[12] |
WAN P, PENG H, JI X L, et al. Effect of stand age on soil microbial communities of a plantation Ormosia hosiei forest in southern China[J]. Ecological Informatics, 2021,62:101282.DOI: 10.1016/j.ecoinf.2021.101282.
|
[13] |
SHI K, LIAO J H, ZOU X M, et al. Accumulation of soil microbial extracellular and cellular residues during forest rewilding:implications for soil carbon stabilization in older plantations[J]. Soil Biology and Biochemistry, 2024,188:109250.DOI: 10.1016/j.soilbio.2023.109250.
|
[14] |
胡建文, 刘常富, 勾蒙蒙, 等. 林龄对马尾松人工林微生物残体碳积累的影响机制[J]. 应用生态学报, 2024, 35(1):153-160.
|
|
HU J W, LIU C F, GOU M M, et al. Influencing mechanism of stand age to the accumulation of microbial residue carbon in the Pinus massoniana plantations[J]. Chinese Journal of Applied Ecology, 2024, 35(1):153-160.DOI: 10.13287/j.1001-9332.202401.041.
|
[15] |
问宇翔, 冯坤乔, 童冉, 等. 水杉人工林细根和粗根碳氮磷计量特征对N添加的响应[J]. 林业科学研究, 2022, 35(3):161-168.
|
|
WEN Y X, FENG K Q, TONG R, et al. Response of C,N,P stoichiometry of fine and coarse roots of Metasequoia glyptostroboides plantation to nitrogen addition[J]. Forestry Research, 2022, 35(3):161-168.DOI: 10.13275/j.cnki.lykxyj.2022.03.018.
|
[16] |
庄红蕾. 上海崇明岛水杉人工林生态系统碳动态研究[D]. 上海: 上海交通大学, 2012.
|
|
ZHUANG H L. Study on the Carbon Dynamic of Metasequoia glyptostroboides plantation ecosystems in Chongming Island, Shanghai[D]. Shanghai: Shanghai Jiao Tong University, 2012.
|
[17] |
李佩聪. 环境水体中基于邻苯基苯酚:靛酚蓝分光光度法的铵氮测定新方法的研究和应用[D]. 厦门大学, 2019.
|
|
LI P C. Study and application of the indophenol method for the determination of ammonium in natural waters using o-phenylphenol[D]. Xiamen: Xiamen University, 2019.
|
[18] |
国家海洋局. 海洋监测规范第4部分:海水分析:GB 17378.4—2007[S]. 北京: 中国标准出版社, 2008.
|
|
State Ocean Administration of the PRC. The specification for marine monitoring:part 4:seawater analysis:GB 17378.4—2007[S]. Beijing: Standards Press of China, 2008.
|
[19] |
国家林业局. 森林土壤磷的测定:LY/T 1232—2015[S]. 北京: 中国标准出版社, 2016.
|
|
State Forestry Administration of State Ocean Administration of the PRC. Phosphorus determination methods of forest soils:LY/T 1232—2015[S]. Beijing: Standards Press of China, 2016.
|
[20] |
索伦嘎. 围封对羊草草原植被—土壤特征的影响:聚焦土壤有机碳组分变化[D]. 呼和浩特: 内蒙古大学, 2022.
|
|
SUO L G. Effects of enclosure on vegetation-soil features of the Leymus chinensis grassland:emphasizing the changes in soil organic carbon fractions[D]. Hohhot: Inner Mongolia University, 2022.DOI: 10.27224/d.cnki.gnmdu.2022.001508.
|
[21] |
WANG C Q, XUE L, JIAO R Z. Soil organic carbon fractions,C-cycling associated hydrolytic enzymes,and microbial carbon metabolism vary with stand age in Cunninghamia lanceolate (Lamb.) Hook plantations[J]. Forest Ecology and Management, 2021,482:118887.DOI: 10.1016/j.foreco.2020.118887.
|
[22] |
肖春波, 王海, 范凯峰, 等. 崇明岛不同年龄水杉人工林生态系统碳储量的特点及估测[J]. 上海交通大学学报(农业科学版), 2010, 28(1):30-34.
|
|
XIAO C B, WANG H, FAN K F, et al. Carbon storage of Metasequoia glyptostroboides plantation ecosystems at different age stages in Chongming Island,east China[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2010, 28(1):30-34.DOI: 10.3969/j.issn.1671-9964.2010.01.006.
