基于易测林木因子的林下太阳直射辐射模拟

杜昕, 董雪, 谷会岩, 李玉博, 陈祥伟

南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 205-213.

PDF(2463 KB)
PDF(2463 KB)
南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 205-213. DOI: 10.12302/j.issn.1000-2006.202310029
研究论文

基于易测林木因子的林下太阳直射辐射模拟

作者信息 +

Simulation of beam radiation of understory solar radiation based on easy measurable tree factors

Author information +
文章历史 +

摘要

【目的】 论证基于易测林木因子模拟林下辐射方法体系中,尺度化加权直射荫蔽度与加权进界邻体直射荫蔽度两种林下直射辐射成分测度指数的模拟准确性,寻求基于简单、易测林木因子较为合理、准确估算林下任意点位直射辐射的模型结构特征。【方法】基于阔叶红松(Pinus koraiensis)林林分调查信息,建立林分体素模型模拟阔叶红松林下直射透射率。将模拟的阔叶红松林下直射透射率作为验证标准,分别以爬山算法对尺度化加权直射荫蔽度与加权进界邻体直射荫蔽度中的各项参数进行寻优;以林下直射透射率与参数寻优后的尺度化加权直射荫蔽度、加权进界邻体直射荫蔽度间的Pearson、Spearman相关系数及线性回归决定系数为指标,评价尺度化加权直射荫蔽度、加权进界邻体直射荫蔽度对林下直射辐射的模拟性能。【结果】尺度化加权直射荫蔽度在最小邻体林木选取尺度(rmin)与最大邻体林木选取尺度(rmax)分别取6.332、13.609 m时,与阔叶红松林下直射透射率间具有较高的线性回归拟合精度,此时其对应的校正系数为10.440,与林下直射透射率间的Pearson、Spearman相关系数及线性回归决定系数分别为-0.581、-0.645及0.338。加权进界邻体直射荫蔽度在最大邻体林木选取临界值(Tmax)与最小邻体林木选取临界值(Tmin)分别为1.965与0.502时,与阔叶红松林下直射透射率间的线性回归拟合精度最高,此时其对应的校正系数为17.465,与林下太阳直射透射率间的Pearson、Spearman相关系数及线性回归决定系数分别为-0.738、-0.695与0.545。【结论】尺度化加权直射荫蔽度与加权进界邻体直射荫蔽度均能较好地反映林下太阳直射辐射,其中以加权进界邻体直射荫蔽度表现效果更优。在构建基于林木因子的林下直射辐射模拟模型时,应以合理地选取潜在影响林下直射辐射的邻体林木作为重点,同时应寻求能合理表达不同时刻林下直射辐射状态的简单方式。

Abstract

【Objective】 This study aims to assess the simulation accuracy of two measures of understory beam radiation: the scaled weighted beam shading degree and the weighted inside-boundary neighbor beam shading degree. These measures are part of a forest understory radiation simulation system based on easy measurable tree factors. The study also seeks to identify model structural characteristics using these simple, measurable tree factors to provide a reasonable and accurate estimate of beam radiation at any understory location. 【Method】A stand pixel model was established using broadleaf Pinus koraiensis (Korean pine) forest stand survey information and it simulated the understory beam transmittance. This transmittance served as a benchmark to evaluate the scaled weighted beam shading degree and the weighted inside-boundary neighbor beam shading degree. Various parameters for these degrees were optimized using a hill-climbing algorithm. The simulation performance of these measures was assessed by comparing the proportions of beam radiation transmitted through gaps, using Pearson and Spearman correlation coefficients and linear regression determination coefficients between understory beam transmittance and the two degrees under the optimized parameters.【Result】The results indicate that the scaled weighted beam shading degree provided the best linear regression fit for understory beam transmittance in the broadleaf Korean pine forest, with a neighbor tree selection minimum scale (rmin) of 6.332 m and a maximum scale (rmax) of 13.609 m. The Pearson and Spearman correlation coefficients, as well as the linear regression determination coefficient between this measure and understory beam transmittance, were -0.581, -0.645 and 0.338, respectively. By contrast, the weighted inside-boundary neighbor beam shading degree showed a linear regression fit for understory beam transmittance, with a neighbor tree selection maximum threshold (Tmax) of 1.965 and a minimum threshold (Tmin) of 0.502. The Pearson and Spearman correlation coefficients, as well as the linear regression determination coefficient for this measure, were -0.738, -0.695, and 0.545, respectively. 【Conclusion】(1) Both the scaled weighted beam shading degree and the weighted inside-boundary neighbor beam shading degree effectively reflect the understory beam radiation, with the latter performing better. (2) When constructing a simulation model of beam radiation in forests based on tree factors, it is crucial to select neighboring trees that influence beam radiation and to seek a straightforward method to accurately represent beam radiation at various times.

