis[J]. Plant J, 2007, 50(5): 825-838.DOI: 10.1111/j.1365-313X.2007.03092.x.
[13]
BAUD S, WUILLÈME S, DUBREUCQ B, et al. Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana[J]. Plant J, 2007, 52(3): 405-419.DOI: 10.1111/j.1365-313X.2007.03232.x.
[14]
ADHIKARI N D, BATES P D, BROWSE J. WRINKLED1 rescues feedback inhibition of fatty acid synthesis in hydroxylase-expressing seeds[J]. Plant Physiol, 2016, 171(1): 179-191.DOI: 10.1104/pp.15.01906.
[15]
GRIMBERG Å, CARLSSON A S, MARTTILA S, et al. Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues[J]. BMC Plant Biol, 2015, 15(1): 192.DOI: 10.1186/s12870-015-0579-1.
[16]
FOCKS N. WRINKLED1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism[J]. Plant Physiol, 1998, 118(1): 91-101.DOI: 10.1104/pp.118.1.91.
[17]
YANG F, LIU G, WU Z, et al. Cloning and functional analysis of TaWRI1Ls, the key genes for grain fatty acid synthesis in bread wheat[J]. Int J Mol Sci, 2022, 23(10): 5293.DOI: 10.3390/ijms23105293.
[18]
LIU Z J, ZHAO Y P, LIANG W, et al. Over-expression of transcription factor GhWRI1 in upland cotton[J]. Biol Plantarum, 2018, 62(2): 335-342.DOI: 10.1007/s10535-018-0777-4.
[19]
GE Y, DONG X, WU B, et al. Physiological, histological, and molecular analyses of avocado mesocarp fatty acids during fruit development[J]. J Agric Sci, 2018, 11(1): 95-104.DOI: 10.5539/jas.v11n1p95.
[20]
LI W, WANG L, QI Y, et al. Overexpression of WRINKLED1 improves the weight and oil content in seeds of flax (Linum usitatissimum L.)[J]. Front Plant Sci, 2022, 13: 1-15.DOI: 10.3389/fpls.2022.1003758.
[21]
蔡曼, 柳延涛, 王娟, 等. 植物种子油脂合成代谢及其关键酶的研究进展[J]. 中国粮油学报, 2018, 33(1): 131-139.
CAI M, LIU Y T, WANG J, et al. Research progress on anabolism and key enzymes of plant seed oil[J]. J Chinese Cereals and Oils Association, 2018, 33(1): 131-139.
[22]
丁霄, 杨淑巧, 许琦, 等. 转录因子WRI1在主要作物中的研究进展[J]. 分子植物育种, 2015, 13(3): 697-701.
DING X, YANG S Q, XU Q, et al. Progress on transcription factor WRI1 in crops[J]. Molecular Plant Breeding, 2015, 13(3): 697-701.DOI: 10.13271/j.mpb.013.000697.
[23]
LI J, CHEN C, ZENG Z, et al. SapBase (Sapinaceae Genomic DataBase): a central portal for functional and comparative genomics of Sapindaceae species[J]. BioRxiv Genom, 2022, 29: 1-7.DOI: 10.1101/2022.11.25.517904.
[24]
BADAI S S, RASID O A, PARVEEZ G A K, et al. A rapid RNA extraction method from oil palm tissues suitable for reverse transcription quantitative real-time PCR (RT-qPCR)[J]. Biotech, 2020, 10(12): 530.DOI: 10.1007/s13205-020-02514-9.
[25]
GIETZ R D, SCHIESTL R H. Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method[J]. Nat Protoc, 2007, 2(1): 38-41.DOI: 10.1038/nprot.2007.15.
[26]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.DOI: 10.1006/meth.2001.1262.
[27]
WANG L, RUAN C, LIU L, et al. Comparative RNA-Seq analysis of high-and low-oil yellowhorn during embryonic development[J]. Int J Mol Sci, 2018, 19(10): 3071.DOI: 10.3390/ijms19103071.
