南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (2): 143-152.doi: 10.12302/j.issn.1000-2006.202310013
陆其伟1(), 脱云飞1,*(
), 郑阳2, 骆伟2, 代勤龙2, 何霞红1
收稿日期:
2023-10-11
接受日期:
2024-04-12
出版日期:
2025-03-30
发布日期:
2025-03-28
通讯作者:
*脱云飞(tyunfei@163.com)。作者简介:
陆其伟(xnlyluqiwei@163.com)。
基金资助:
LU Qiwei1(), TUO Yunfei1,*(
), ZHENG Yang2, LUO Wei2, DAI Qinlong2, HE Xiahong1
Received:
2023-10-11
Accepted:
2024-04-12
Online:
2025-03-30
Published:
2025-03-28
摘要:
【目的】探究四川栗子坪国家级自然保护区土壤入渗对不同海拔梯度土壤类型响应特征。【方法】以自然保护区4个海拔梯度(1 900、2 100、2 300和2 500 m)土壤为采样对象,通过环刀法测定不同海拔梯度土壤入渗特征,采用通径及相关性分析法明确影响土壤入渗特征的关键因子,并用Kostiakov、Philip、Horton等入渗模型进行拟合,分析其适宜性。【结果】土壤入渗速率与海拔呈极显著负相关关系(P<0.01),而土壤微生物生物量与入渗速率呈显著正相关关系(P<0.05),促进了土壤水分入渗;在入渗前20 min,海拔1 900、2 100 m土壤入渗率降低了50%左右,海拔2 300、2 500 m降低了72%~85%,海拔2 300、2 500 m入渗衰弱速率明显快于海拔1 900、2 100 m,这主要是受到土壤有机质含量、团聚体粒级结构及微生物生物量影响;模型拟合发现,Kostiakov模型R2为0.896~0.959,Philip模型R2为0.874~0.965,Horton模型R2为0.945~0.984,综合考虑土壤入渗模型决定系数R2大小以及拟合值与实测值精确度的一致性,Kostiakov模型更适合对研究区域土壤入渗进行拟合。【结论】海拔梯度对土壤入渗特征影响显著,主要是受到土壤有机质含量、团聚体粒级结构及微生物生物量等因素影响。
中图分类号:
陆其伟,脱云飞,郑阳,等. 栗子坪自然保护区不同海拔梯度土壤入渗特性研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 143-152.
LU Qiwei, TUO Yunfei, ZHENG Yang, LUO Wei, DAI Qinlong, HE Xiahong. Research on characteristics of soil infiltration at different altitude gradients in Liziping Nature Reserve[J].Journal of Nanjing Forestry University (Natural Science Edition), 2025, 49(2): 143-152.DOI: 10.12302/j.issn.1000-2006.202310013.
表1
各海拔梯度样地基本信息"
海拔/m altitude | 林分类型 forest type | 优势群落 dominant community | 土壤类型 soil type | 经度(E) longitude | 纬度(N) latitude | 郁闭度/% canopy |
---|---|---|---|---|---|---|
1 900 | 青冈-川杨阔叶混交林 Quercus glauca- Populus szechuanica broad-leaved mixed forest | 青冈、川杨、 木姜子(Litsea pungens) | 山地黄棕壤 | 102°21'36″ | 28°52'58″ | 50~60 |
2 100 | 栓皮栎落叶阔叶林 Quercus variabilis deciduous broad-leaved forest | 栓皮栎、 槐(Styphnolobium japonicum) | 山地棕壤 | 102°16'38″ | 29°02'56″ | 50~60 |
2 300 | 冷杉-云杉针叶混交林 Abies fabri-Picea asperata coniferous mixed forest | 云杉、冷杉、 白桦(Betula platyphylla ) | 山地棕壤 | 102°23'34″ | 29°00'07″ | 50~60 |
2 500 | 石棉玉山竹林 Yushania lineolata forest | 石棉玉山竹 (Y. lineolata) | 山地暗棕壤 | 102°24'15″ | 28°59'40″ | 60~70 |
表2
各海拔梯度样地土壤性质信息"
海拔/m altitude | 容重/ (g·cm-3) bulk density | 总孔隙度/% total porosity | 含水率/% water content | 毛管持水量/% capillary water holding capacity | 毛管孔隙度/% capillary porosity | 非毛管孔隙度/% non-capillary porosity | 有机质质量分数/ (g·kg-1) organic matter fraction |
---|---|---|---|---|---|---|---|
1 900 | 1.00±0.01 b | 62.14±0.01 b | 29.07±0.06 a | 37.43±0.02 a | 37.54±0.02 a | 24.60±0.02 c | 49.54±6.67 a |
