南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1): 46-58.doi: 10.12302/j.issn.1000-2006.202310036
张伟溪1(), 丁密1, 苏晓华1, 李爱平2, 王小江2, 余金金1, 李政宏1, 黄秦军1, 丁昌俊1,*(
)
收稿日期:
2023-10-31
修回日期:
2023-12-15
出版日期:
2025-01-30
发布日期:
2025-01-21
通讯作者:
* 丁昌俊(changjunding@caf.ac.cn),研究员。作者简介:
张伟溪(weixizhang@caf.ac.cn),副研究员。
基金资助:
ZHANG Weixi1(), DING Mi1, SU Xiaohua1, LI Aiping2, WANG Xiaojiang2, YU Jinjin1, LI Zhenghong1, HUANG Qinjun1, DING Changjun1,*(
)
Received:
2023-10-31
Revised:
2023-12-15
Online:
2025-01-30
Published:
2025-01-21
摘要:
【目的】以内蒙古通辽天然小叶杨(Populus simonii)与荷兰北部欧洲黑杨(P. nigra)杂交F1代的30个无性系为试验材料,对其自然半干旱条件下的F1代生长性状及叶片解剖结构性状进行综合评价研究,为选育抗旱适应性强的杨树品种及亲本资源利用提供依据。【方法】对F1代30个无性系的不同林龄(4、5、6 a)生长性状及9个叶片解剖结构性状(6年生)进行差异比较、遗传变异分析和杂种优势研究,采用相关性分析评判各指标的关联程度,采用主成分分析筛选典型叶片解剖结构性状,最后采用隶属函数法对30个杨树无性系6年生典型叶片解剖结构与生长性状进行抗旱性综合评价。【结果】不同无性系间9个叶片解剖结构及生长性状均存在极显著差异;树高和胸径生长性状变异系数变化范围分别为17.28%~19.24%和28.22%~29.87%,不同树龄树高和胸径均明显高于双亲,高亲优势率为29.27%~36.83%,部分杂交无性系的树高和胸径生长性状已经形成明显的超亲优势;各叶片解剖结构性状变异系数范围为5.78%~18.82%,重复力变化范围为0.91~0.97;F1代的下表皮厚度、栅海比和叶片组织紧密度、栅栏组织厚度的正向超中亲优势明显,且角质层厚度、下表皮厚度、叶片组织紧密度出现明显正向超高亲优势,超高亲优势率为1.34%~1.77%。相关性分析结果表明,各指标之间具有较高的相关性,最终筛选出角质层厚度、叶片组织疏松度、叶片组织紧密度、栅海比和海绵组织厚度5个指标为小叶杨×欧洲黑杨杂交子代抗旱性评价的叶片解剖结构指标。通过隶属函数分析,最终筛选出02-06、02-01、02-05、02-24、02-03、02-13等6个最具有生长潜力和抗旱能力的无性系。【结论】小叶杨×欧洲黑杨杂交F1代的生长和叶片解剖结构性状变异丰富,具有较大的选择潜力和杂种优势,初步筛选出6个最具有生长和抗旱潜力的无性系,为干旱地区选育高产高抗杨树新品种及育种亲本选配提供重要依据。
中图分类号:
张伟溪,丁密,苏晓华,等. 小叶杨×欧洲黑杨杂交F1代生长及叶片解剖结构杂种优势分析与抗旱性评价[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 46-58.
ZHANG Weixi, DING Mi, SU Xiaohua, LI Aiping, WANG Xiaojiang, YU Jinjin, LI Zhenghong, HUANG Qinjun, DING Changjun. Heterosis and drought resistance assessment of Populus simonii × P. nigra F1 hybrids based on growth traits and leaf anatomical structures[J].Journal of Nanjing Forestry University (Natural Science Edition), 2025, 49(1): 46-58.DOI: 10.12302/j.issn.1000-2006.202310036.
