[1] |
HAYASHI M, SAIGUSA N, OGUMA H, et al. Measuring forest canopy height using ICESat/GLAS data for applying to Japanese spaceborne lidar mission[C]// Lidar Remote Sensing for Environmental Monitoring XIII.Kyoto,Japan.SPICE, 2012,8526:85260.DOI:10.1117/12.981583.
|
[2] |
URBAZAEV M, HESS L L, HANCOCK S, et al. Assessment of terrain elevation estimates from ICESat-2 and GEDI spaceborne LiDAR missions across different land cover and forest types[J]. Sci Remote Sens, 2022,6:100067. DOI:10.1016/j.srs.2022.100067.
|
[3] |
MA L, HURTT G, TANG H, et al. Spatial heterogeneity of global forest aboveground carbon stocks and fluxes constrained by spaceborne lidar data and mechanistic modeling[J]. Glob Chang Biol, 2023, 29(12):3378-3394.DOI:10.1111/gcb.16682.
|
[4] |
SUN T, QI J B, HUANG H G. Discovering forest height changes based on spaceborne lidar data of ICESat-1 in 2005 and ICESat-2 in 2019:a case study in the Beijing-Tianjin-Hebei region of China[J]. For Ecosyst, 2020, 7(1):53. DOI:10.1186/s40663-020-00265-w.
|
[5] |
LIN X D, SHANG R, CHEN J M, et al. High-resolution forest age mapping based on forest height maps derived from GEDI and ICESat-2 space-borne lidar data[J]. Agric For Meteor, 2023,339:109592. DOI:10.1016/j.agrformet.2023.109592.
|
[6] |
ZHU W D, YANG F, QIU Z G, et al. Enhancing forest canopy height retrieval: insights from integrated GEDI and Landsat data Analysis[J]. Sustainability, 2023, 15(13):10434.DOI:10.3390/su151310434.
|
[7] |
胡艳, 王迪, 刘凌菲, 等. 利用大光斑激光雷达估测小兴安岭平均树高[J]. 安徽农业科学, 2014, 42(15):4707-4709.
|
|
HU Y, WANG D, LIU L F, et al. Estimation of forest tree average heights from GLAS data in lesser Khingan mountains[J]. J Anhui Agric Sci, 2014, 42(15):4707-4709.DOI:10.13989/j.cnki.0517-6611.2014.15.094.
|
[8] |
董瀚元, 于颖, 范文义. 星载激光雷达GEDI数据林下地形反演性能验证[J]. 南京林业大学学报(自然科学版), 2023, 47(2):141-149.
|
|
DONG H Y, YU Y, FAN W Y. Verification of performance of understory terrain inversion from spaceborne lidar GEDI data[J]. J Nanjing For Univ (Nat Sci Ed), 2023, 47(2):141-149.
|
[9] |
吴伟东. 联合卫星遥感影像与光子雷达数提取山林地区数字高程模型[D]. 广州: 广东工业大学, 2022.
|
[13] |
GUPTA R, SHARMA L K. Mixed tropical forests canopy height mapping from spaceborne LiDAR GEDI and multisensor imagery using machine learning models[J]. Remote Sens Appl Soc Environ, 2022, 27(2):100817.DOI:10.1016/j.rsase.2022.100817.
|
[14] |
DUBAYAH R, BLAIR J B, GOETZ S, et al. The global ecosystem dynamics investigation:high-resolution laser ranging of the earth’s forests and topography[J]. Sci Remote Sens, 2020,1:100002.DOI:10.1016/j.srs.2020.100002.
|
[15] |
MARKUS T, NEUMANN T, MARTINO A, et al. The ice,cloud, and land elevation satellite-2 (ICESat-2):science requirements,concept,and implementation[J]. Remote Sens Environ, 2017, 190:260-273.DOI:10.1016/j.rse.2016.12.029.
|
[16] |
陆大进, 黎东, 朱笑笑, 等. 基于卷积神经网络的ICESat-2光子点云去噪分类[J]. 地球信息科学学报, 2021, 23(11):2086-2095.
|
|
LU D J, LI D, ZHU X X, et al. Denoising and classification of ICESat-2 photon point cloud based on convolutional neural network[J]. J Geo Inf Sci, 2021, 23(11):2086-2095.
