基于多源数据的南京市公园降温效应研究

朱云凤, 王红, 覃书鸿, 杨易, 汪逸聪

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (3) : 285-294.

PDF(4550 KB)
PDF(4550 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (3) : 285-294. DOI: 10.12302/j.issn.1000-2006.202310019
研究论文

基于多源数据的南京市公园降温效应研究

作者信息 +

Research on the cooling effect of parks in Nanjing based on multi-source data

Author information +
文章历史 +

摘要

【目的】 利用拐点法量化公园的降温效应,并确定具有高效降温效应的公园面积和周长阈值范围,基于多源数据综合考虑城市公园的内部和外部特征对其降温效应的影响。【方法】 基于2019年9月13日Landsat-8遥感影像,采用辐射传输法反演地表温度;基于高分二号遥感影像,采用随机森林法进行土地覆被分类;基于百度地图兴趣面(area of interest,AOI)获取83个公园边界。利用拐点法得到公园的降温强度和降温距离,利用相关性分析和SHAP分析,从公园内景观特征、公园内环境特征和公园外环境特征3个方面探讨影响因子与公园降温效应之间的关系。【结果】 ①公园的降温面积阈值为18~19 hm2,周长阈值在1.9~2.0 km。②公园内部的建设用地高占比和较高的斑块密度会削弱公园降温效应,而水体和绿地的占比则可增强公园降温效应;面积加权周长比越小的公园越有助于公园降温效应的发挥。③公园内植被结构参数和生理特征对降温效应有显著影响,植被冠层越高、长势越好,降温距离越远;土壤含水量对降温效应至关重要。④公园外部较高的建筑高度和高道路密度会削弱公园降温效应。【结论】 公园的降温效应受到公园内外景观特征和环境特征的影响。可以通过提高公园景观的完整性、合理配置绿地水体和培育优质植被等措施来改善公园降温效应,从而缓解城市热岛效应。

Abstract

【Objective】 The study aimed to quantify the cooling effect of parks using the inflection point method, and to determine the area and perimeter thresholds of parks with an efficient cooling effect. The internal and external characteristics of urban parks and their influence on the cooling effect was analyzed based on multi-source data. 【Method】 The radiative transfer method was used to retrieve the surface temperature from Landsat-8 remote sensing images on September 13, 2019, and the land cover was classified using the random forest method based on Gaofen-2 remote sensing images. The area of interest (AOI) on the Baidu map was used to determine the boundaries of 83 parks. The inflection point method was used to determine the cooling intensity and cooling distances of parks. The relationship between the cooling effect of parks and three influencing factors, namely, features of the landscape, internal park environment, and external park environment, was determined by correlation analysis and the SHAP analysis. 【Result】 The cooling threshold of parks encompassed an area of 18-19 hm2 with a perimeter of about 1.9-2.0 km. The results of feature indicator analysis revealed that the cooling effect of parks can be reduced by a high proportion of construction land and a high patch density within the parks, but enhanced by a high proportion of waterbodies and green spaces. Parks with a smaller area-weighted perimeter ratio had a higher cooling efficiency. The structural parameters and physiological characteristics of the vegetation had a significant influence on the cooling effect of parks. The cooling distances of parks increased was higher in the proportion of vegetation with better growth and greater canopy height. Soil moisture also played a crucial role in the cooling effect of parks. However, the cooling effect was weakened by the presence of surrounding buildings of greater height and a higher road density outside the parks. 【Conclusion】 The cooling effect of parks is influenced by internal and external landscape features and environmental characteristics. The cooling effect of parks can be enhanced by improving the integrity of the landscape, ensuring the distribution of green spaces and waterbodies, and cultivating high-quality vegetation, to mitigater the urban heat island effect.

关键词

城市公园 / 城市热岛 / 冷岛效应 / 多源数据 / 拐点法 / SHAP分析 / 南京

Key words

city parks / urban heat island / cold island effect / multi-source data / inflection point method / SHAP analysis / Nanjing City

引用本文

导出引用
朱云凤, 王红, 覃书鸿, . 基于多源数据的南京市公园降温效应研究[J]. 南京林业大学学报(自然科学版). 2024, 48(3): 285-294 https://doi.org/10.12302/j.issn.1000-2006.202310019
ZHU Yunfeng, WANG Hong, QIN Shuhong, et al. Research on the cooling effect of parks in Nanjing based on multi-source data[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(3): 285-294 https://doi.org/10.12302/j.issn.1000-2006.202310019
中图分类号: TP79   