表1
F1代无性系4~6年生长性状均值和标准差"
无性系 clone | 4年生 the 4th growth year | 5年生 the 5th growth year | 6年生 the 6th growth year | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
H/m | DBH/cm | H/m | DBH/cm | H/m | DBH/cm | |||||||
02-01 | 3.94±0.24 cdefghi | 3.55±0.15 ab | 5.13±0.13 defg | 4.83±0.20 abcdef | 6.78±0.20 cde | 6.53±0.33 bcd | ||||||
02-02 | 2.85±0.14 k | 2.23±0.67 e | 3.83±0.44 h | 2.75±0.62 j | 4.33±0.41 kl | 3.23±0.38 hi | ||||||
02-03 | 4.27±0.27 abcde | 3.87±0.72 a | 5.67±0.55 abcde | 5.58±1.16 abc | 7.17±0.53 abcd | 7.70±1.26 abc | ||||||
02-04 | 3.02±0.29 jk | 1.93±0.43 e | 3.73±0.15 h | 2.49±0.46 j | 4.03±0.16 kl | 2.87±0.42 i | ||||||
02-05 | 4.57±0.24 abcd | 3.95±0.30 a | 6.09±0.14 abc | 5.88±0.41 ab | 7.34±0.05 abc | 8.19±0.50 a | ||||||
02-06 | 4.45±0.29 abcde | 4.05±0.47 a | 5.96±0.05 abcd | 5.66±0.55 abc | 7.86±0.23 ab | 7.71±1.01 abc | ||||||
02-08 | 1.92±0.19 e | 0.88±0.22 f | 2.26±0.14 i | 1.11±0.11 k | 2.36±0.22 m | 1.33±0.21 j | ||||||
02-09 | 3.73±0.24 efghij | 3.37±0.21 abc | 5.23±0.16 def | 4.53±0.42 bcdefg | 6.66±0.35 cdef | 5.84±0.44 def | ||||||
02-10 | 4.12±0.32 abcdefgh | 3.58±0.37 ab | 5.32±0.35 cdef | 4.46±0.49 cdefgh | 6.50±0.41 cdef | 5.47±0.52 defg | ||||||
02-11 | 4.64±0.58 abc | 4.16±1.05 a | 6.20±0.82 ab | 5.73±1.34 abc | 7.87±0.85 ab | 8.02±1.91 ab | ||||||
02-12 | 4.60±0.16 abcd | 3.67±0.22 ab | 5.94±0.11 abcd | 4.80±0.68 abcdef | 7.34±0.14 abc | 6.32±0.87 cd | ||||||
02-13 | 4.22±0.58 abcdef | 3.22±0.93 abcd | 5.55±0.40 bcde | 4.91±1.21 abcde | 7.21±0.58 abcd | 6.78±1.32 abcd | ||||||
02-14 | 3.20±0.66 ijk | 2.37±0.95 de | 4.41±0.75 gh | 3.46±1.23 ghij | 5.39±0.54 hij | 4.62±1.01 fgh | ||||||
02-15 | 4.80±0.39 a | 4.03±0.35 a | 6.38±0.56 a | 5.92±0.72 a | 7.97±0.35 a | 7.73±0.86 abc | ||||||
02-16 | 4.48±0.72 abcde | 3.86±0.67 a | 5.93±0.71 abcd | 5.80±1.29 abc | 7.72±0.59 ab | 7.71±1.12 abc | ||||||
02-18 | 4.15±0.36 abcdefgh | 3.88±0.36 a | 5.58±0.24 abcde | 5.32±0.54 abcd | 7.38±0.21 abc | 7.56±0.79 abc | ||||||
02-19 | 3.43±0.78 hijk | 2.22±0.94 e | 4.64±0.95 fg | 3.22±1.26 hij | 5.52±1.33 ghij | 4.29±1.50 ghi | ||||||
02-20 | 4.70±0.30 ab | 3.34±0.24 abcd | 5.91±0.48 abcd | 4.62±0.55 abcdefg | 7.18±0.58 abcd | 5.90±0.89 def | ||||||
