基于易测林木因子的林下太阳散射辐射模拟

杜昕, 董雪, 谷会岩, 李玉博, 陈祥伟

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (6) : 26-36.

PDF(2793 KB)
PDF(2793 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (6) : 26-36. DOI: 10.12302/j.issn.1000-2006.202309016
专题报道Ⅰ: 第十四届海峡两岸森林经理研讨会专题(执行主编 李凤日 曹林)

基于易测林木因子的林下太阳散射辐射模拟

作者信息 +

Simulation of understory solar scattering radiation based on easily measurable factors of tree

Author information +
文章历史 +

摘要

【目的】利用易测林木因子模拟林下辐射方法体系中林下散射辐射测度指数尺度化加权散射荫蔽度与加权进界邻体散射荫蔽度的模拟准确性,以及这两种指数相对于开敞度的性能优劣,寻求基于简单、易测林木因子合理、准确估算林下任意点位辐射模型的方法。【方法】基于阔叶红松林(Pinus koraiensis)林分调查信息建立林分体素模型,模拟均质环境背景下林分内部样地与非均质环境背景下包含林缘样地的林下散射透射率,将其作为林下散射辐射测度指数模拟准确性的评价基准。分别以爬山算法对尺度化加权散射荫蔽度中的局域尺度圆半径、背景尺度圆半径及加权进界邻体散射荫蔽度中的局域临界值、背景临界值进行参数寻优。进一步评价3种散射辐射测度指数的性能优劣。【结果】均质环境背景下,尺度化加权散射荫蔽度在局域尺度圆半径为5.401 m、加权进界邻体散射荫蔽度在局域临界值为2.800时拟合林下散射透射率最优,此时开敞度、尺度化加权散射荫蔽度、加权进界邻体散射荫蔽度与林下散射透射率间的Pearson、Spearman相关系数分别为0.397与0.425、-0.716与-0.692、-0.730与-0.694,线性回归决定系数分别为0.158、0.514及0.533;相较于开敞度,2种林下散射辐射测度指数对林下散射透射率的方差解释率分别提升了237.3%与225.3%。非均质环境背景下,保持局域尺度圆半径及局域临界值与均质环境背景相同时,尺度化加权散射荫蔽度的背景尺度圆半径为15.521 m及加权进界邻体散射荫蔽度的背景临界值为0.875时拟合林下散射透射率最优,此时,尺度化加权散射荫蔽度、加权进界邻体散射荫蔽度与林下散射透射率间的Pearson、Spearman相关系数分别为-0.930与-0.719、-0.927与-0.820,线性回归决定系数分别为0.866与0.860。【结论】两种林下散射辐射成分测度指数在合理的参数选择下能较好地模拟林下散射辐射,并解释较小尺度内林木结构特征差异与较大尺度环境背景差异对林下散射辐射的影响,二者对林下散射辐射的模拟精度优于开敞度方法。在以林木因子模拟林下散射辐射时,需将大尺度环境背景的差异性纳入考量;同时,研究样点周围邻体林木分布的均匀性是模拟林下散射辐射时的重要影响因素。