|
[17] |
NEUENSCHWANDER A, PITTS K. The ATL08 land and vegetation product for the ICESat-2 Mission[J]. Remote Sens Environ, 2019, 221:247-259.DOI:10.1016/j.rse.2018.11.005.
|
[18] |
ZOU S, PAN H, ZOU Z, et al. ICESat-2 laser altimetry data-guided high-accuracy positioning of satellite stereo images[J]. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci, 2022, 41(1):41-48.DOI:10.5194/isprs-annals-V-1-2022-41-2022.
|
[19] |
陈雨莹, 王龑, 邹艳红, 等. 全球土地覆盖产品中森林类型数据在中国区域的质量评估[J]. 遥感技术与应用, 2023, 38(2):341-352.
|
|
CHEN Y Y, WANG Y, ZOU Y H, et al. Assessment of forest type data in global land cover products over China[J]. Remote Sens Technol Appl, 2023, 38(2):341-352.DOI: 10.11873/j.issn.1004-0323.2023.2.0341.
|
[20] |
ZHU X X, NIE S, WANG C, et al. Consistency analysis of forest height retrievals between GEDI and ICESat-2[J]. Remote Sens Environ, 2022,281:113244.DOI:10.1016/j.rse.2022.113244.
|
[21] |
韩明辉, 邢艳秋, 李国元, 等. GEDI不同算法组数据反演森林最大冠层高度和生物量精度比较[J]. 中南林业科技大学学报, 2022, 42(10):72-82.
|
[9] |
WU W D. Extraction of digital elevation model in mountain forest area by combining satellite remote sensing image and photon radar number[D]. Guangzhou: Guangdong University of Technology, 2022.
|
[10] |
黄佳鹏. 基于ICESat-2/ATLAS光子计数LiDAR数据反演森林冠层高度研究[D]. 哈尔滨: 东北林业大学, 2021.
|
|
HUANG J P. Inversion of forest canopy height based on ICESat-2/ATLAS photon counting LiDAR data[D].Harbin: Northeast Forestry University, 2021.DOI: 10.27009/d.cnki.gdblu.2021.000073.
|
[11] |
覃志刚, 尤号田, 黄元威, 等. 不同植被覆盖区ICESat-2和GF-7卫星地表高程信息对比研究[J]. 航天返回与遥感, 2023, 44(5):91-104.
|
|
QIN Z G, YOU H T, HUANG Y W, et al. Research on comparsion of surface elevation information of different vegetation cover types based on ICESat-2 and GF-7 satellite data[J]. Spacecr Recovery Remote Sens, 2023, 44(5):91-104.DOI: 10.3969/j.issn.1009-8518.2023.05.011.
|
[12] |
张少伟. 基于多源数据的内蒙古大兴安岭林区森林资源变化监测研究[D]. 北京: 中国林业科学研究院, 2019.
|
|
ZHANG S W. Monitoring of forest resources change in Daxinganling forest region of Inner Mongolia based on multi-source data[D]. Beijing: Chinese Academy of Forestry, 2019.
|
[21] |
HAN M H, XING Y Q, LI G Y, et al. Comparison of the accuracy of the maximum canopy height and biomass inversion of the data of different GEDI algorithm groups[J]. J Cent South Univ For Technol, 2022, 42(10):72-82. DOI: 10.14067/j.cnki.1673-923x.2022.10.009.
|
[22] |
秦磊. 基于ICESat-2星载激光雷达光子云数据反演森林冠层高度方法研究[D]. 哈尔滨: 东北林业大学, 2020.
|
|
QIN L. Study on the method of retrieving forest canopy height based on the photon cloud data of ICESat-2 spaceborne lidar[D].Harbin: Northeast Forestry University, 2020.
|
[23] |
王丽, 李毅, 朱建军, 等. ICESat-2 ATL08地形和冠层高度产品精度评估[J]. 遥感信息, 2023, 38(4): 144-152.
|
|
WANG L, LI Y, ZHU J J, et al. Accuracy assessment of ICESat-2 ATL08 terrain and canopy heights[J]. Remote Sens Info, 2023, 38(4): 144-152.DOI:10.20091/j.cnki.1000-3177.2023.04.018.
|