02-21 | 4.17±0.20 abcdefgh | 3.53±0.05 ab | 5.63±0.31 abcde | 4.96±0.29 abcde | 6.59±0.33 cdef | 6.23±0.54 cde | ||||||
02-22 | 4.61±0.39 abcd | 3.68±0.58 a | 5.64±0.37 abcde | 4.96±0.63 abcde | 6.83±0.36 cde | 6.27±0.56 cde | ||||||
02-23 | 4.48±0.27 abcde | 3.60±0.22 ab | 5.82±0.37 abcd | 5.04±0.23 abcde | 7.05±0.24 bcd | 6.24±0.17 cde | ||||||
02-24 | 4.20±0.14 abcdefg | 3.52±0.27 ab | 5.66±0.24 abcde | 4.92±0.42 abcde | 6.72±0.30 cdef | 5.94±0.68 def | ||||||
02-25 | 4.73±0.28 ab | 3.77±0.10 a | 5.86±0.37 abcd | 5.32±0.25 abcd | 7.21±0.33 abcd | 6.75±0.55 abcd | ||||||
02-26 | 4.00±0.36 bcdefgh | 3.25±0.58 abcd | 5.21±0.19 def | 4.55±0.66 bcdefg | 6.35±0.35 defg | 5.64±0.71 defg | ||||||
02-27 | 3.78±0.18 efghi | 3.33±0.20 abcd | 5.14±0.14 defg | 4.92±0.17 abcde | 6.36±0.19 defg | 6.30±0.34 cde | ||||||
02-28 | 3.25±0.33 ijk | 2.37±0.19 cde | 4.62±0.27 fg | 3.57±0.17 fghij | 5.04±0.33 ijk | 3.86±0.52 hi | ||||||
02-29 | 3.47±0.58 ghijk | 2.25±0.79 e | 5.14±0.58 defg | 3.76±0.73 efghij | 5.96±0.62 efgh | 4.72±0.92 efgh | ||||||
02-30 | 3.50±0.16 fghijk | 3.28±0.33 abcd | 4.90±0.08 efg | 4.68±0.34 abcdefg | 5.85±0.26 fghi | 5.74±0.60 defg | ||||||
02-31 | 3.86±0.42 defghi | 2.68±0.60 bcde | 5.19±0.32 defg | 4.15±0.70 defghi | 6.12±0.53 efgh | 5.47±0.93 defg | ||||||
02-32 | 3.45±0.18 hijk | 2.22±0.31 e | 4.58±0.20 fg | 2.98±0.23 ij | 4.98±0.08 jk | 3.67±0.33 hi | ||||||
均值mean | 3.94±0.74 | 3.17±0.90 | 5.22±0.90 | 4.48±1.26 | 6.38±1.25 | 5.78±1.73 |
表2
F1代无性系4~6年生长性状方差分析"
树龄 tree age | 性状 trait | 平方和 sum of square | 自由度 degrees of freedom | 均方 mean square | F | P |
---|---|---|---|---|---|---|
4年生 the 4th growth year | H | 66.11 | 29 | 2.28 | 14.92 | <0.001 |
DBH | 91.32 | 29 | 3.15 | 11.28 | <0.001 | |
5年生 the 5th growth year | H | 105.98 | 29 | 3.65 | 20.33 | <0.001 |
DBH | 187.81 | 29 | 6.48 | 13.30 | <0.001 | |
6年生 the 6th growth year | H | 219.77 | 29 | 7.58 | 34.35 | <0.001 |
DBH | 382.07 | 29 | 13.17 | 19.26 | <0.001 |
表3
F1代无性系4~6年生长性状遗传变异分析"
项目 item | 4年生 the 4th growth year | 5年生 the 5th growth year | 6年生 the 6th growth year | |||
---|---|---|---|---|---|---|
H/m | DBH/cm | H/m | DBH/cm | H/m | DBH/cm | |