|
[23] |
谢天时. 不同林龄水杉人工林群落特征比较研究[J]. 福建林业科技, 2007, 34(2):19-23.
|
|
XIE T S. A study on the comparision of community characteristic between different age Metasequoia glyptostroboides plantations[J]. Journal of Fujian Forestry Science and Technology, 2007, 34(2):19-23.DOI: 10.13428/j.cnki.fjlk.2007.02.005.
|
[24] |
ZHANG L, ZHANG P, YU M K, et al. Soil organic carbon content and stocks in an age-sequence of Metasequoia glyptostroboides plantations in coastal area,east China[C]// Proceedings of the 2015 4th International Conference on Sustainable Energy and Environmental Engineering.December 20-21,2015.Shenzhen,China;Paris, France: Atlantis Press, 2016.DOI: 10.2991/icseee-15.2016.178.
|
[25] |
江苏省林业局. 江苏省森林资源规划设计调查操作细则[Z]. 南京:江苏省林业局, 2007.
|
[1] |
FIGUERES C, SCHELLNHUBER H J, WHITEMAN G, et al. Three years to safeguard our climate[J]. Nature, 2017, 546(7660):593-595.DOI: 10.1038/546593a.
|
[2] |
BALESDENT J, BASILE-DOELSCH I, CHADOEUF J, et al. Atmosphere-soil carbon transfer as a function of soil depth[J]. Nature, 2018, 559(7715):599-602.DOI: 10.1038/s41586-018-0328-3.
|
[3] |
JOBBAGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2):423.DOI: 10.2307/2641104.
|
[4] |
MATHIEU J A, HATTÉ C, BALESDENT J, et al. Deep soil carbon dynamics are driven more by soil type than by climate:a worldwide meta-analysis of radiocarbon profiles[J]. Global Change Biology, 2015, 21(11):4278-4292.DOI: 10.1111/gcb.13012.
|
[5] |
LUO Z K, WANG G C, WANG E L. Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate[J]. Nature Communications, 2019, 10(1):3688.DOI: 10.1038/s41467-019-11597-9.
|
[6] |
LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st Century[J]. Global Change Biology, 2020, 26(1):261-273.DOI: 10.1111/gcb.14859.
|
[7] |
LI W, ZHENG Z C, LI T X, et al. Effect of tea plantation age on the distribution of soil organic carbon fractions within water-stable aggregates in the hilly region of western Sichuan,China[J]. Catena, 2015, 133:198-205.DOI: 10.1016/j.catena.2015.05.017.
|
[8] |
GUO J, WANG B, WANG G B, et al. Effects of three cropland afforestation practices on the vertical distribution of soil organic carbon pools and nutrients in eastern China[J]. Global Ecology and Conservation, 2020,22:e00913.DOI: 10.1016/j.gecco.2020.e00913.
|
[9] |
COTRUFO M F, RANALLI M G, HADDIX M L, et al. Soil carbon storage informed by particulate and mineral-associated organic matter[J]. Nature Geoscience, 2019,12:989-994.DOI: 10.1038/s41561-019-0484-6.
|
[10] |
FERREIRA G W D, OLIVEIRA F C C, SOARES E M B, et al. Retaining eucalyptus harvest residues promotes different pathways for particulate and mineral-associated organic matter[J]. Ecosphere, 2021, 12(3):e03439.DOI: 10.1002/ecs2.3439.
|
[11] |
MIDWOOD A J, HANNAM K D, GEBRETSADIKAN T, et al. Storage of soil carbon as particulate and mineral associated organic matter in irrigated woody perennial crops[J]. Geoderma, 2021,403:115185.DOI: 10.1016/j.geoderma.2021.115185.
|
[25] |
Forestry Bureau of Jiangsu Province. Operation rules of forest resources planning and design survey of Jiangsu Province[Z]. Nanjing: Forestry Bureau of Jiangsu Province, 2007.
|
[26] |
LAJTHA K, TOWNSEND K L, KRAMER M G, et al. Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems[J]. Biogeochemistry, 2014, 119(1):341-360.DOI: 10.1007/s10533-014-9970-5.