[28]
VANHERCKE T, DYER J M, MULLEN R T, et al. Metabolic engineering for enhanced oil in biomass[J]. Prog Lipid Res, 2019, 74: 103-129.DOI: 10.1016/j.plipres.2019.02.002.
[29]
SUN R, YE R, GAO L, et al. Characterization and ectopic expression of CoWRI1, an AP2/EREBP domain-containing transcription factor from coconut (Cocos nucifera L.) endosperm, changes the seeds oil content in transgenic Arabidopsis thaliana and rice (Oryza sativa L.)[J]. Front Plant Sci, 2017, 8: 63.DOI: 10.3389/fpls.2017.00063.
[30]
KONG Q, YANG Y, GUO L, et al. Molecular basis of plant oil biosynthesis: insights gained from studying the WRINKLED1 transcription factor[J]. Front Plant Sci, 2020, 11(24): 1-9.DOI: 10.3389/fpls.2020.00024.
[31]
FEI W, YANG S, HU J, et al. Research advances of WRINKLED1 (WRI1) in plants[J]. Funct Plant Biol, 2020, 47(3): 185-194. DOI: 10.1071/fp19225.
[32]
JI X J, MAO X, HAO Q T, et al. Splice variants of the Castor WRI1 gene upregulate fatty acid and oil biosynthesis when expressed in tobacco leaves[J]. Int J Mol Sci, 2018, 19(1): 146.DOI: 10.3390/ijms19010146.
[33]
MANO F, AOYANAGI T, KOZAKI A. Atypical splicing accompanied by skipping conserved micro-exons produces unique WRINKLED1, an AP2 domain transcription factor in rice plants[J]. Plants, 2019, 8(7): 207.DOI: 10.3390/plants8070207.
[34]
TANG T, DU C, SONG H, et al. Genome-wide analysis reveals the evolution and structural features of WRINKLED1 in plants[J]. Mol Genet Genomics, 2018, 294(2): 329-341.DOI: 10.1007/s00438-018-1512-8.
[35]
谢佳彤, 孙丽丹, 陈晓曼, 等. 麻风树JcWRI1基因克隆及功能分析[J]. 江苏农业学报, 2022, 38(2): 334-342.
XIE J T, SUN L D, CHEN X M, et al. Cloning and functional analysis of JcWRI1 gene from physic nut[J]. Jiangsu J Agri Sci, 2022, 38(2): 334-342.
[36]
周丽霞, 杨蒙迪, 张安妮, 等. 油棕油脂合成调控因子WRI1s的挖掘鉴定及表达分析[J]. 分子植物育种, 2024, 22(15):4905-4911.
ZHOU L X, YANG M D, ZHANG A N, et al. Identification and expression analysis of oil biosynthesis related wri1s genes in oil palm[J]. Molecular Plant Breeding, 2024, 22(15):4905-4911.DOI:10.13271/j.mpb.022.004905.
[37]
CHEN L, ZHENG Y, DONG Z, et al. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation[J]. Mol Genet Genomics, 2017, 293(2): 401-415.DOI: 10.1007/s00438-017-1393-2.
[38]
赵娜, 张媛, 王静, 等. 文冠果种子发育及油脂累积与糖类、蛋白质累积之间的关系研究[J]. 植物研究, 2015, 35(1): 133-140,145.
ZHAO N, ZHANG Y, WANG J, et al. Seed development,lipid accumulation and its relationship with carbohydrates and protein in Xanthoceras sorbifolia Bunge[J]. Bulletin of Botanical Research, 2015, 35(1): 133-140,145.
[39]
苏宁. 文冠果种实生长发育及油脂、皂苷等内含物变化规律[D]. 北京: 北京林业大学, 2020.
SU N. Fruits and seeds development and inclusions especially oil and saponinvariation in Xanthoceras sorbifolium Bunge[D]. Beijing: Beijing Forestry University, 2020.

基金

青年拔尖人才支持计划项目

编辑: 吴祝华
PDF(3311 KB)

Accesses

Citation

Detail

段落导航
相关文章

/