平均值average | 3.94±0.74 | 3.17±0.90 | 5.22±0.90 | 4.48±1.26 | 6.38±1.25 | 5.78±1.73 |
变幅range | 1.68~5.36 | 0.60~5.60 | 2.08~7.40 | 1.02~7.64 | 2.11~9.07 | 1.10~10.80 |
变异系数/% CV | 18.72 | 28.27 | 17.28 | 28.22 | 19.64 | 29.87 |
重复力repeatability | 0.93 | 0.91 | 0.95 | 0.92 | 0.97 | 0.95 |
表4
F1代无性系4~6年生长性状杂种优势分析"
树龄 tree age | 性状 trait | 母本 female | 父本 male | 中亲值 MPV | 中亲优势 Hm | 高亲值 BPV | 超亲优势 Hb | 中亲优势率/% RHm | 超亲优势率/% RHb |
---|---|---|---|---|---|---|---|---|---|
4年生 the 4th growth year | H/m | 2.94 | 2.67 | 2.81 | 1.15** | 2.94 | 1.01** | 40.94 | 34.33 |
DBH/cm | 2.33 | 1.08 | 1.71 | 1.49** | 2.33 | 0.86** | 87.07 | 36.83 | |
5年生 the 5th growth year | H/m | 3.98 | 3.88 | 3.93 | 1.31** | 3.98 | 1.26** | 33.30 | 31.71 |
DBH/cm | 3.45 | 1.85 | 2.65 | 1.85** | 3.45 | 1.05** | 69.64 | 30.46 | |
6年生 the 6th growth year | H/m | 4.94 | 3.74 | 4.34 | 2.05** | 4.94 | 1.45** | 47.13 | 29.27 |
DBH/cm | 4.30 | 1.89 | 3.10 | 2.72** | 4.30 | 1.52** | 87.90 | 35.25 |
表5
F1代无性系叶片解剖结构性状均值及多重比较"
无性系 clone | 叶片 厚度/μm leaf thickness | 角质层 厚度/μm cuticle thickness | 上表皮 厚度/μm upper epidermis thickness | 下表皮厚度/ μm lower epidermis thickness | 栅栏组织 厚度/μm thickness of palisade tissue | 海绵组织 厚度/μm thickness of spongy tissue | 栅海比 palisade to spongy ratio | 组织紧 密度/% compaction of leaf tissue | 组织疏松度/% porosity of leaf tissue |
---|---|---|---|---|---|---|---|---|---|
02-01 | 266.45±10.34 efghi | 6.46±1.04 a | 11.90±0.90 a | 12.44±0.97 a | 116.69±5.89 bcd | 117.14±6.86 ij | 1.00±0.04 abc | 43.81±1.78 ab | 43.94±1.24 fghijkl |
02-02 | 271.96±18.98 defg | 3.99±0.69 no | 11.89±0.98 a | 9.42±1.01 cd | 115.21±7.89 bcdef | 125.69±10.57 defgh | 0.92±0.05 efghi | 42.39±1.43 bcdef | 46.19±1.52 bcd |
02-03 | 264.38±7.61 ghi | 5.28±0.98 cde | 12.24±1.00 a | 10.58±1.56 b | 109.54±7.18 ghijk | 116.84±9.42 ij | 0.94±0.07 cdefgh | 41.41±2.09 fghi | 44.15±2.73 fghijk |
02-04 | 260.13±10.63 hij | 4.07±0.39 mno | 10.10±0.88 cdefghi | 9.92±0.99 bc | 99.94±4.59 no | 127.25±8.59 cde | 0.79±0.05 m | 38.44±1.42 m | 48.89±1.92 a |
02-05 | 268.22±13.87 efgh | 6.65±0.67 a | 10.04±0.95 cdefghi | 10.47±1.30 b | 112.29±5.87 defghi | 120.26±9.78 fghi | 0.94±0.06 defgh | 41.89±1.48 defgh | 44.79±1.81 defghi |