|
[27] |
刘江伟, 徐海东, 林同岳, 等. 海涂围垦区不同林分土壤活性有机碳垂直变化特征[J]. 林业科学研究, 2022, 35(3):18-26.
|
|
LIU J W, XU H D, LIN T Y, et al. Vertical variation patterns in soil labile organic carbon in different stands in coastal reclamation area[J]. Forestry Research, 2022, 35(3):18-26.DOI: 10.13275/j.cnki.lykxyj.2022.03.003.
|
[28] |
MIKUTTA R, TURNER S, SCHIPPERS A, et al. Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient[J]. Scientific Reports, 2019, 9(1):10294.DOI: 10.1038/s41598-019-46501-4.
|
[29] |
侯超, 张申平, 马跃龙. 特异性乳糖酶的开发研究进展[J]. 生物加工过程, 2024, 22(1):81-88.
|
|
HOU C, ZHANG S P, MA Y L. Progress on development of characteristic lactase[J]. Chinese Journal of Bioprocess Engineering, 2024, 22(1):81-88. DOI:10.3969/j.issn.1672-3678.2024.01.011.
|
[30] |
VOGEL C, HEISTER K, BUEGGER F, et al. Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions[J]. Biology and Fertility of Soils, 2015, 51(4):427-442.DOI: 10.1007/s00374-014-0987-7.
|
[31] |
曹国华, 姚继周, 杨鑫, 等. 水杉人工林细根形态及生物量分布规律[J]. 安徽农业科学, 2016, 44(2):9-11.
|
|
CAO G H, YAO J Z, YANG X, et al. Morphology of fine roots of Metasequoia glyptostroboides plantation and its biomass distribution laws[J]. Journal of Anhui Agricultural Sciences, 2016, 44(2):9-11.DOI: 10.13989/j.cnki.0517-6611.2016.02.004.
|
[32] |
KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change, 2015,5:588-595.DOI: 10.1038/nclimate2580.
|
[33] |
ROCCI K S, LAVALLEE J M, STEWART C E, et al. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter:a meta-analysis[J]. Science of The Total Environment, 2021,793:148569.DOI: 10.1016/j.scitotenv.2021.148569.
|
[34] |
RUMPEL C, KÖGEL-KNABNER I. Deep soil organic matter: a key but poorly understood component of terrestrial C cycle[J]. Plant and Soil, 2011, 338(1):143-158.DOI: 10.1007/s11104-010-0391-5.
|
[35] |
BOUNOUARA Z, CHEVALLIER T, BALESDENT J, et al. Variation in soil carbon stocks with depth along a toposequence in a sub-humid climate in north Africa (Skikda,Algeria)[J]. Journal of Arid Environments, 2017, 141:25-33.DOI: 10.1016/j.jaridenv.2017.02.001.
|
[36] |
CARDINAEL R, CHEVALLIER T, BARTHÈS B G, et al. Impact of alley cropping agroforestry on stocks,forms and spatial distribution of soil organic carbon: a case study in a Mediterranean context[J]. Geoderma, 2015, 259/260:288-299.DOI: 10.1016/j.geoderma.2015.06.015.
|
[37] |
MONI C, RUMPEL C, VIRTO I, et al. Relative importance of sorption versus aggregation for organic matter storage in subsoil horizons of two contrasting soils[J]. European Journal of Soil Science, 2010, 61(6):958-969.DOI: 10.1111/j.1365-2389.2010.01307.x.
|
[38] |
FANG H J, CHENG S L, YU G R, et al. Nitrogen deposition impacts on the amount and stability of soil organic matter in an alpine meadow ecosystem depend on the form and rate of applied nitrogen[J]. European Journal of Soil Science, 2014, 65(4):510-519.DOI: 10.1111/ejss.12154.
|
[39] |
SOONG J L, FUCHSLUEGER L, MARAÑON-JIMENEZ S, et al. Microbial carbon limitation:the need for integrating microorganisms into our understanding of ecosystem carbon cycling[J]. Global Change Biology, 2020, 26(4):1953-1961.DOI: 10.1111/gcb.14962.
|
[40] |
DING W L, CONG W F, LAMBERS H. Plant phosphorus-acquisition and-use strategies affect soil carbon cycling[J]. Trends in Ecology & Evolution, 2021, 36(10):899-906.DOI: 10.1016/j.tree.2021.06.005.
|