Abstract

【Objective】This study aims to evaluate the simulation accuracy of two measures of understory diffuse radiation: the scaled weighted diffuse shading degree and the weighted inside-boundary neighbor diffuse shading degree. These measures, based on easily measurable tree factors, are implemented within a forest understory radiation simulation system. The study also assesses these measures' performance relative to opening degree and seeks to identify model structural characteristics that can accurately estimate radiation at any understory location.【Method】A stand pixel model was created using survey data from a broad-leaved Korean pine forest (Pinus koraiensis). Understory diffuse transmittance was simulated for two scenarios: a homogeneous environmental background for research plots within the stand, and a heterogeneous environmental background for plots including the forest edge. The simulation accuracy of the diffuse radiation index measures was evaluated based on these scenarios. Optimization of the local-scale circle radius and background-scale circle radius for the scaled weighted diffuse shading degree, as well as the local critical value and background critical value for the weighted inside-boundary neighbor diffuse shading degree, were performed using a hill-climbing algorithm. The performance of the three indices-opening degree, scaled weighted diffuse shading degree, and weighted inside-boundary neighbor diffuse shading degree-were compared using Pearson and Spearman correlation coefficients and linear regression determination coefficients.【Result】Under a homogeneous environmental background, the scaled weighted diffuse shading degree showed the best fit for understory diffuse transmittance with a local-scale circle radius of 5.401 m. The weighted inside-boundary neighbor diffuse shading degree achieved the best fit with a local critical value of 2.800. Under these conditions, Pearson and Spearman correlation coefficients were 0.397 and 0.425 for opening degree, -0.716 and -0.692 for the scaled weighted diffuse shading degree, -0.730 and -0.694 for the weighted inside-boundary neighbor diffuse shading degree, respectively. The linear regression determination coefficients were 0.158 for opening degree, 0.514 for scaled weighted diffuse shading degree, and 0.533 for the weighted inside-boundary neighbor diffuse shading degree. Compared to the opening degree, the variance explanation rates for the weighted inside-boundary neighbor diffuse shading degree and the scaled weighted diffuse shading degree increased by 237.3% and 225.3%, respectively. In a heterogeneous environmental background, with the same local-scale circle radius and local critical value, the background-scale circle radius for the scaled weighted diffuse shading degree was 15.521 m, and the background critical value for the weighted inside-boundary neighbor diffuse shading degree was 0.875 when achieving the best fit for understory diffuse transmittance. In this case, the Pearson and Spearman correlation coefficients were -0.930 and -0.719 for the scaled weighted diffuse shading degree, -0.927 and -0.820 for the weighted inside-boundary neighbor diffuse shading degree. The linear regression determination coefficients were 0.866 and 0.860, respectively.【Conclusion】(1) With appropriate parameter selection, the scaled weighted diffuse shading degree and the weighted inside-boundary neighbor diffuse shading degree indices effectively simulate understory diffuse radiation and better account for variations in small-scale tree structure and large-scale environmental background compared to the opening degree method. (2) Accurate simulation of understory diffuse radiation requires consideration of large-scale environmental background differences, and the uniformity of neighboring tree distribution around research sites is an indispensable influencing factor in these simulations.

关键词

太阳辐射 / 散射透射率 / 开敞度 / 尺度化加权散射荫蔽度 / 加权进界邻体散射荫蔽度 / 红松林

Key words

solar radiation / diffuse transmittance / opening degree / scaled weighted diffuse shading degree / weighted inside-boundary neighbor diffuse shading degree / Pinus koraiensis forest

引用本文

导出引用
杜昕, 董雪, 谷会岩, . 基于易测林木因子的林下太阳散射辐射模拟[J]. 南京林业大学学报(自然科学版). 2025, 49(6): 26-36 https://doi.org/10.12302/j.issn.1000-2006.202309016
DU Xin, DONG Xue, GU Huiyan, et al. Simulation of understory solar scattering radiation based on easily measurable factors of tree[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2025, 49(6): 26-36 https://doi.org/10.12302/j.issn.1000-2006.202309016
中图分类号: S711   

