城市滨水绿地空间夏季微气候效应研究

王一洁, 王璐冕, 丁真慧, 钱程, 曹加杰

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (2) : 233-241.

PDF(2965 KB)
PDF(2965 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (2) : 233-241. DOI: 10.12302/j.issn.1000-2006.202310003
研究论文

城市滨水绿地空间夏季微气候效应研究

作者信息 +

Effects of urban waterfront green space on summer microclimate

Author information +
文章历史 +

摘要

【目的】利用热舒适度评价指标(综合舒适度指标、湿球黑球温度指标)与微气候因子、植物要素的相关性进行微气候效应研究,依据植物景观特征不同的城市滨水绿地中人体热舒适度感受,来提升夏季活动空间的环境品质和使用率。【方法】选取南京内秦淮河城市段上的9个典型样地和1个对照点,在分析场地植物要素(大乔木覆盖率、小乔木覆盖率、灌木覆盖率、地被覆盖率)的基础上,对气象因子(空气温度、相对湿度、风速)进行实测并计算人体舒适度,使用可视化图表反映变化规律,同时研究舒适度与选取因子的相关性。【结果】将滨水空间依据植物平面布局归纳总结为点状、条带状、四周型3种。经过测量分析得到:①点状、四周型布局的空间微气候舒适度较佳,条带状布局的舒适度欠佳,其中点状布局降温增湿效果最显著;②空气温度、相对湿度对微气候综合变量的贡献较大,湿球黑球温度指数指标(wet bulb globe temperature index,WBGT)对舒适度综合变量的贡献较突出,舒适度与空气温度呈显著正相关,与相对湿度呈显著负相关,与风速的相关性最弱;③舒适度与植物要素的相关性从大到小排序为大乔木覆盖率>灌木覆盖率>小乔木覆盖率>地被覆盖率。量化舒适度较优的活动空间植物景观特征,提出在20 m×20 m的城市滨水绿地空间样方内,大乔木与灌木覆盖率比值在(2∶1)~(6∶1)的点状、四周型植物空间布局所反映出的热舒适度值较为适中,配比低于2∶1时对热舒适度值有负面影响。【结论】对不同植物空间布局下的微气候效应进行定量化分析,揭示了各要素的相互作用对夏季滨水绿地空间热舒适度的影响,提出城市滨水绿地空间植物配置的优化策略,即优先采用点状植物空间布局模式改善植物空间对微气候的调节效力,调控大乔木与灌木覆盖率配比大于2∶1来改善城市滨水公共空间的环境品质,灵活选择乔木品种和种植密度,可有效发挥水体与植物的微气候效应。

Abstract

【Objective】This study explores the correlation between summer comfort evaluation indexes, namely the S index, and wet bulb globe temperature (WBGT) index, and microclimate and plant landscape factors to assess microclimate effects. The goal is to enhance the environmental quality and usability of urban waterfront green spaces by optimizing human thermal comfort under varying plant landscape characteristics.【Method】 Nine representative plots and one control site along the urban section of the Qinhuai River in Nanjing were selected for analysis. Key plant elements (large tree coverage, small tree coverage, shrub coverage, and ground cover) were surveyed alongside meteorological factors (air temperature, relative humidity and wind speed). Comfort levels were calculated, and visual charts were used to illustrate changing patterns. Correlations between thermal comfort and the selected variables were analyzed. 【Result】Waterfront spaces were classified into three plant layout types: point, strip and surrounding layouts. Key findings include the following: comfort variations by layout, namely the point and surrounding layouts exhibited higher microclimate comfort, while the strip layout was less favorable. The point layout demonstrated the most significant cooling and humidifying effects. Contribution of factors to comfort: air temperature and relative humidity were major contributors to the microclimate’s integrated variables, while the WBGT index had a prominent influence on comfort. Air temperature positively correlated with comfort, relative humidity showed a significantly negative correlation, and wind speed had the weakest impact. Plant element correlations: comfort was most strongly correlated with large tree cover, followed by shrub cover, small tree cover, and ground cover. For optimal spatial comfort in 20 m × 20 m quadrats, a large tree-to-shrub coverage ratio between 2∶1 and 6∶1 was ideal. Ratios below 2∶1 negatively impacted the comfort index.【Conclusion】Quantitative analysis of microclimate effects under different plant spatial layouts reveals the interplay of key factors influencing summer thermal comfort. Based on these findings, the following strategies are proposed for optimizing plant configurations in urban waterfront green spaces: prioritize point layouts: Employ point layouts to maximize the regulatory effects of plant spaces on the microclimate. Optimize coverage ratios: ensure a large tree-to-shrub coverage ratio greater than 2∶1 to enhance thermal comfort. Flexible planting strategies: select tree species and planting densities based on site-specific conditions. Leverage water-plant synergy: maximize the combined microclimate benefits of water bodies and vegetation.

