[1] |
唐东慧, 阮成江, 孟婷, 等. 不同种质文冠果含油量及油中脂肪酸组成分析[J]. 中国油脂, 2017, 42(3): 77-81.
|
|
TANG D H, RUAN C J, MENG T, et al. Oil contents and fatty acid composition in different germplasm of Xanthoceras sorbifolia Bunge[J]. China Oils and Fats, 2017, 42(3): 77-81.
|
[2] |
曹阳. 文冠果果仁含油量的测定及其果仁油脂肪酸组成分析[J]. 中国油脂, 2017, 42(6): 134-137.
|
|
CAO Y. Determination of oil content in seed kernel of Xanthoceras sorbifolia Bunge and fatty acid composition in oil[J]. China Oils and Fats, 2017, 42(6):134-137.
|
[3] |
LIU F, WANG P, XIONG X, et al. A review of nervonic acid production in plants: prospects for the genetic engineering of high nervonic acid cultivars plants[J]. Front Plant Sci, 2021, 12: 625-626.DOI: 10.3389/fpls.2021.626625.
|
[4] |
LIANG Q, FANG H, LIU J, et al. Analysis of the nutritional components in the kernels of yellowhorn (Xanthoceras sorbifolium Bunge) accessions[J]. J Food Compos Anal, 2021, 100: 103925.DOI: 10.1016/j.jfca.2021.103925.
|
[5] |
MA Y, BI Q, LI G, et al. Provenance variations in kernel oil content, fatty acid profile and biodiesel properties of Xanthoceras sorbifolium Bunge in northern China[J]. Ind Crops Prod, 2020, 151: 112487.DOI: 10.1016/j.indcrop.2020.112487.
|
[6] |
YU H Y, SIQI F, QUANXIN B, et al. Seed morphology, oil content and fatty acid composition variability assessment in yellow horn (Xanthoceras sorbifolium Bunge) germplasm for optimum biodiesel production[J]. Ind Crops Prod, 2017, 97: 425-430.DOI: 10.1016/j.indcrop.2016.12.054.
|
[7] |
ZHAN S, JIE D, LU Y M, et al. Genetic diversity of Xanthoceras sorbifolium Bunge germplasm using morphological traits and microsatellite molecular markers[J]. PLoS ONE, 2017, 12(6): 0177577.DOI: 10.1371/journal.pone.0177577.
|
[8] |
ZHANG H, WANG X, HE D, et al. Optimization of flavonoid extraction from Xanthoceras sorbifolia Bunge flowers, and the antioxidant and antibacterial capacity of the extract[J]. Molecules, 2021, 27(1): 113.DOI: 10.3390/molecules27010113.
|
[9] |
HAN Y, YAN W, HOU Y, et al. Xanthoceras sorbifolia Husk extract incorporation for the improvement in physical and antioxidant properties of soy protein isolate films[J]. Foods, 2023, 12(15): 2842.DOI: 10.3390/foods12152842.
|
[10] |
KUMAR N, CHAUDHARY A, SINGH D, et al. Transcriptional regulation of seed oil accumulation in Arabidopsis thaliana: role of transcription factors and chromatin remodelers[J]. J Plant Biochem Biot, 2020, 29(4): 754-768.DOI: 10.1007/s13562-020-00616-2.
|
[11] |
ANDRE C, FROEHLICH J E, MOLL M R, et al. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis[J]. Plant Cell, 2007, 19(6): 2006-2022.DOI: 10.1105/tpc.106.048629.
|
[12] |
BAUD S, MENDOZA M S, TO A, et al. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis[J]. Plant J, 2007, 50(5): 825-838.DOI: 10.1111/j.1365-313X.2007.03092.x.
|
[13] |
BAUD S, WUILLÈME S, DUBREUCQ B, et al. Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana[J]. Plant J, 2007, 52(3): 405-419.DOI: 10.1111/j.1365-313X.2007.03232.x.