参考文献

[1]
刘从, 田甜, 李珊, 等. 中国木本植物幼苗生长对光照强度的响应[J]. 生态学报, 2018, 38(2):518-527.
LIU C, TIAN T, LI S, et al. Growth response of Chinese woody plant seedlings to different light intensities[J]. Acta Ecologica Sinica, 2018, 38(2):518-527.DOI: 10.5846/stxb201611012221.
[2]
黄一鑫, 程艳霞. 森林光环境对4种乔木幼树光合和光谱反射特性的影响[J]. 生态学报, 2022, 42(22):9121-9129.
HUANG Y X, CHENG Y X. Photosynthetic characteristics and spectral reflectance characteristics of four natural tree saplings under forest light environment[J]. Acta Ecologica Sinica, 2022, 42(22):9121-9129.DOI: 10.5846/stxb202105171289.
[3]
STAN A B, DANIELS L D. Growth releases across a natural canopy gap-forest gradient in old-growth forests[J]. Forest Ecology and Management, 2014, 313:98-103.DOI: 10.1016/j.foreco.2013.11.004.
[4]
徐化成. 中国红松天然林[M]. 北京: 中国林业出版社, 2001.
XU H C. Natural forests of Pinus koraiensis in China[M]. Beijing: China Forestry Publishing House, 2001.
[5]
GUO S Y, SONG D K, XU Z J, et al. Response of natural regeneration of Pinus massoniana and Quercus variabilis mixed forest to thinning intensity and environmental factors[J]. Journal of Resources and Ecology, 2023, 14(2):423-432.DOI: 10.5814/j.issn.1674-764x.2023.02.020.
[6]
BEAUDET M, HARVEY B D, MESSIER C, et al. Managing understory light conditions in boreal mixedwoods through variation in the intensity and spatial pattern of harvest:a modelling approach[J]. Forest Ecology and Management, 2011, 261(1):84-94.DOI: 10.1016/j.foreco.2010.09.033.
[7]
周超凡, 张会儒, 卢军, 等. 东北主要天然次生林干扰与演替规律[J]. 林业科学研究, 2021, 34(4):175-183.
ZHOU C F, ZHANG H R, LU J, et al. Disturbances and succession laws of main natural secondary forests in northeast China[J]. Forest Reearch, 2021, 34(4):175-183.DOI: 10.13275/j.cnki.lykxyj.2021.04.021.
[8]
GERSONDE R, BATTLES J J, O'HARA K L. Characterizing the light environment in Sierra Nevada mixed-conifer forests using a spatially explicit light model[J]. Canadian Journal of Forest Research, 2004, 34(6):1332-1342.DOI:10.1139/x04-013.
[9]
BRUNNER A. A light model for spatially explicit forest stand models[J]. Forest Ecology and Management, 1998, 107(1-3):19-46.DOI: 10.1016/S0378-1127(97)00325-3.
[10]
SONOHAT G, BALANDIER P, RUCHAUD F. Predicting solar radiation transmittance in the understory of even-aged coniferous stands in temperate forests[J]. Annals of Forest Science, 2004, 61(7):629-641.DOI: 10.1051/forest:2004061.
[11]
沈海龙, 王龙, 林存学, 等. 开敞度调控对阔叶红松人工天然混交林上层阔叶树的影响[J]. 林业科学, 2014, 50(2):22-30.
SHEN H L, WANG L, LIN C X, et al. Effect of community structure regulation on upper-layer broad-leaved trees in a mixed forest of planted Korean pine and naturally-regenerated broad-leaved trees[J]. Scientia Silvae Sinicae, 2014, 50(2):22-30.DOI: 10.11707/j.1001-7488.20140204.
[12]
沈海龙, 丛健, 张鹏, 等. 开敞度调控对次生林林冠下红松径高生长量和地上生物量的影响[J]. 应用生态学报, 2011, 22(11):2781-2791.
SHEN H L, CONG J, ZHANG P, et al. Effect of opening degree regulation on diameter and height increment and aboveground biomass of Korean pine trees planted under secondary forest[J]. Chinese Journal of Applied Ecology, 2011, 22(11):2781-2791.DOI: 10.13287/j.1001-9332.2011.0393.