2 100 | 1.10±0.06 a | 58.54±0.06 a | 34.25±0.08 a | 41.99±0.08 a | 45.72±0.07 a | 12.82±0.05 d | 31.11±6.45 bc |
2 300 | 1.00±0.03 b | 62.15±0.03 b | 13.10±0.02 b | 15.77±0.02 b | 15.59±0.01 b | 46.56±0.01 a | 37.45±2.37 b |
2 500 | 1.17±0.04 a | 55.93±0.04 a | 12.29±0.04 b | 16.74±0.04 b | 19.46±0.05 b | 36.47±0.07 b | 25.10±7.26 c |
表3
各海拔梯度土壤理化性质"
海拔/m altitude | 机械组成/% mechanical composition | 团聚体粒径分布/% agglomerate distribution | 微生物 生物量碳 质量分数/ (mg·kg-1) MBC mass fraction | 微生物 生物量氮 质量分数/ (mg·kg-1) MBN mass fraction | |||||
---|---|---|---|---|---|---|---|---|---|
砂粒 sand | 粉粒 silt | 黏粒 clay | ≥2.00 mm | [1.00,2.00) mm | [0.25,1.00) mm | <0.25 mm | |||
1 900 | 25.89±7.84 a | 62.16±6.37 a | 10.49±1.94 a | 37.39±6.05 a | 19.64±5.98 a | 25.4±3.54 a | 16.47±3.32 a | 0.94±0.28 a | 0.058±0.018 a |
2 100 | 23.10±13.87 a | 56.39±14.25 a | 17.12±5.84 a | 30.47±10.20 a | 21.74±5.59 a | 32.31±9.12 a | 14.66±4.80 a | 0.44±0.16 b | 0.040±0.013 b |
2 300 | 29.04±7.42 a | 54.54±8.21 a | 12.62±1.68 a | 29.91±3.60 a | 26.57±1.80 a | 30.83±4.70 a | 12.32±1.02 a | 0.32±0.07 b | 0.033±0.010 bc |
2 500 | 32.45±10.36 a | 55.93±2.24 a | 10.99±1.88 a | 27.2±22.18 a | 17.32±10.65 a | 34.99±16.20 a | 20.27±8.59 a | 0.30±0.18 b | 0.023±0.004 c |
表4
各海拔梯度微生物指数及覆盖度"
微生物 microbial | 海拔/m altitude | ACE指数 ACE index | Chao1指数 Chao1 index | Simpson指数 Simpson index | Shannon指数 Shannon index | 覆盖度 coverage |
---|---|---|---|---|---|---|
细菌 bacteria | 1 900 | 1 473.20±417.83 a | 1 470.07±418.19 a | 0.996±0 a | 9.21±0.52 a | 0.999 8±0 a |
2 100 | 1 216.00±307.29 a | 1 212.14±306.28 a | 0.996±0 a | 8.93±0.50 a | 0.999 8±0 a | |
2 300 | 1 317.23±90.60 a | 1 312.54±89.10 a | 0.997±0 a | 9.24±0.15 a | 0.999 7±0 a | |
2 500 | 1 239.97±310.18 a | 1 235.82±309.98 a | 0.996±0 a | 9.09±0.47 a | 0.999 7±0 a | |
真菌 fungi | 1 900 | 815.87±25.56 ab | 811.25±26.53 ab | 0.961±0 a | 6.42±0.07 a | 0.999 7±0 b |
2 100 | 518.39±75.44 b | 516.56±74.74 b | 0.886±0.040 a | 5.46±0.51 a | 0.999 9±0 a | |
2 300 | 599.71±213.69 b | 597.87±215.06 b | 0.966±0.020 a | 6.67±0.80 a | 0.999 9±0 a | |
2 500 | 1 141.87±303.42 a | 1139.62±304.14 a | 0.895±0.090 a | 5.85±1.11 a | 0.999 8±0 ab |
表5
各海拔土壤入渗模型拟合结果"
海拔/m altitude | Kostiakov模型 Kostiakov model | Philip模型 Philip model | Horton模型 Horton model | |||||||
---|---|---|---|---|---|---|---|---|---|---|
a | b | R2 | S | A | R2 | A0 | A | k | R2 | |
1 900 | 7.01 | 0.39 | 0.937 | 10.89 | 1.66 | 0.915 | 7.91 | 1.11 | 0.34 | 0.984 |