|
[14] |
ADHIKARI N D, BATES P D, BROWSE J. WRINKLED1 rescues feedback inhibition of fatty acid synthesis in hydroxylase-expressing seeds[J]. Plant Physiol, 2016, 171(1): 179-191.DOI: 10.1104/pp.15.01906.
|
[15] |
GRIMBERG Å, CARLSSON A S, MARTTILA S, et al. Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues[J]. BMC Plant Biol, 2015, 15(1): 192.DOI: 10.1186/s12870-015-0579-1.
|
[16] |
FOCKS N. WRINKLED1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism[J]. Plant Physiol, 1998, 118(1): 91-101.DOI: 10.1104/pp.118.1.91.
|
[17] |
YANG F, LIU G, WU Z, et al. Cloning and functional analysis of TaWRI1Ls, the key genes for grain fatty acid synthesis in bread wheat[J]. Int J Mol Sci, 2022, 23(10): 5293.DOI: 10.3390/ijms23105293.
|
[18] |
LIU Z J, ZHAO Y P, LIANG W, et al. Over-expression of transcription factor GhWRI1 in upland cotton[J]. Biol Plantarum, 2018, 62(2): 335-342.DOI: 10.1007/s10535-018-0777-4.
|
[19] |
GE Y, DONG X, WU B, et al. Physiological, histological, and molecular analyses of avocado mesocarp fatty acids during fruit development[J]. J Agric Sci, 2018, 11(1): 95-104.DOI: 10.5539/jas.v11n1p95.
|
[20] |
LI W, WANG L, QI Y, et al. Overexpression of WRINKLED1 improves the weight and oil content in seeds of flax (Linum usitatissimum L.)[J]. Front Plant Sci, 2022, 13: 1-15.DOI: 10.3389/fpls.2022.1003758.
|
[21] |
蔡曼, 柳延涛, 王娟, 等. 植物种子油脂合成代谢及其关键酶的研究进展[J]. 中国粮油学报, 2018, 33(1): 131-139.
|
|
CAI M, LIU Y T, WANG J, et al. Research progress on anabolism and key enzymes of plant seed oil[J]. J Chinese Cereals and Oils Association, 2018, 33(1): 131-139.
|
[22] |
丁霄, 杨淑巧, 许琦, 等. 转录因子WRI1在主要作物中的研究进展[J]. 分子植物育种, 2015, 13(3): 697-701.
|
|
DING X, YANG S Q, XU Q, et al. Progress on transcription factor WRI1 in crops[J]. Molecular Plant Breeding, 2015, 13(3): 697-701.DOI: 10.13271/j.mpb.013.000697.
|
[23] |
LI J, CHEN C, ZENG Z, et al. SapBase (Sapinaceae Genomic DataBase): a central portal for functional and comparative genomics of Sapindaceae species[J]. BioRxiv Genom, 2022, 29: 1-7.DOI: 10.1101/2022.11.25.517904.
|
[24] |
BADAI S S, RASID O A, PARVEEZ G A K, et al. A rapid RNA extraction method from oil palm tissues suitable for reverse transcription quantitative real-time PCR (RT-qPCR)[J]. Biotech, 2020, 10(12): 530.DOI: 10.1007/s13205-020-02514-9.
|
[25] |
GIETZ R D, SCHIESTL R H. Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method[J]. Nat Protoc, 2007, 2(1): 38-41.DOI: 10.1038/nprot.2007.15.
|
[26] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.DOI: 10.1006/meth.2001.1262.
|
[27] |
WANG L, RUAN C, LIU L, et al. Comparative RNA-Seq analysis of high-and low-oil yellowhorn during embryonic development[J]. Int J Mol Sci, 2018, 19(10): 3071.DOI: 10.3390/ijms19103071.