02-06 | 269.28±13.04 defgh | 5.70±0.59 bc | 10.55±1.43 cde | 10.40±1.11 b | 118.39±5.61 bc | 117.99±6.54 ij | 1.01±0.06 ab | 44.00±1.82 a | 43.82±1.36 ghijkl |
02-08 | 232.29±5.14 mn | 3.71±0.36 o | 8.54±1.13 lm | 7.77±1.03 ijklm | 92.86±6.01 p | 108.94±6.71 k | 0.86±0.10 jkl | 39.97±2.32 ijkl | 46.92±2.99 bc |
02-09 | 266.33±18.30 efghi | 4.27±0.56 klmn | 10.35±1.40 cdef | 9.34±1.08 cd | 114.73±8.11 bcdefg | 115.92±9.57 ij | 0.99±0.07 abcd | 43.10±1.68 abcd | 43.52±1.83 hijkl |
02-10 | 266.68±4.16 efghi | 4.02±0.54 no | 10.66±1.04 cd | 8.94±1.07 defg | 115.39±2.71 bcdef | 119.64±4.00 fghi | 0.97±0.03 bcde | 43.28±1.08 abcd | 44.86±1.06 defghi |
02-11 | 265.07±6.57 fghi | 4.88±0.73 efghi | 8.82±0.99 klm | 7.57±0.95 jklm | 106.47±7.92 jklm | 119.92±6.03 fghi | 0.89±0.09 hij | 40.14±2.40 ijkl | 45.25±2.30 defg |
02-12 | 256.94±9.80 ij | 4.90±0.70 defghi | 8.38±1.23 m | 7.19±0.84 m | 100.65±8.12 no | 121.65±8.37 efghi | 0.83±0.10 klm | 39.16±2.61 klm | 47.35±2.71 b |
02-13 | 237.26±4.73 m | 4.72±0.75 ghijk | 8.56±1.06 lm | 7.43±0.55 lm | 101.93±3.73 mno | 101.40±3.14 l | 1.01±0.05 ab | 42.97±1.66 abcde | 42.73±0.71 kl |
02-14 | 270.45±5.47 defg | 4.22±0.53 lmn | 9.20±0.96 ijklm | 7.73±1.11 ijklm | 107.44±6.86 ijkl | 132.09±8.04 bc | 0.82±0.08 lm | 39.72±2.25 jklm | 48.84±2.84 a |
02-15 | 264.38±13.63 ghi | 5.88±0.56 b | 9.55±1.25 fghijk | 8.00±1.19 hijklm | 108.68±5.78 hijkl | 117.43±11.02 ij | 0.93±0.07 efgh | 41.13±1.61 fghij | 44.34±2.28 efghijk |
02-16 | 239.38±16.41 lm | 4.77±0.55 fghij | 9.49±0.91 fghijk | 7.34±0.64 m | 93.89±9.96 p | 107.07±10.69 k | 0.88±0.11 hijk | 39.19±2.63 klm | 44.69±2.78 defghij |
02-18 | 278.77±12.80 cd | 5.70±0.83 bc | 10.17±1.55 cdefgh | 8.38±0.79 fghij | 115.32±6.96 bcdef | 125.84±8.85 defg | 0.92±0.07 efghi | 41.37±1.56 fghi | 45.13±2.00 defgh |
02-19 | 287.52±8.01 b | 4.64±0.34 ghijkl | 9.36±1.35 hijkl | 8.37±1.11 fghij | 115.82±7.28 bcde | 134.72±5.26 b | 0.86±0.08 ijkl | 40.27±2.01 ijkl | 46.89±2.30 bc |
02-20 | 266.05±18.62 efghi | 5.29±0.38 cde | 10.33±1.31 cdef | 8.66±1.27 defgh | 110.13±5.73 fghij | 121.61±17.00 efghi | 0.92±0.12 efghi | 41.52±2.72 efghi | 45.52±3.32 cdef |