2 100 | 6.14 | 0.34 | 0.896 | 8.76 | 1.87 | 0.874 | 6.80 | 2.38 | 0.20 | 0.967 |
2 300 | 5.75 | 0.42 | 0.931 | 9.77 | 0.89 | 0.934 | 7.53 | 2.51 | 0.48 | 0.945 |
2 500 | 1.44 | 0.62 | 0.959 | 2.28 | 0.31 | 0.965 | 2.02 | 0.73 | 0.62 | 0.980 |
表6
环境因子对土壤平均入渗率的通径系数"
因子 factor | DR | R | 间接通径系数 indirect path coefficient | 决策系数 coefficient | 排序 sort | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | IDR | |||||
X1 | -0.654 | 0.164 | 0.096 | 0.058 | 0.100 | -0.016 | 0.224 | 0.034 | 0.109 | -0.003 | -0.113 | 0.330 | 0.819 | -0.644 | 11 | |
X2 | 0.214 | 0.217 | -0.293 | 0.065 | 0.096 | -0.026 | 0.127 | 0.033 | 0.012 | 0.048 | 0.068 | -0.127 | 0.003 | 0.173 | 4 | |
X3 | 0.208 | 0.257 | -0.184 | 0.067 | -0.051 | -0.023 | 0.261 | 0.052 | 0.043 | -0.018 | 0.106 | -0.204 | 0.049 | 0.113 | 5 | |
X4 | 0.290 | 0.280 | -0.226 | 0.071 | -0.036 | -0.041 | -0.005 | -0.018 | 0.035 | 0.023 | -0.151 | 0.338 | -0.010 | 0.188 | 3 | |
X5 | 0.058 | -0.424 | 0.184 | -0.095 | -0.083 | -0.204 | -0.162 | -0.029 | 0.046 | -0.019 | 0.065 | -0.186 | -0.483 | -0.030 | 9 | |
X6 | 0.861 | 0.857 | -0.170 | 0.031 | 0.063 | -0.002 | -0.011 | 0.101 | -0.020 | 0.055 | -0.051 | -0.001 | -0.005 | 0.886 | 1 | |
X7 | 0.130 | 0.634 | -0.169 | 0.054 | 0.083 | -0.040 | -0.013 | 0.672 | -0.040 | 0.054 | -0.006 | -0.091 | 0.504 | 0.006 | 8 | |
X8 | 0.312 | 0.046 | -0.228 | 0.009 | 0.028 | 0.032 | 0.008 | -0.055 | -0.017 | -0.004 | -0.011 | -0.030 | -0.268 | 0.055 | 6 | |
X9 | -0.131 | -0.678 | -0.016 | -0.079 | 0.029 | -0.050 | 0.008 | -0.361 | -0.054 | 0.009 | 0.082 | -0.116 | -0.548 | 0.026 | 7 | |
X10 | -0.310 | 0.336 | -0.220 | -0.047 | -0.071 | 0.141 | -0.012 | 0.140 | 0.003 | 0.011 | 0.035 | 0.686 | 0.666 | -0.329 | 10 | |
X11 | 0.742 | 0.179 | -0.291 | -0.037 | -0.057 | 0.132 | -0.015 | -0.002 | -0.016 | -0.012 | 0.021 | -0.287 | -0.564 | 0.551 | 2 |
[1] | SCHWARTZ R C, SCHLEGEL A J, BELL J M, et al. Contrasting tillage effects on stored soil water,infiltration and evapotranspiration fluxes in a dryland rotation at two locations[J]. Soil Tillage Res, 2019, 190:157-174.DOI: 10.1016/j.still.2019.02.013. |
[2] | 刘目兴, 杜文正, 张海林. 三峡库区不同林型土壤的入渗能力研究[J]. 长江流域资源与环境, 2013, 22(3):299-306. |
LIU M X, DU W Z, ZHANG H L. Research on the soil infiltration capacity of different forest types in the Three Gorges reservoir area[J]. Resour Environ Yangtze Basin, 2013, 22(3):299-306. | |
[3] | 陈娟, 陈林, 宋乃平, 等. 荒漠草原不同土壤类型水分入渗特征[J]. 水土保持学报, 2018, 32(4):18-23. |