[13]
YAMASHITA K, MIZOUE N, ITO S, et al. Effects of residual trees on tree height of 18-and 19-year-old Cryptomeria japonica planted in group selection openings[J]. Journal of Forest Research, 2006, 11(4):227-234.DOI: 10.1007/s10310-005-0197-0.
[14]
KOHAMA T, MIZOUE N, ITO S, et al. Effects of light and microsite conditions on tree size of 6-year-old Cryptomeria japonica planted in a group selection opening[J]. Journal of Forest Research, 2006, 11(4):235-242.DOI: 10.1007/s10310-005-0202-7.
[15]
王麒淞, 国庆喜. 吉林东部天然次生林下光强衰减的空间分布特征[J]. 南京林业大学学报(自然科学版), 2023, 47(1):101-108.
摘要
【目的】 探究长白山北坡不同林型天然次生林下空间尺度及方位间的光强衰减特征。【方法】 以吉林东部长白山北坡天然次生林5块0.6 hm<sup>2</sup>样地为研究对象,调查了样地内乔木生长及光强衰减状况,对林型、空间尺度及方位进行划分,采用移动窗口法分析不同空间尺度下森林群落结构对林下光强衰减的影响。【结果】 吉林东部天然次生林乔木胸高断面积与林下光强衰减率相关性显著(P&lt;0.01)。随着空间尺度增大,乔木胸高断面积与光强衰减率的相关系数逐渐增大,大部分林型在内侧窗口达到10 m×10 m时,光强衰减率与乔木胸高断面积显著正相关(P&lt;0.01),在25 m×25 m尺度时相关系数最大,内侧窗口周围10 m内的乔木也与内侧窗口下的光强衰减率显著正相关(P&lt;0.01)。东侧、南侧的树木对于内侧窗口下的光强衰减率影响比西侧、北侧影响更大。【结论】 通过移动窗口法可以分析不同林型乔木对于林下光强衰减的影响范围,与耐阴树种相比,喜光树种乔木胸高断面积与光强衰减率在更多尺度下显著相关;在(10 m×10 m)~(40 m×40 m)的尺度范围内,多数林型乔木胸高断面积与光强衰减率显著正相关(P&lt;0.01)。不同方位的乔木对于光强衰减的影响也存在差异。
WANG Q S, GUO Q X. The spatial distribution characteristics of light intensity attenuation under natural secondary forests in eastern Jilin Province,China[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2023, 47(1):101-108.DOI: 10.12302/j.issn.1000-2006.202110015.
[16]
PENG S Z, ZHAO C Y, XU Z L. Modeling spatiotemporal patterns of understory light intensity using airborne laser scanner (LiDAR)[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 97:195-203.DOI: 10.1016/j.isprsjprs.2014.09.003.
[17]
FRAZER G. Gap light analyzer (gla) imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs[J]. User Manual and Program Documentation, 1999:1-40.
[18]
HALE S E, EDWARDS C, MASON W L, et al. Relationships between canopy transmittance and stand parameters in Sitka spruce and Scots pine stands in Britain[J]. Forestry, 2009, 82(5):503-513.DOI: 10.1093/forestry/cpp020.
[19]
BEAUDET M, MESSIER C, CANHAM C D. Predictions of understorey light conditions in northern hardwood forests following parameterization,sensitivity analysis,and tests of the SORTIE light model[J]. Forest Ecology and Management, 2002, 165(1/2/3):235-248.DOI: 10.1016/s0378-1127(01)00621-1.
[20]
MACFARLANE D W, GREEN E J, BRUNNER A, et al. Predicting survival and growth rates for individual loblolly pine trees from light capture estimates[J]. Canadian Journal of Forest Research, 2002, 32(11):1970-1983.DOI: 10.1139/x02-125.
[21]
李树人, 赵勇, 阎志平. 日本落叶松林冠层光生态场研究[J]. 应用生态学报, 1997, 8(2):123-126.
LI S R, ZHAO Y, YAN Z P. Light-ecological field of Larix leoptolois canopy[J]. Chinese Journal of Applied Ecology, 1997, 8(2):123-126.DOI:10.13287/j.1001-9332.1997.0024.
[22]
CANHAM C D. An index for understory light levels in and around canopy gaps[J]. Ecology, 1988, 69(5):1634-1638.DOI: 10.2307/1941664.
[23]