参考文献

[1]
STEWART I D, OKE T R. Local climate zones for urban temperature studies[J]. Bull Am Meteor Soc, 2012, 93(12):1879-1900.DOI: 10.1175/bams-d-11-00019.1.
[2]
胡欣雨. 南阳市主城区热岛效应及绿地降温作用研究[D]. 福州: 福建农林大学, 2022.
HU X Y. Study on the heat island effect and the cooling effect of green space in the main urban area of Nanyang City[D]. Fuzhou: Fujian Agriculture and Forestry University, 2022. DOI: 10.27018/d.cnki.gfjnu.2022.000129.
[3]
CUI Y P, XIAO X M, DOUGHTY R B, et al. The relationships between urban-rural temperature difference and vegetation in eight cities of the Great Plains[J]. Front Earth Sci, 2019, 13(2):290-302.DOI: 10.1007/s11707-018-0729-5.
[4]
倪黎, 沈守云, 黄培森. 园林绿化对降低城市热岛效应的作用[J]. 中南林业科技大学学报, 2007, 27(2):36-43.
NI L, SHEN S Y, HUANG P S. Research on city gardening to reduce the urban heat island effect of Changsha City[J]. J Cent South Univ For Technol, 2007, 27(2):36-43.DOI: 10.3969/j.issn.1673-923X.2007.02.007.
[5]
QIU K B, JIA B Q. The roles of landscape both inside the park and the surroundings in park cooling effect[J]. Sustain Cities Soc, 2020, 52:101864.DOI: 10.1016/j.scs.2019.101864.
[6]
YANG G Y, YU Z W, JØRGENSEN G, et al. How can urban blue-green space be planned for climate adaption in high-latitude cities:a seasonal perspective[J]. Sustain Cities Soc, 2020, 53:101932.DOI: 10.1016/j.scs.2019.101932.
[7]
赵海月, 胡淼, 朱建宁, 等. 高密度中心城区蓝绿空间冷岛效应及其影响因素:以北京五环路以内地区为例[J]. 生态学报, 2023, 43(12):4904-4919.
ZHAO H Y, HU M, ZHU J N, et al. Blue-green space cooling effect and its influencing factors in metropolitan area:a case study on the area within the Fifth Ring Road in Beijing[J]. Acta Ecol Sin, 2023, 43(12):4904-4919.DOI: 10.5846/stxb202205251482.
[8]
LI H W, WANG G F, TIAN G H, et al. Mapping and analyzing the park cooling effect on urban heat island in an expanding city:a case study in Zhengzhou City,China[J]. Land, 2020, 9(2):57.DOI: 10.3390/land9020057.
[9]
LIAO W, CAI Z W, FENG Y, et al. A simple and easy method to quantify the cool island intensity of urban greenspace[J]. Urban For Urban Green, 2021, 62:127173.DOI: 10.1016/j.ufug.2021.127173.
[10]
YU Z W, GUO X Y, JØRGENSEN G, et al. How can urban green spaces be planned for climate adaptation in subtropical cities?[J]. Ecol Indic, 2017, 82:152-162.DOI: 10.1016/j.ecolind.2017.07.002.
[11]
XIAO Y, PIAO Y, PAN C, et al. Using buffer analysis to determine urban park cooling intensity:five estimation methods for Nanjing,China[J]. Sci Total Environ, 2023, 868:161463.DOI: 10.1016/j.scitotenv.2023.161463.
[12]
GAO Y, PAN H F, TIAN L. Analysis of the spillover characteristics of cooling effect in an urban park:a case study in Zhengzhou City[J]. Front Earth Sci, 2023, 11:1133901.DOI: 10.3389/feart.2023.1133901.
[13]
TAN X Y, SUN X, HUANG C D, et al. Comparison of cooling effect between green space and water body[J]. Sustain Cities Soc, 2021, 67:102711.DOI: 10.1016/j.scs.2021.102711.
[14]
GAO Z, ZAITCHIK B F, HOU Y, et al. Toward park design optimization to mitigate the urban heat island:assessment of the cooling effect in five U.S. cities[J]. Sustain Cities Soc, 2022, 81:103870.DOI: 10.1016/j.scs.2022.103870.
[15]
GENG X L, YU Z W, ZHANG D, et al. The influence of local background climate on the dominant factors and threshold-size of the cooling effect of urban parks[J]. Sci Total Environ, 2022, 823:153806.DOI: 10.1016/j.scitotenv.2022.153806.
[16]
PENG J, DAN Y Z, QIAO R L, et al. How to quantify the cooling effect of urban parks?Linking maximum and accumulation perspectives[J]. Remote Sens Environ, 2021, 252:112135.DOI: 10.1016/j.rse.2020.112135.
[17]