CHEN J, CHEN L, SONG N P, et al. Soil infiltration characteristics of different soils types in desert steppe[J]. J Soil Water Conserv, 2018, 32(4):18-23.DOI: 10.13870/j.cnki.stbcxb.2018.04.004. | |
[4] | 周维, 张建辉. 金沙江支流冲沟侵蚀区四种土地利用方式下土壤入渗特性研究[J]. 土壤, 2006, 38(3):333-337. |
ZHOU W, ZHANG J H. Soil infiltration under different patterns of land use in gully erosion area of the Jinshajiang River basin[J]. Soils, 2006, 38(3):333-337.DOI: 10.3321/j.issn:0253-9829.2006.03.017. | |
[5] | 刘茜茹, 冯天骄, 王平, 等. 晋西黄土区长期植被恢复对土壤表层入渗与水分储量差异的影响[J]. 水土保持通报, 2023, 43(2):50-59. |
LIU X R, FENG T J, WANG P, et al. Effect of long-term vegetation restoration on surface soil water infiltration and water storage in loess area of western province[J]. Bull Soil Water Conserv, 2023, 43(2):50-59.DOI: 10.13961/j.cnki.stbctb.2023.02.007. | |
[6] | 赵洋毅, 王玉杰, 王云琦, 等. 渝北水源区水源涵养林构建模式对土壤渗透性的影响[J]. 生态学报, 2010, 30(15):4162-4172. |
ZHAO Y Y, WANG Y J, WANG Y Q, et al. Effects of structures of plantation forests on soil infiltration characteristics in source water protect areas in northern Chongqing City[J]. Acta Ecol Sin, 2010, 30(15):4162-4172. | |
[7] | 舒锟, 张家春, 张珍明, 等. 不同海拔梯度下梵净山土壤机械组成及养分特征[J]. 四川农业大学学报, 2017, 35(1):52-59. |
SHU K, ZHANG J C, ZHANG Z M, et al. Soil mechanical composition and nutrient properties along an elevational gradient in Fanjing Mountain[J]. J Sichuan Agric Univ, 2017, 35(1):52-59.DOI: 10.16036/j.issn.1000-2650.2017.01.008. | |
[8] | JERÁBEK J, ZUMR D, DOSTÁL T. Identifying the plough pan position on cultivated soils by measurements of electrical resistivity and penetration resistance[J]. Soil Tillage Res, 2017, 174:231-240.DOI: 10.1016/j.still.2017.07.008. |
[9] | GAO L L, BECKER E, LIANG G P, et al. Effect of different tillage systems on aggregate structure and inner distribution of organic carbon[J]. Geoderma, 2017, 288:97-104.DOI: 10.1016/j.geoderma.2016.11.005. |
[10] | 卢振启, 黄秋娴, 杨新兵. 河北雾灵山不同海拔油松人工林枯落物及土壤水文效应研究[J]. 水土保持学报, 2014, 28(1):112-116. |
LU Z Q, HUANG Q X, YANG X B. Research on hydrological effects of forest litters and soil of Pinus tabuliformis plantations in the different altitudes of Wuling Mountains in Hebei[J]. J Soil Water Conserv, 2014, 28(1):112-116.DOI: 10.13870/j.cnki.stbcxb.2014.01.003. | |
[11] | 胡晓聪, 黄乾亮, 金亮. 西双版纳热带山地雨林枯落物及其土壤水文功能[J]. 应用生态学报, 2017, 28(1):55-63. |
HU X C, HUANG Q L, JIN L. Hydrological functions of the litters and soil of tropical montane rain forest in Xishuangbanna,Yunnan,China[J]. Chin J Appl Ecol, 2017, 28(1):55-63.DOI: 10.13287/j.1001-9332.201701.018. | |
[12] | 亢晨波, 郭汉清, 张垚, 等. 关帝山不同海拔和坡向土壤水分入渗特征[J]. 东北林业大学学报, 2022, 50(6):76-82. |