关键词

滨水绿地空间 / 舒适度指标 / 植物布局 / 夏季微气候 / 南京内秦淮河

Key words

waterfront green space / comfort index / plant layout / summer microclimate / Nanjing Inner Qinhuai River

引用本文

导出引用
王一洁, 王璐冕, 丁真慧, . 城市滨水绿地空间夏季微气候效应研究[J]. 南京林业大学学报(自然科学版). 2025, 49(2): 233-241 https://doi.org/10.12302/j.issn.1000-2006.202310003
WANG Yijie, WANG Lumian, DING Zhenhui, et al. Effects of urban waterfront green space on summer microclimate[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(2): 233-241 https://doi.org/10.12302/j.issn.1000-2006.202310003
中图分类号: P463.22;S718   

参考文献

[1]
杜红玉. 特大型城市“蓝绿空间” 冷岛效应及其影响因素研究:以上海市为例[D]. 上海: 华东师范大学, 2018.
DU H Y. Study on the cold island effect of “blue-green space” in megacities and its influencing factors: taking Shanghai as an example[D]. Shanghai: East China Normal University, 2018.
[2]
ZHANG M M, HE J H, LIU D F, et al. Urban green corridor construction considering daily life circles:a case study of Wuhan City,China[J]. Ecol Eng, 2022,184:106786.DOI: 10.1016/j.ecoleng.2022.106786.
[3]
陈睿智, 董靓. 湿热气候区风景园林微气候舒适度评价研究[J]. 建筑科学, 2013, 29(8):28-33.
CHEN R Z, DONG L. Study on comfort level evaluation of microclimate of landscape architecture in humid-hot climate area[J]. Build Sci, 2013, 29(8):28-33.DOI: 10.13614/j.cnki.11-1962/tu.2013.08.004.
[4]
LAI D Y, LIU Y Q, LIAO M C, et al. Effects of different tree layouts on outdoor thermal comfort of green space in summer Shanghai[J]. Urban Clim, 2023,47:101398.DOI: 10.1016/j.uclim.2022.101398.
[5]
张琳, 刘滨谊, 林俊. 城市滨水带风景园林小气候适应性设计初探[J]. 中国城市林业, 2014, 12(4):36-39.
ZHANG L, LIU B Y, LIN J. A study of urban waterfront landscape microclimate adaptive design[J]. J Chin Urban For, 2014, 12(4):36-39.DOI: 10.3969/j.issn.1672-4925.2014.04.010.
[6]
杨建敏, 魏雯. 城市滨水空间冬季小气候效应研究:以昆明市捞鱼河为例[J]. 西北林学院学报, 2022, 37(6):192-200.
YANG J M, WEI W. A study on winter microclimate effect of urban waterfront space: a case of the Laoyu River in Kunming[J]. J Northwest For Univ, 2022, 37(6):192-200.DOI: 10.3969/j.issn.1001-7461.2022.06.26.
[7]
KIM Y, YU S Y, LI D Y, et al. Linking landscape spatial heterogeneity to urban heat island and outdoor human thermal comfort in Tokyo:application of the outdoor thermal comfort index[J]. Sustain Cities Soc, 2022,87:104262.DOI: 10.1016/j.scs.2022.104262.
[8]
熊瑶, 严妍. 基于人体热舒适度的江南历史街区空间格局研究:以南京高淳老街为例[J]. 南京林业大学学报(自然科学版), 2021, 45(1):219-226.
XIONG Y, YAN Y. Effects of spatial design and microclimate on human thermal comfort in the region south of the Yangtze River:a case study of old street in Gaochun,Nanjing[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):219-226.DOI: 10.12302/j.issn.1000-2006.201912017.