02-21 | 272.90±16.09 defg | 4.51±0.39 hijklm | 10.79±1.10 bc | 9.20±1.07 cde | 115.68±12.10 bcde | 120.43±6.94 fghi | 0.96±0.10 bcdef | 42.31±2.51 bcdefg | 44.19±2.21 fghijk |
02-22 | 246.67±12.90 kl | 5.07±0.74 defg | 9.85±1.36 defghij | 7.44±0.68 lm | 103.64±7.06 lmno | 108.03±8.22 k | 0.96±0.09 bcde | 42.06±2.64 defgh | 43.78±2.06 ghijkl |
02-23 | 275.14±6.04 de | 4.40±0.50 jklmn | 11.52±1.40 ab | 9.14±1.46 def | 118.52±3.69 bc | 119.56±4.72 ghi | 0.99±0.06 abcd | 43.09±1.37 abcd | 43.46±1.47 ijkl |
02-24 | 265.43±5.50 efghi | 4.96±0.47 defgh | 10.64±0.87 cd | 8.50±1.30 efghi | 115.81±8.09 bcde | 112.50±4.65 jk | 1.03±0.11 a | 43.62±2.79 abc | 42.40±1.98 l |
02-25 | 264.75±13.39 ghi | 5.90±0.68 b | 9.69±1.23 efghijk | 7.53±1.08 klm | 111.18±3.95 efghij | 116.43±8.97 ij | 0.96±0.07 bcdefg | 42.05±1.54 defgh | 43.94±1.79 fghijkl |
02-26 | 284.88±11.78 bc | 4.86±0.45 efghi | 11.53±1.14 ab | 8.31±1.12 ghijk | 116.66±8.64 bcd | 129.59±7.36 bcd | 0.90±0.08 fghij | 40.93±2.13 fghij | 45.50±1.97 cdef |
02-27 | 271.89±12.04 defg | 5.17±0.47 def | 10.30±0.84 cdefg | 8.17±0.79 ghijkl | 110.31±3.07 fghij | 125.03±7.85 defgh | 0.89±0.06 hijk | 40.62±1.43 hijk | 45.97±1.70 bcde |
02-28 | 251.15±10.44 jk | 4.51±0.28 ijklm | 10.68±1.30 cd | 8.46±1.15 efghi | 104.35±7.64 klmn | 108.56±6.25 k | 0.96±0.09 bcde | 41.52±1.83 efghi | 43.26±2.53 ijkl |
02-29 | 266.10±14.94 efghi | 4.11±0.27 mno | 9.48±0.91 fghijk | 7.95±0.89 hijklm | 108.40±6.38 hijkl | 120.47±12.42 fghi | 0.91±0.10 efghij | 40.79±2.21 ghij | 45.20±2.89 defg |
02-30 | 274.08±17.73 defg | 4.51±0.56 ijklm | 9.41±1.12 ghijk | 8.19±0.93 ghijkl | 113.27±6.69 cdefgh | 126.27±11.28 cdef | 0.90±0.06 ghij | 41.36±1.22 fghi | 46.03±1.94 bcd |
02-31 | 266.09±13.20 efghi | 4.68±0.46 ghijk | 9.69±1.00 efghijk | 8.25±0.82 ghijkl | 107.99±5.45 hijkl | 121.12±7.65 efghi | 0.89±0.05 hij | 40.61±1.39 hijk | 45.50±1.28 cdef |
02-32 | 274.81±11.70 def | 4.61±0.54 hijkl | 9.92±0.87 cdefghij | 8.22±1.11 ghijkl | 119.02±5.58 b | 119.08±8.39 hi | 1.00±0.07 ab | 43.32±1.31 abcd | 43.31±1.93 ijkl |
表6
不同无性系叶片解剖结构性状方差分析"
性状 trait | 自由度 df | 均方 MS | F | P |
---|---|---|---|---|
叶片厚度 leaf thickness | 29 | 2 925.602 | 19.447 | <0.001 |