KANG C B, GUO H Q, ZHANG Y, et al. Infiltration characteristics of soil moisture at different altitudes and slopes of Guandi Mountain[J]. J Northeast For Univ, 2022, 50(6):76-82.DOI: 10.13759/j.cnki.dlxb.2022.06.018. | |
[13] | 刘瑞, 夏卫生, 梁羽石, 等. 湖南省衡山不同海拔高度土壤的入渗特征[J]. 水土保持通报, 2019, 39(4):82-88. |
LIU R, XIA W S, LIANG Y S, et al. Soil infiltration characteristics at different altitudes in Hengshan Mountains of Hu’nan Province[J]. Bull Soil Water Conserv, 2019, 39(4):82-88.DOI: 10.13961/j.cnki.stbctb.2019.04.013. | |
[14] | FU Y, LI G L, ZHENG T H, et al. Splash detachment and transport of loess aggregate fragments by raindrop action[J]. CATENA, 2017, 150:154-160.DOI: 10.1016/j.catena.2016.11.021. |
[15] | 印家旺, 阿拉木萨, 苏宇航, 等. 科尔沁沙地不同土地利用类型土壤入渗特征比较研究[J]. 水土保持通报, 2022, 42(4):90-98. |
YIN J W, Alamusa, SU Y H, et al. Comparative study on soil infiltration characteristics of different land use types in Horqin sandy land[J]. Bull Soil Water Conserv, 2022, 42(4):90-98.DOI: 10.13961/j.cnki.stbctb.2022.04.012. | |
[16] | 云慧雅, 毕华兴, 王珊珊, 等. 不同林分类型土壤理化特征及其对土壤入渗过程的影响[J]. 水土保持学报, 2021, 35(6):183-189. |
YUN H Y, BI H X, WANG S S, et al. Soil physical and chemical characteristics of different forest types and their effects on soil infiltration process[J]. J Soil Water Conserv, 2021, 35(6):183-189.DOI: 10.13870/j.cnki.stbcxb.2021.06.025. | |
[17] | 张利荣, 李惠通, 郑立津, 等. 不同林龄杉木人工林的林下植被与土壤理化特性[J]. 亚热带农业研究, 2021, 17(3):165-172. |
ZHANG L R, LI H T, ZHENG L J, et al. Undergrowth vegetation of Chinese fir plantations of different ages and soil physical and chemical properties[J]. Subtrop Agric Res, 2021, 17(3):165-172.DOI: 10.13321/j.cnki.subtrop.agric.res.2021.03.004. | |
[18] | 李新星, 刘桂民, 吴小丽, 等. 马衔山不同海拔土壤碳、氮、磷含量及生态化学计量特征[J]. 生态学杂志, 2020, 39(3):758-765. |
LI X X, LIU G M, WU X L, et al. Elevational distribution of soil organic carbon,nitrogen and phosphorus contents and their ecological stoichiometry on Maxian Mountain[J]. Chin J Ecol, 2020, 39(3):758-765.DOI: 10.13292/j.1000-4890.202003.004. | |
[19] | 韦慧, 邓羽松, 林立文, 等. 喀斯特生态脆弱区典型小生境土壤团聚体稳定性比较研究[J]. 生态学报, 2022, 42(7):2751-2762. |
WEI H, DENG Y S, LIN L W, et al. Comparative study on the stability of soil aggregates in typical microhabitats in Karst ecologically fragile areas[J]. Acta Ecol Sin, 2022, 42(7):2751-2762.DOI: 10.5846/stxb202103200736. | |
[20] | 刘光崧. 土壤理化分析与剖面描述[M]. 北京: 中国标准出版社,1996. |
LIU G S. Soil physical and chemical analysis & description of soil profiles[M]. Beijing: Standards Press of China,1996. | |