关键词

太阳辐射 / 直射透射率 / 尺度化加权直射荫蔽度 / 加权进界邻体直射荫蔽度 / 阔叶红松林

Key words

solar radiation / beam transmittance / scaled weighted beam shading degree / weighted inside-boundary neighbor beam shading degree / broadleaf Korean pine (Pinus koraiensis)

引用本文

导出引用
杜昕, 董雪, 谷会岩, . 基于易测林木因子的林下太阳直射辐射模拟[J]. 南京林业大学学报(自然科学版). 2026, 50(1): 205-213 https://doi.org/10.12302/j.issn.1000-2006.202310029
DU Xin, DONG Xue, GU Huiyan, et al. Simulation of beam radiation of understory solar radiation based on easy measurable tree factors[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2026, 50(1): 205-213 https://doi.org/10.12302/j.issn.1000-2006.202310029
中图分类号: S711   

参考文献

[1]
王德利. 植物生态场导论[M]. 长春: 吉林科学技术出版社, 1994.
WANG D L. Introduction to plant ecological field[M]. Changchun: Jilin Science & Technology Publishing House, 1994.
[2]
徐化成. 中国红松天然林[M]. 北京: 中国林业出版社, 2001.
XU H C. Natural forests of Pinus koraiensis in China[M]. Beijing: China Forestry Publishing House, 2001.
[3]
帖利民. 林下入射辐射对冻土的影响[D]. 湘潭: 湖南科技大学, 2021.
TIE L M. Influence of incident radiation under forest on frozen soil[D]. Xiangtan: Hunan University of Science and Technology, 2021.
[4]
JIN G Z, LIU Y Y, LIU S, et al. Effect of gaps on species diversity in the naturally regenerated mixed broadleaved-Korean pine forest of the xiaoxing’an mountains,China[J]. Journal of Ecology and Environment, 2007, 30(4):325-330. DOI:10.5141/jefb.2007.30.4.325.
[5]
GUO S Y, SONG D K, XU Z J, et al. Response of natural regeneration of Pinus massoniana and Quercus variabilis mixed forest to thinning intensity and environmental factors[J]. Journal of Resources and Ecology, 2023, 14(2):423-432. DOI:10.5814/j.issn.1674-764x.2023.02.020.
[6]
BEAUDET M, HARVEY B D, MESSIER C, et al. Managing understory light conditions in boreal mixedwoods through variation in the intensity and spatial pattern of harvest:a modelling approach[J]. Forest Ecology and Management, 2011, 261(1):84-94. DOI:10.1016/j.foreco.2010.09.033.
[7]
FUJIWARA T, TAKEUCHI W. Simulation of sentinel-2 bottom of atmosphere reflectance using shadow parameters on a deciduous forest in Thailand[J]. ISPRS International Journal of Geo-Information, 2020, 9(10):582. DOI:10.3390/ijgi9100582.
[8]
邹小伟, 孙维君, 杨堤益, 等. 云量对祁连山老虎沟12号冰川表面能量平衡的影响[J]. 冰川冻土, 2021, 43(2):342-356.
ZOU X W, SUN W J, YANG D Y, et al. Effect of cloud on surface energy balance of Laohugou Glacier No.12,Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2021, 43(2):342-356. DOI:10.7522/j.issn.1000-0240.2021.0040.
[9]
FRAZER G W, CANHAM C D, LERTZMAN K P.Gap Light Analyzer (GLA), Version 2.0:imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs,users manual and program documentation[M]. Millbrook: Simon Fraser University, 1999.
[10]
HALE S E, EDWARDS C, MASON W L, et al. Relationships between canopy transmittance and stand parameters in Sitka spruce and Scots pine stands in Britain[J]. Forestry, 2009, 82(5):503-513. DOI:10.1093/forestry/cpp020.
[11]
MACFARLANE D W, GREEN E J, BRUNNER A, et al. Predicting survival and growth rates for individual loblolly pine trees from light capture estimates[J]. Canadian Journal of Forest Research, 2002, 32(11):1970-1983. DOI:10.1139/x02-125.