侯红亚, 王立海. 小兴安岭阔叶红松林物种组成及主要种群的空间分布格局[J]. 应用生态学报, 2013, 24(11):3043-3049.
摘要
研究了黑龙江省凉水国家自然保护区阔叶红松林的物种组成和径级结构,并应用点格局分析方法对其主要种群的空间分布格局及空间关联性进行了研究.结果表明: 该保护区内阔叶红松林中胸径&ge;1 cm的乔木共有16种,种群密度差异性很大,针叶树种红松和冷杉处于明显的优势地位;种群的径级结构近似倒&ldquo;J&rdquo;形,林分更新良好;主要种群的分布格局多呈聚集分布,只有红松在19~21 m和44 m尺度上以及青楷槭在接近所研究的最大尺度上时才呈现出随机分布.其中,红松在所研究尺度上一直都接近于随机分布,聚集强度也最小,冷杉、紫椴和青楷槭的分布格局都呈现出随机分布的趋势;除红松和冷杉在2~3 m的小尺度上,以及冷杉和青楷槭在37~81 m尺度上呈显著正相关外,其余种群的空间关联性均不显著.所有树种的总体联结关系均表现为不显著的正关联.&nbsp;
HOU H Y, WANG L H. Species composition and main populations spatial distribution pattern in Korean pine broad-leaved forest in Xiaoxing'an Mountains of northeast China[J]. Chinese Journal of Applied Ecology, 2013, 24(11):3043-3049.DOI: 10.13287/j.1001-9332.2013.0526.
[24]
FUJIWARA T, TAKEUCHI W. Modeling shadow with voxel-based trees for sentinel-2 reflectance simulation in tropical rainforest[J]. Remote Sensing, 2022, 14(16):4088.DOI: 10.3390/rs14164088.
Satellite-based gross primary production (GPP) estimation has uncertainties due to shadow fraction caused by the geometric relationship between the complex forest structure and the Sun. The virtual forests allow shadow fraction estimation without 3D measurements, but require optimal structural parameters. In this study, we developed the reflectance simulator (Canopy-level Shadow and Reflectance Simulator, CSRS) that considers tree shadows and the method to determine the optimal canopy shape for shadow fraction estimation. The target forest is any tropical evergreen forest which accounts for 58% of tropical forests. Firstly, we analyzed the effects of canopy shape on the reflectance simulation based on virtual forests created with different canopy shapes. This result was checked by Tukey’s honestly significant difference (HSD) test. Secondly, the optimal canopy shape was determined by comparing the reflectance from Sentinel-2 Band 4 (red) bottom of atmosphere reflectance with those simulated from virtual forests. Finally, the shadow fraction estimated from the virtual forest was evaluated. Since the focus of this study was to derive the optimal canopy shape, unmanned aerial vehicle (UAV) structure from motion (SfM) was used to obtain the parameters other than canopy shape and to validate the estimated shadow fraction. The results showed that when the Sun zenith angle (SZA) was more than 20°, significant differences were observed among canopy shapes. The least root mean square error (RMSE) for reflectance simulation was 0.385 from the canopy shape of a half ellipsoid. Moreover, the half ellipsoid also showed the smallest RMSE in estimating shadow fraction (0.032), which indicated the reliability and applicability of CSRS. This study is the first attempt to determine the optimal canopy shape for estimating shadow fraction and is expected to improve the accuracy of GPP estimation in the future.
[25]
ROSENBERG M S. Handbook of spatial point-pattern analysis in ecology[J]. International Journal of Geographical Information Science, 2015, 29(9):1718-1719.DOI: 10.1080/13658816.2015.1059433.