|
[28] |
VANHERCKE T, DYER J M, MULLEN R T, et al. Metabolic engineering for enhanced oil in biomass[J]. Prog Lipid Res, 2019, 74: 103-129.DOI: 10.1016/j.plipres.2019.02.002.
|
[29] |
SUN R, YE R, GAO L, et al. Characterization and ectopic expression of CoWRI1, an AP2/EREBP domain-containing transcription factor from coconut (Cocos nucifera L.) endosperm, changes the seeds oil content in transgenic Arabidopsis thaliana and rice (Oryza sativa L.)[J]. Front Plant Sci, 2017, 8: 63.DOI: 10.3389/fpls.2017.00063.
|
[30] |
KONG Q, YANG Y, GUO L, et al. Molecular basis of plant oil biosynthesis: insights gained from studying the WRINKLED1 transcription factor[J]. Front Plant Sci, 2020, 11(24): 1-9.DOI: 10.3389/fpls.2020.00024.
|
[31] |
FEI W, YANG S, HU J, et al. Research advances of WRINKLED1 (WRI1) in plants[J]. Funct Plant Biol, 2020, 47(3): 185-194. DOI: 10.1071/fp19225.
|
[32] |
JI X J, MAO X, HAO Q T, et al. Splice variants of the Castor WRI1 gene upregulate fatty acid and oil biosynthesis when expressed in tobacco leaves[J]. Int J Mol Sci, 2018, 19(1): 146.DOI: 10.3390/ijms19010146.
|
[33] |
MANO F, AOYANAGI T, KOZAKI A. Atypical splicing accompanied by skipping conserved micro-exons produces unique WRINKLED1, an AP2 domain transcription factor in rice plants[J]. Plants, 2019, 8(7): 207.DOI: 10.3390/plants8070207.
|
[34] |
TANG T, DU C, SONG H, et al. Genome-wide analysis reveals the evolution and structural features of WRINKLED1 in plants[J]. Mol Genet Genomics, 2018, 294(2): 329-341.DOI: 10.1007/s00438-018-1512-8.
|
[35] |
谢佳彤, 孙丽丹, 陈晓曼, 等. 麻风树JcWRI1基因克隆及功能分析[J]. 江苏农业学报, 2022, 38(2): 334-342.
|
|
XIE J T, SUN L D, CHEN X M, et al. Cloning and functional analysis of JcWRI1 gene from physic nut[J]. Jiangsu J Agri Sci, 2022, 38(2): 334-342.
|
[36] |
周丽霞, 杨蒙迪, 张安妮, 等. 油棕油脂合成调控因子WRI1s的挖掘鉴定及表达分析[J]. 分子植物育种, 2024, 22(15):4905-4911.
|
|
ZHOU L X, YANG M D, ZHANG A N, et al. Identification and expression analysis of oil biosynthesis related wri1s genes in oil palm[J]. Molecular Plant Breeding, 2024, 22(15):4905-4911.DOI:10.13271/j.mpb.022.004905.
|
[37] |
CHEN L, ZHENG Y, DONG Z, et al. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation[J]. Mol Genet Genomics, 2017, 293(2): 401-415.DOI: 10.1007/s00438-017-1393-2.
|
[38] |
赵娜, 张媛, 王静, 等. 文冠果种子发育及油脂累积与糖类、蛋白质累积之间的关系研究[J]. 植物研究, 2015, 35(1): 133-140,145.
|
|
ZHAO N, ZHANG Y, WANG J, et al. Seed development,lipid accumulation and its relationship with carbohydrates and protein in Xanthoceras sorbifolia Bunge[J]. Bulletin of Botanical Research, 2015, 35(1): 133-140,145.
|
[39] |
苏宁. 文冠果种实生长发育及油脂、皂苷等内含物变化规律[D]. 北京: 北京林业大学, 2020.
|
|
SU N. Fruits and seeds development and inclusions especially oil and saponinvariation in Xanthoceras sorbifolium Bunge[D]. Beijing: Beijing Forestry University, 2020.
|