[1] |
JONES M W, ABATZOGLOU J T, VERAVERBEKE S, et al. Global and regional trends and drivers of fire under climate change[J]. Reviews of Geophysics, 2022, 60(3):e2020RG000726.DOI: 10.1029/2020RG000726.
|
[2] |
SALEH A, ZULKIFLEY M A, HARUN H H, et al. Forest fire surveillance systems:a review of deep learning methods[J]. Heliyon, 2024, 10(1):e23127.DOI: 10.1016/j.heliyon.2023.e23127.
|
[3] |
PAYRA S, SHARMA A, VERMA S. Application of remote sensing to study forest fires[M]. Amsterdam:Elsevier, Atmospheric Remote Sensing. 2023:239-260.DOI: 10.1016/b978-0-323-99262-6.00015-8.
|
[4] |
KONG S Y, DENG J H, YANG L, et al. An attention-based dualen-coding network for fire flame detection using optical remote sensing[J]. Engineering Applications of Artificial Intelligence, 2024,127:107238.DOI: 10.1016/j.engappai.2023.107238.
|
[5] |
岳超, 罗彩访, 舒立福, 等. 全球变化背景下野火研究进展[J]. 生态学报, 2020, 40(2):385-401.
|
|
YUE C, LUO C F, SHU L F, et al. A review on wildfire studies in the context of global change[J]. Acta Ecologica Sinica, 2020, 40(2):385-401.DOI: 10.5846/stxb201812202762.
|
[6] |
KASYAP V L, SUMATHI D, ALLURI K, et al. Early detection of forest fire using mixed learning techniques and UAV[J]. Computational Intelligence and Neuroscience, 2022, 2022(1): 3170244.DOI: 10.1155/2022/3170244.
|
[7] |
何乃磊, 张金生, 林文树. 基于深度学习多目标检测技术的林火图像识别研究[J]. 南京林业大学学报(自然科学版), 2024, 48(3):207-218.
|
|
HE N L, ZHANG J S, LIN W S. Forest fire image recognition based on deep learning multi-target detection technology[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2024, 48(3):207-218.
|
[8] |
ALLISON R S, JOHNSTON J M, CRAIG G, et al. Airborne optical and thermal remote sensing for wildfire detection and monitoring[J]. Sensors, 2016, 16(8):1310.DOI: 10.3390/s16081310.
|
[9] |
KRÜLL W, TOBERA R, WILLMS I, et al. Early forest fire detection and verification using optical smoke,gas and microwave sensors[J]. Procedia Engineering, 2012, 45:584-594.DOI: 10.1016/j.proeng.2012.08.208.
|
[10] |
MOMENI M, SOLEIMANI H, SHAHPARVARI S, et al. Coordinated routing system for fire detection by patrolling trucks with drones[J]. International Journal of Disaster Risk Reduction, 2022,73:102859.DOI: 10.1016/j.ijdrr.2022.102859.
|
[11] |
de la FUENTE R, AGUAYO M M, CONTRERAS-BOLTON C. An optimization-based approach for an integrated forest fire monitoring system with multiple technologies and surveillance drones[J]. European Journal of Operational Research, 2024, 313(2):435-451.DOI: 10.1016/j.ejor.2023.08.008.
|
[12] |
MOHAMMED R K. A real-time forest fire and smoke detection system using deep learning[J]. Int J Nonlinear Anal. 2022(13):2008-6822.
|
[13] |
向俊, 严恩萍, 姜镓伟, 等. 基于全卷积神经网络和低分辨率标签的森林变化检测研究[J]. 南京林业大学学报(自然科学版), 2024, 48(1):187-195.
|
|
XIANG J, YAN E P, JIANG J W, et al. Research on forest change detection based on fully convolutional network and low resolution label[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2024, 48(1):187-195.DOI: 10.12302/j.issn.1000-2006.202204069.
|
[14] |
KAUR J, SINGH W. Tools,techniques,datasets and application areas for object detection in an image:a review[J]. Multimedia Tools and Applications, 2022, 81(27):38297-38351.DOI: 10.1007/s11042-022-13153-y.
|
[15] |
ZHENG X, CHEN F, LOU L M, et al. Real-time detection of full-scale forest fire smoke based on deep convolution neural network[J]. Remote Sensing, 2022, 14(3):536.DOI: 10.3390/rs14030536.
|
[16] |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 17-24,2023, Vancouver,BC,Canada.IEEE,2023:7464-7475.DOI: 10.1109/CVPR52729.2023.00721.
|
[17] |
ZHU L, WANG X J, KE Z H, et al. BiFormer:vision transformer with bi-level routing attention[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 17-24,2023, Vancouver,BC,Canada.IEEE,2023:10323-10333.DOI: 10.1109/CVPR52729.2023.00995.
|
[18] |
CHEN J R, KAO S H, HE H, et al. Run,don’t walk:chasing higher FLOPS for faster neural networks[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 17-24,2023, Vancouver,BC,Canada.IEEE,2023:12021-12031.DOI: 10.1109/CVPR52729.2023.01157.
|
[19] |
HAN K, WANG Y H, TIAN Q, et al. GhostNet:more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 13-19,2020, Seattle,WA,USA.IEEE,2020:1577-1586.DOI: 10.1109/CVPR42600.2020.00165.
|
[20] |
LI H L, LI J, WEI H B, et al. Slim-neck by GSConv:a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv preprint arXiv.2022(2206):02424.
|
[21] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2):336-359.DOI: 10.1007/s11263-019-01228-7.
|