[26]
李爱贞, 刘厚凤. 气象学与气候学基础[M]. 北京: 气象出版社, 2001.
LI A Z, LIU H F. Fundamentals of meteorology and climatology[M]. Beijing: China Meteorological Press, 2001.
[27]
COMEAU P G, GENDRON F, LETCHFORD T. A comparison of several methods for estimating light under a paper birch mixedwood stand[J]. Canadian Journal of Forest Research, 1998, 28(12):1843-1850.DOI: 10.1139/x98-159.
[28]
刘润红, 陈乐, 涂洪润, 等. 桂林岩溶石山青冈群落灌木层主要物种生态位与种间联结[J]. 生态学报, 2020, 40(6):2057-2071.
LIU R H, CHEN L, TU H R, et al. Niche and interspecific association of main species in shrub layer of Cyclobalanopsis glauca community in Karst hills of Guilin,southwest China[J]. Acta Ecologica Sinica, 2020, 40(6):2057-2071.DOI: 10.5846/stxb201904090689.
[29]
LEVINS R. Evolution in Changing environments: some theoretical explorations[M]. Princeton,NJ: Princeton University Press,1968.
[30]
毛志忠. 进界生长量概念与调查方法的探讨[J]. 林业资源管理, 1990(5):41-44.
MAO Z Z. Discussion on the concept and investigation method of entry growth[J]. Forest Resources Research, 1990(5):41-44.DOI: 10.13466/j.cnki.lyzygl.1990.05.008.
[31]
葛安华, 周晏明, 李权章. 改进遗传算法求解作业车间提前/拖期调度问题[J]. 森林工程, 2013, 29(3):138-141.
GE A H, ZHOU Y M, LI Q Z. Improved genetic algorithm for the job-shop earliness/tardiness scheduling problem[J]. Forest Engineering, 2013, 29(3):138-141.DOI: 10.16270/j.cnki.slgc.2013.03.028.
[32]
MORI A, TAKEDA H. Light-related competitive effects of overstory trees on the understory conifer saplings in a subalpine forest[J]. Journal of Forestry Research, 2003, 8(3):163-168.DOI: 10.1007/s10310-002-0022-y.
[33]
WEINER J. Neighborhood interference amongst Pinus rigida individuals[J]. Journal of Ecology, 1984, 72(1):183-195.DOI: 10.2307/2260012.
[34]
郭志华, 张旭东, 黄玲玲, 等. 落叶阔叶树种蒙古栎(Quercus mongolica)对林缘不同光环境光能和水分的利用[J]. 生态学报, 2006, 26(4):1047-1056.
GUO Z H, ZHANG X D, HUANG L L, et al. Solar energy and water utilization of Quercus mongolica,a deciduous broadleaf tree,in different light regimes across the edge of a deciduous broad-leaved forest[J]. Acta Ecologica Sinica, 2006, 26(4):1047-1056.DOI: 10.3321/j.issn:1000-0933.2006.04.010.
[35]
国庆喜, 杨光. 红松天然种群邻体影响半径[J]. 应用生态学报, 2006, 17(12):2302-2306.
GUO Q X, YANG G. Neighborhood interference radius of natural Pinus koraiensis population[J]. Chinese Journal of Applied Ecology, 2006, 17(12):2302-2306.DOI:CNKI:SUN:YYSB.0.2006-12-013.
[36]
CANHAM C D, COATES K D, BARTEMUCCI P, et al. Measurement and modeling of spatially explicit variation in light transmission through interior cedar-hemlock forests of British Columbia[J]. Canadian Journal of Forest Research, 1999, 29(11):1775-1783.DOI:10.1139/x99-151.
[37]
王根轩, 赵松岭. 半干旱生态条件下植物个体的综合生态效应的空间距离分布规律[J]. 生态学报, 1993, 13(1):58-66.
WANG G X, ZHAO S L. The spatial distribution of the synthetical ecological effect of plant individuals under semi-arid ecological conditions[J]. Acta Ecologica Sinica, 1993, 13(1):58-66.

基金

科技基础资源调查专项(2021FY100702)
林业公益性行业科研专项(201404303)

编辑: 孟苗婧
PDF(2793 KB)

Accesses

Citation

Detail

段落导航
相关文章

/