[21] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
BAO S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. | |
[22] | 刘艳娇, 刘庆, 贺合亮, 等. 亚高山粗枝云杉人工林土壤原核微生物群落结构与功能变化[J]. 应用生态学报, 2023, 34(12):3279-3290. |
LIU Y J, LIU Q, HE H L, et al. Changes in the structure and function of soil prokaryotic communities in subalpine Picea asperata plantations[J]. Chin J Appl Ecol, 2023, 34(12):3279-3290.DOI: 10.13287/j.1001-9332.202312.031. | |
[23] | 阿茹·苏里坦, 常顺利, 张毓涛. 天山林区不同群落土壤水分入渗特性的对比分析与模拟[J]. 生态学报, 2019, 39(24):9111-9118. |
Aru Sultan, CHANG S L, ZHANG Y T. Comparative analysis and simulation of soil moisture infiltration characteristics in different communities in the forests of Tianshan Mountains,China[J]. Acta Ecol Sin, 2019, 39(24):9111-9118. DOI:10.5846/stxb201810072160. | |
[24] | 牛文全, 邹小阳, 刘晶晶, 等. 残膜对土壤水分入渗和蒸发的影响及不确定性分析[J]. 农业工程学报, 2016, 32(14):110-119. |
NIU W Q, ZOU X Y, LIU J J, et al. Effects of residual plastic film mixed in soil on water infiltration,evaporation and its uncertainty analysis[J]. Trans Chin Soc Agric Eng, 2016, 32(14):110-119.DOI: 10.11975/j.issn.1002-6819.2016.14.016. | |
[25] | 郑健, 张彦宁, 王燕, 等. 沼液穴灌入渗特征及Philip入渗模型拟合[J]. 干旱地区农业研究, 2019, 37(1):144-150. |
ZHENG J, ZHANG Y N, WANG Y, et al. Infiltration characteristics and Philip model fitting analysis of biogas slurry hole-irrigation[J]. Agric Res Arid Areas, 2019, 37(1):144-150.DOI: 10.7606/j.issn.1000-7601.2019.01.20. | |
[26] | 曾江敏, 何丙辉, 李天阳, 等. 喀斯特槽谷区不同林草恢复模式下土壤入渗特征[J]. 水土保持学报, 2019, 33(4):58-64. |
ZENG J M, HE B H, LI T Y, et al. Soil infiltration characteristics under different forest and grass restoration models in Karst trough-valley region[J]. J Soil Water Conserv, 2019, 33(4):58-64.DOI: 10.13870/j.cnki.stbcxb.2019.04.009. | |
[27] | 陆其伟, 脱云飞, 冯永钰, 等. 栗子坪自然保护区林分类型对土壤化学计量特征、微生物及其季节动态响应[J]. 水土保持学报, 2024, 38(5):285-295. |
LU Q W, TUO Y F, FENG Y Y, et al. Response of forest stand types to soil stoichiometric characteristics, microorganisms and their seasonal dynamics in Liziping Nature Reserve[J]. J Soil Water Conserv, 2024, 38(5):285-295. DOI: 10.13870/j.cnki.stbcxb.2024.05.035. | |
[28] | 李志, 袁颖丹, 胡耀文, 等. 海拔及旅游干扰对武功山山地草甸土壤渗透性的影响[J]. 生态学报, 2018, 38(2):635-645. |
LI Z, YUAN Y D, HU Y W, et al. Effects of elevation and tourism disturbance on meadow soil infiltration on Wugong Mountain[J]. Acta Ecol Sin, 2018, 38(2):635-645. | |
[29] | 石玉龙, 周晨霓, 王建峰, 等. 西藏色季拉山不同海拔梯度急尖长苞冷杉林土壤入渗特征研究[J]. 林业资源管理, 2015(4):98-103. |