[12]
李树人, 赵勇, 阎志平. 日本落叶松林冠层光生态场研究[J]. 应用生态学报, 1997, 8(2):123-126.
LI S R, ZHAO Y, YAN Z P. Light-ecological field of Larix leoptolois canopy[J]. Chinese Journal of Applied Ecology, 1997, 8(2):123-126. DOI:10.13287/j.1001-9332.1997.0024??.
[13]
CANHAM C D. An index for understory light levels in and around canopy gaps[J]. Ecology, 1988, 69(5):1634-1638. DOI:10.2307/1941664.
[14]
BEAUDET M, MESSIER C, CANHAM C D. Predictions of understorey light conditions in northern hardwood forests following parameterization,sensitivity analysis,and tests of the SORTIE light model[J]. Forest Ecology and Management, 2002, 165(1/2/3):235-248. DOI:10.1016/S0378-1127(01)00621-1.
[15]
杜昕, 董雪, 谷会岩, 等. 基于易测林木因子的林下太阳辐射模拟(Ⅰ):林下散射辐射模拟[J]. 南京林业大学学报(自然科学版), 2024, 49(6):26-36.
DU X, DONG X, GU H Y, et al. Simulation of understory solar radiation based on easily measurable tree factors(Ⅰ):understory diffuse radiation simulation[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2024, 49(6):26-36.DOI:10.12302/j.issn.1000-2006.202309016.
[16]
FUJIWARA T, TAKEUCHI W. Modeling shadow with voxel-based trees for sentinel-2 reflectance simulation in tropical rainforest[J]. Remote Sensing, 2022, 14(16):4088. DOI:10.3390/rs14164088.
[17]
ROSENBERG M S. Handbook of spatial point-pattern analysis in ecology[J]. International Journal of Geographical Information Science, 2015, 29(9):1718-1719. DOI:10.1080/13658816.2015.1059433.
[18]
李爱贞, 刘厚凤. 气象学与气候学基础[M]. 北京: 气象出版社, 2001.
LI A Z, LIU H F. Fundamentals of meteorology and climatology[M]. Beijing: China Meteorological Press, 2001.
[19]
COMEAU P G, GENDRON F, LETCHFORD T. A comparison of several methods for estimating light under a paper birch mixedwood stand[J]. Canadian Journal of Forest Research, 1998, 28(12):1843-1850. DOI:10.1139/x98-159.
[20]
方斌, 朱清科, 李文华, 等. 林木个体影响林下太阳辐射分布的动态仿真[J]. 西北农林科技大学学报(自然科学版), 2008, 36(6):113-118,125.
FANG B, ZHU Q K, LI W H, et al. Dynamic emulation of the effects from individual tree to lower solar radiation distribution[J]. Journal of Northwest A & F University (Natural Science Edition), 2008, 36(6):113-118,125. DOI:10.13207/j.cnki.jnwafu.2008.06.032.
[21]
LIU Z L, JIN G Z, QI Y J. Estimate of leaf area index in an old-growth mixed broadleaved-Korean pine forest in northeastern China[J]. PLoS One, 2012, 7(3):e32155. DOI:10.1371/journal.pone.0032155.
[22]
STENBERG P, RAUTIAINEN M, MANNINEN T, et al. Reduced simple ratio better than NDVI for estimating LAI in Finnish pine and spruce stands[J]. Silva Fennica, 2004, 38(1):3-14. DOI:10.14214/sf.431
[23]
陈梅, 朱教君, 闫巧玲, 等. 辽东山区次生林不同大小林窗光照特征比较[J]. 应用生态学报, 2008, 19(12):2555-2560.
CHEN M, ZHU J J, YAN Q L, et al. Comparison of light characteristics in different size gaps in eastern Liaoning montane secondary forests[J]. Chinese Journal of Applied Ecology, 2008, 19(12):2555-2560. DOI:10.13287/j.1001-9332.2008.0071.

基金

科技基础资源调查专项项目(2021FY100702)

责任编辑: 孟苗婧
PDF(2463 KB)

Accesses

Citation

Detail

段落导航
相关文章

/