[9]
晏海, 王雪, 董丽. 华北树木群落夏季微气候特征及其对人体舒适度的影响[J]. 北京林业大学学报, 2012, 34(5):57-63.
YAN H, WANG X, DONG L. Microclimatic characteristics and human comfort conditions of tree communities in northern China during summer[J]. J Beijing For Univ, 2012, 34(5):57-63.DOI: 10.13332/j.1000-1522.2012.05.021.
[10]
杨诗敏, 易慧琳, 吴友炉, 等. 基于ENVI-met的二沙岛公园植物群落空间微气候模拟研究[J]. 热带农业科学, 2023, 43(6): 68-76.
YANG S M, YI H L, WU Y L, et al. Simulation research on spatial microclimate of the plant community in Ersha Island Park based on ENVI-met[J]. J Trop Agric, 2023, 43(6): 68-76. DOI: 10.12008/j.issn.1009-2196.2023.06.013.
[11]
卫笑, 郝日明, 张明娟, 等. 树冠空间结构对微气候影响的模拟[J]. 浙江农林大学学报, 2019, 36(4):783-792.
WEI X, HAO R M, ZHANG M J, et al. Microclimate changes with simulated canopy spatial structures[J]. J Zhejiang A F Univ, 2019, 36(4):783-792.DOI: 10.11833/j.issn.2095-0756.2019.04.019.
[12]
LI Y N, LIN D L, ZHANG Y H, et al. Quantifying tree canopy coverage threshold of typical residential quarters considering human thermal comfort and heat dynamics under extreme heat[J]. Build Environ, 2023,233:110100.DOI: 10.1016/j.buildenv.2023.110100.
[13]
胡梅红. 上海市居住区滨水植物配置模式研究[D]. 上海: 上海交通大学, 2008.
HU M H. Study on the allocation mode of waterfront plants in Shanghai residential areas[D]. Shanghai: Shanghai Jiao Tong University, 2008.
[14]
杜佳月. 哈尔滨城市公园植物空间设计研究[D]. 哈尔滨: 东北农业大学, 2020.
DU J Y. Study on plant space design of Harbin City park[D].Harbin: Northeast Agricultural University, 2020.
[15]
陆鼎煌. 气象学与林业气象学[M]. 北京: 中国林业出版社,1994.
LU D H. Meteorology and forestry meteorology[M]. Beijing: China Forestry Publishing House,1994.
[16]
Ergonomics of the thermal environment—assessment of heat stress using the WBGT (wet bulb globe temperature) index:ISO 7243[S/OL].[2023-10-06].
[17]
侯玲玲, 杨弘, 龚予春, 等. 成都河流廊道微气候舒适度评价分析[J]. 四川建筑, 2018, 38(6):24-26,29.
HOU L L, YANG H, GONG Y C, et al. Evaluation and analysis of microclimate comfort of Chengdu river corridor[J]. Sichuan Archit, 2018, 38(6):24-26,29.DOI: 10.3969/j.issn.1007-8983.2018.06.009.
[18]
周聪惠. “非正规城市绿地” 概念辨析及规划策略研究[J]. 中国园林, 2022, 38(5):50-55.
ZHOU C H. Concept identification and planning strategies of informal urban green space[J]. Chin Landsc Archit, 2022, 38(5):50-55.DOI: 10.19775/j.cla.2022.05.0050.
[19]
李英汉, 王俊坚, 李贵才, 等. 居住区植物绿量与其气温调控效应的关系[J]. 生态学报, 2011, 31(3):830-838.
LI Y H, WANG J J, LI G C, et al. Research of the vegetation’s cooling effect in city’s residential quarter[J]. Acta Ecol Sin, 2011, 31(3):830-838. DOI:10.1002/etc.434.
[20]