SHI Y L, ZHOU C N, WANG J F, et al. Soil infiltration characteristics in Abies georgei var.smithii forest of Sygara Mountains in Tibet based on different elevations[J]. For Resour Manag, 2015(4):98-103.DOI: 10.13466/j.cnki.lyzygl.2015.04.017. | |
[30] | 曹瑞, 吴福忠, 杨万勤, 等. 海拔对高山峡谷区土壤微生物生物量和酶活性的影响[J]. 应用生态学报, 2016, 27(4):1257-1264. |
CAO R, WU F Z, YANG W Q, et al. Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions[J]. Chin J Appl Ecol, 2016, 27(4):1257-1264.DOI: 10.13287/j.1001-9332.201604.018. | |
[31] | 丛静, 刘晓, 卢慧, 等. 神农架自然保护区土壤微生物生物量碳、氮沿海拔梯度的变化及其影响因素[J]. 生态学杂志, 2014, 33(12):3381-3387. |
CONG J, LIU X, LU H, et al. Changes of soil microbial biomass carbon and nitrogen along the altitude gradient and its influence factors in Shennongjia Natural Reserve,China[J]. Chin J Ecol, 2014, 33(12):3381-3387.DOI: 10.13292/j.1000-4890.2014.0303. | |
[32] | 胡璟, 刘兴良, 胡宗达, 等. 川西亚高山典型灌丛土壤微生物量及其碳氮磷化学计量特征[J]. 应用与环境生物学报, 2024, 30(2):220-228. |
HU J, LIU X L, HU Z D, et al. Changes in soil microbial C∶N∶P stoichiometry in different shrub types in subalpine regions of western Sichuan Province,China[J]. Chin J Appl Environ Biol, 2024, 30(2):220-228.DOI: 10.19675/j.cnki.1006-687x.2023.05017. | |
[33] | 胡嵩, 张颖, 史荣久, 等. 长白山原始红松林次生演替过程中土壤微生物生物量和酶活性变化[J]. 应用生态学报, 2013, 24(2):366-372. |
HU S, ZHANG Y, SHI R J, et al. Temporal variations of soil microbial biomass and enzyme activities during the secondary succession of primary broadleaved-Pinus koraiensis forests in Changbai Mountains of northeast China[J]. Chin J Appl Ecol, 2013, 24(2):366-372.DOI: 10.13287/j.1001-9332.2013.0168. | |
[34] | 王彦武, 罗玲, 张峰, 等. 河西绿洲荒漠过渡带梭梭林土壤保育效应[J]. 土壤学报, 2019, 56(3):749-762. |
WANG Y W, LUO L, ZHANG F, et al. Soil conservation effect of Haloxylon ammodendron bushes in Hexi oasis-desert ecotone[J]. Acta Pedol Sin, 2019, 56(3):749-762.DOI: 10.11766/trxb201806260176. | |
[35] | 李秋嘉, 薛志婧, 周正朝. 宁南山区植被恢复对土壤团聚体养分特征及微生物特性的影响[J]. 应用生态学报, 2019, 30(1):137-145. |
LI Q J, XUE Z J, ZHOU Z C. Effects of vegetation restoration on nutrient and microbial properties of soil aggregates with different particle sizes in the Loess Hilly regions of Ningxia,northwest China[J]. Chin J Appl Ecol, 2019, 30(1):137-145.DOI: 10.13287/j.1001-9332.201901.022. | |
[36] | 翟辉, 张海, 张超, 等. 黄土峁状丘陵区不同类型林分土壤微生物功能多样性[J]. 林业科学, 2016, 52(12):84-91. |
ZHAI H, ZHANG H, ZHANG C, et al. Soil microbial functional diversity in different types of stands in the hilly-gully regions of Loess Plateau[J]. Sci Silvae Sin, 2016, 52(12):84-91.DOI: 10.11707/j.1001-7488.20161210. | |