FAN H Y, YU Z W, YANG G Y, et al. How to cool hot-humid (Asian) cities with urban trees?An optimal landscape size perspective[J]. Agric For Meteor, 2019, 265:338-348.DOI: 10.1016/j.agrformet.2018.11.027.
[18]
孙燕, 濮梅娟, 张备, 等. 南京夏季高温日数异常的分析[J]. 气象科学, 2010, 30(2):279-284.
SUN Y, PU M J, ZHANG B, et al. Analysis of high temperature days anomaly in Nanjing[J]. Sci Meteor Sin, 2010, 30(2):279-284.DOI: 10.3969/j.issn.1009-0827.2010.02.022.
[19]
YU X L, GUO X L, WU Z C. Land surface temperature retrieval from landsat 8 TIRS:comparison between radiative transfer equation-based method,split window algorithm and single channel method[J]. Remote Sens, 2014, 6(10):9829-9852.DOI: 10.3390/rs6109829.
[20]
SOBRINO J A, JIMÉNEZ-MUÑOZ J C, PAOLINI L. Land surface temperature retrieval from LANDSAT TM 5[J]. Remote Sens Environ, 2004, 90(4):434-440.DOI: 10.1016/j.rse.2004.02.003.
[21]
FERNÁNDEZ-DELGADO M, CERNADAS E, BARRO S, et al. Do we need hundreds of classifiers to solve real world classification problems?[J]. J Mach Learn Res, 2014, 15:3133-3181.
[22]
赵芮, 申鑫杰, 田国行, 等. 郑州市公园绿地景观特征对公园冷岛效应的影响[J]. 生态学报, 2020, 40(9):2886-2894.
ZHAO R, SHEN X J, TIAN G X, et al. The influence of landscape characteristics of a park green space on the park cool island effect in Zhengzhou City[J]. Acta Ecol Sin, 2020, 40(9):2886-2894.DOI: 10.5846/stxb201904230827.
[23]
DANNER M, BERGER K, WOCHER M, et al. Efficient RTM-based training of machine learning regression algorithms to quantify biophysical & biochemical traits of agricultural crops[J]. ISPRS J Photogramm Remote Sens, 2021, 173:278-296.DOI: 10.1016/j.isprsjprs.2021.01.017.
[24]
江海英, 柴琳娜, 贾坤, 等. 联合PROSAIL模型和植被水分指数的低矮植被含水量估算[J]. 遥感学报, 2021, 25(4):1025-1036.
JIANG H Y, CHAI L N, JIA K, et al. Estimation of water content for short vegetation based on PROSAIL model and vegetation water indices[J]. Natl Remote Sens Bull, 2021, 25(4):1025-1036.
[25]
LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. December 4-9,2017,Long Beach,California,USA:ACM, 2017:4768-4777.DOI: 10.5555/3295222.3295230.
[26]
SHAPLEY L S. 17.A value for n-person games[M]//Contributions to the Theory of Games (AM-28),Volume II.Princeton. New Jersey, USA: Princeton University Press, 1953:307-318.DOI: 10.1515/9781400881970-018.
[27]
韩煜娜, 左德鹏, 王国庆, 等. 变化环境下青藏高原陆地水储量演变格局及归因[J]. 水资源保护, 2023, 39(2):199-207,214.
HAN Y N, ZUO D P, WANG G Q, et al. Evolution pattern and attribution analysis of terrestrial water storage in Tibetan Plateau under changing environment[J]. Water Resour Prot, 2023, 39(2):199-207,214.DOI: 10.3880/j.issn.1004-6933.2023.02.024.
[28]
王新军, 冯星莹, 陈凯莉, 等. 城市公园的冷岛效应研究:以常州市为例[J]. 中国环境科学, 2021, 41(9):4245-4252.
WANG X J, FENG X Y, CHEN K L, et al. Study on the cooling effect of urban parks base on the case of Changzhou,Jiangsu,China[J]. China Environ Sci, 2021, 41(9):4245-4252.DOI: 10.19674/j.cnki.issn1000-6923.20210603.002.
[29]
YU Z W, YANG G Y, ZUO S D, et al. Critical review on the cooling effect of urban blue-green space:a threshold-size perspective[J]. Urban For Urban Green, 2020, 49:126630.DOI: 10.1016/j.ufug.2020.126630.
[30]
姚春生, 张增祥, 汪潇. 使用温度植被干旱指数法(TVDI)反演新疆土壤湿度[J]. 遥感技术与应用, 2004, 19(6):473-478.
YAO C S, ZHANG Z X, WANG X. Evaluating soil moisture status in Xinjiang using the temperature vegetation dryness index (TVDI)[J]. Remote Sens Technol Appl, 2004, 19(6):473-478.DOI: 10.3969/j.issn.1004-0323.2004.06.008.
[31]
SANDHOLT I, RASMUSSEN K, ANDERSEN J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sens Environ, 2002, 79(2/3):213-224.DOI: 10.1016/s0034-4257(01)00274-7.

基金

国家自然科学基金面上项目(31971579)

编辑: 孟苗婧 郑琰燚
PDF(4550 KB)

Accesses

Citation

Detail

段落导航
相关文章

/