张丽红, 李树华. 城市水体对周边绿地水平方向温湿度影响的研究[C]// 北京园林学会,北京市园林绿化局,北京市公园管理中心. 北京市“建设节约型园林绿化”论文集,2007: 399-408.
[21]
吴翼. 树木遮阴与街道绿化[J]. 园艺学报, 1963(3):295-308,335-336.
WU Y. Tree-shading and avenue-tree planting[J]. Acta Hortic Sin, 1963(3):295-308,335-336.
[22]
陆鼎煌, 吴章文, 张巧琴, 等. 张家界国家森林公园效益的研究[J]. 中南林学院学报, 1985, 5(2):160-170.
LU D H, WU Z W, ZHANG Q Q, et al. Benefits of Zhangjiajie National Forest Park[J]. J Cent South For Univ, 1985, 5(2):160-170. DOI:10.14067/j.cnki.1673-923x.1985.02.004.
[23]
刘燕珍, 陈琳, 许志敏, 等. 福州高架桥下植物景观空间微气候舒适度评价[J]. 中国城市林业, 2020, 18(2):46-50,100.
LIU Y Z, CHEN L, XU Z M, et al. Microclimate comfort evaluation of plant landscape space under Fuzhou viaduct[J]. J Chin Urban For, 2020, 18(2):46-50,100.DOI: 10.12169/zgcsly.2019.09.05.0002.
[24]
YAGLOU C P, MINARD D. Control of heat casualties at military training centers[J]. AMA Arch Ind Health, 1957, 16(4):302-316. DOI:http://dx.doi.org/.
[25]
闫业超, 岳书平, 刘学华, 等. 国内外气候舒适度评价研究进展[J]. 地球科学进展, 2013, 28(10):1119-1125.
YAN Y C, YUE S P, LIU X H, et al. Advances in assessment of bioclimatic comfort conditions at home and abroad[J]. Adv Earth Sci, 2013, 28(10):1119-1125. DOI:10.11867/j.issn.1001-8166.2013.10.1119.
[26]
陈睿智, 董靓. 基于游憩行为的湿热地区景区夏季微气候舒适度阈值研究—以成都杜甫草堂为例[J]. 风景园林, 2015, 22(6):55-59.
CHEN R Z, DONG L. Study of summer microclimate comfort threshold based on recreational behavior in hot-humid scenic spots:a case study of Du Fu Thatched Cottage in Chengdu City[J]. Landsc Archit, 2015, 22(6):55-59.DOI: 10.14085/j.fjyl.2015.06.0055.05.
[27]
王庆, 孙浩东, 谢晓欢. 基于微气候舒适度的公园休憩空间景观优化[J]. 中国城市林业, 2022, 20(5):10-15.
WANG Q, SUN H D, XIE X H. Landscape optimization for park leisure space based on microclimate comfort[J]. J Chin Urban For, 2022, 20(5):10-15.DOI: 10.12169/zgcsly.2022.01.21.0003.
[28]
骆昱宇, 秦雪迪, 谢宇鹏, 等. 智能数据可视分析技术综述[J]. 软件学报, 2023:1-49.
LUO Y Y, QIN X D, XIE Y P, et al. Intelligent data visualization analysis techniques: a survey[J]. Journal of Software, 2023:1-49. DOI:10.13328/j.cnki.jos.006911.
[29]
吕微露, 李游. 基于空间形态解析的丰惠古镇复兴策略研究[J]. 室内设计与装修, 2022(7):120-121.
LYU W L, LI Y. Research on the revitalization strategy of Fenghui ancient town based on spatial form analysis[J]. Znterion Design + Construction, 2022(7):120-121. DOI: 10.3969/j.issn.1005-7374.2002.07.025.
[30]
李有梅, 梁珣. 典型相关分析综述[J]. 中国计量大学学报, 2017, 28(1):113-118.
LI Y M, LIANG X. Survey on canonical correlation analysis[J]. J China Univ Metrol, 2017, 28(1):113-118.DOI: 10.3969/j.issn.2096-2835.2017.01.020.

基金

国家自然科学基金面上项目(32071832)
江苏高校优势学科建设工程资助项目(PAPD)
2023江苏省研究生科研创新计划(KYCX23_1206)

编辑: 郑琰燚
PDF(2965 KB)

Accesses

Citation

Detail

段落导航
相关文章

/