[37] | ISLAM M U, JIANG F H, GUO Z C, et al. Does biochar application improve soil aggregation?A meta-analysis[J]. Soil Tillage Res, 2021,209:104926.DOI: 10.1016/j.still.2020.104926. |
[38] | 冯娜, 刘冬冬, 赵荣存, 等. 岩溶山地植被恢复中碳酸盐岩红土入渗特征及其影响因素[J]. 水土保持学报, 2019, 33(6):162-169,175. |
FENG N, LIU D D, ZHAO R C, et al. Infiltration characteristics and influencing factors of carbonate laterite from Karst Mountain areas during vegetation restoration[J]. J Soil Water Conserv, 2019, 33(6):162-169,175.DOI: 10.13870/j.cnki.stbcxb.2019.06.023. | |
[39] | 郭海云, 王根绪, 孙守琴. 氮添加对亚高山针叶林土壤结构及水分入渗性能的影响[J]. 水土保持学报, 2023, 37(1):238-245. |
GUO H Y, WANG G X, SUN S Q. Effects of nitrogen addition on soil structure and water infiltration of subalpine coniferous forest[J]. J Soil Water Conserv, 2023, 37(1):238-245.DOI: 10.13870/j.cnki.stbcxb.2023.01.031. |
[1] | 李洋, 张赟齐, 温玥, 张绥林, 陈永浩, 齐建勋, 张俊佩, 侯智霞. 早实核桃坚果表型和内在品质的关联分析及模型构建[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 119-127. |
[2] | 张苗, 阮宏华, 沈彩芹, 丁学农, 曹国华. 长期施用沼液对杨树人工林土壤碳氮磷及其计量比的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(6): 102-110. |
[3] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[4] | 李惠芝, 关庆伟, 赵家豪, 李俊杰, 王磊, 李凤凤, 左兴平, 陈斌. 地形对麻栎人工林土壤肥力质量的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 161-168. |
[5] | 夏捷, 陈胜, 吴一凡, 张玮, 谢锦忠. 种植竹荪后毛竹林土壤微生物生物量和微生物熵的动态变化[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 127-134. |
[6] | 刘倩倩, 彭孝楠, 刘鑫, 王舒甜, 戴康龙, 徐海兵, 董丽娜, 张金池. 踩踏干扰下紫金山土壤质量季节变化特征[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 185-193. |
[7] | 赵爽, 王邵军, 杨波, 左倩倩, 曹乾斌, 王平, 张路路, 张昆凤, 樊宇翔. 西双版纳热带森林碳循环中土壤呼吸对次生演替的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 12-18. |
[8] | 王冰, 张鹏杰, 张秋良. 不同林型兴安落叶松林土壤团聚体及其有机碳特征[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 15-24. |
[9] | 王爱斌, 宋慧芳, 张流洋, 张明, 杨诗雯, 张凌云. 生物肥和菌肥对蓝莓苗生长及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 63-70. |
[10] | 郭传阳, 林开敏, 郑鸣鸣, 任正标, 李茂, 郑宏, 游云飞, 陈志云. 间伐对杉木人工林土壤微生物生物量碳氮的短期影响[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 125-131. |
[11] | 许梦璐, 吴炜, 颜铮明, 曹国华, 沈彩芹, 阮宏华. 滨海滩涂不同土地利用类型土壤活性有机碳含量与垂直分布[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 167-175. |
[12] | 王国兵,王瑞,徐瑾,曹国华,阮宏华. 生物炭对杨树人工林土壤微生物生物量碳、氮、磷及其化学计量特征的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(02): 1-6. |
[13] | 赵友朋,孟苗婧,张金池,马洁怡,刘胜龙. 凤阳山主要林分类型土壤团聚体及其稳定性研究[J]. 南京林业大学学报(自然科学版), 2018, 42(05): 84-90. |
[14] | 马思文,张洪江,程金花,李明峰,王平. 三峡库区典型城郊防护林土壤饱和导水率特征研究[J]. 南京林业大学学报(自然科学版), 2018, 42(05): 99-106. |
[15] | 宋蕾,林尤伟,金光泽. 模拟氮沉降对典型阔叶红松林土壤微生物群落特征的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(05): 7-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||