角质层厚度 cuticle thickness | 29 | 9.466 | 26.750 | <0.001 |
上表皮厚度 upper epidermis thickness | 29 | 18.342 | 14.288 | <0.001 |
下表皮厚度 lower epidermis thickness | 29 | 25.260 | 22.610 | <0.001 |
栅栏组织厚度 thickness of palisade tissue | 29 | 896.639 | 19.479 | <0.001 |
海绵组织厚度 thickness of spongy tissue | 29 | 1 027.543 | 13.826 | <0.001 |
栅海比 palisade to spongy ratio | 29 | 666.859 | 11.129 | <0.001 |
叶片组织紧密度 compaction of leaf tissue | 29 | 39.530 | 10.272 | <0.001 |
叶片组织疏松度 porosity of leaf tissue | 29 | 47.405 | 10.376 | <0.001 |
表7
不同无性系叶片解剖结构性状遗传变异分析"
性状 trait | 叶片厚度/μm leaf thickness | 角质层 厚度/μm cuticle thickness | 上表皮 厚度/μm upper epidermis thickness | 下表皮 厚度/μm lower epidermis thickness | 栅栏组织 厚度/μm thickness of palisade tissue | 海绵组织 厚度/μm thickness of spongy tissue | 栅海比 palisade to spongy ratio | 叶片组织 紧密度/% compaction of leaf tissue | 叶片组织 疏松度/% porosity of leaf tissue |
---|---|---|---|---|---|---|---|---|---|
平均值average | 264.85±17.31 | 4.88±0.92 | 10.12±1.48 | 8.64±1.55 | 110.01±9.58 | 119.28±11.21 | 92.78±9.62 | 41.53±2.40 | 45.01±2.62 |
变幅variable amplitude | 217.36~305.74 | 2.95~8.39 | 6.50~14.20 | 5.91~13.66 | 79.14~138.21 | 89.23~150.02 | 65.30~121.37 | 34.18~48.01 | 38.02~54.73 |
变异系数/% CV | 6.54 | 18.82 | 14.66 | 17.99 | 8.71 | 9.40 | 10.37 | 5.78 | 5.82 |
重复力repeatability | 0.95 | 0.96 | 0.93 | 0.96 | 0.95 | 0.93 | 0.91 | 0.90 | 0.90 |
表8
F1代无性系叶片解剖结构杂种优势分析"
项目 item | 叶片 厚度/μm leaf thickness | 角质层 厚度/μm cuticle thickness | 上表皮 厚度/μm upper epidermis thickness | 下表皮 厚度/μm lower epidermis thickness | 栅栏组织 厚度/μm thickness of palisade tissue | 海绵组织 厚度/μm thickness of spongy tissue | 栅海比/% palisade to spongy ratio | 叶片组织 紧密度/% compaction of leaf tissue | 叶片组织 疏松度/% porosity of leaf tissue |
---|---|---|---|---|---|---|---|---|---|
母本female | 309.95±18.90 | 4.80±0.49 | 9.97±1.33 | 8.49±0.64 | 126.43±11.38 | 145.72±7.65 | 87.76±6.31 | 40.76±2.10 | 47.07±1.88 |
父本male | 225.07±11.91 | 3.96±0.43 | 10.64±1.19 | 8.47±1.09 | 92.14±4.18 | 97.12±8.13 | 95.33±7.12 | 40.98±1.62 | 43.10±1.79 |
中亲值MPV | 267.51 | 4.38 | 10.31 | 8.48 | 109.28 | 121.42 | 91.04 | 40.87 | 45.08 |
中亲优势Hm | -3.01 | 0.52** | -0.19 | 0.15 | 0.37 | -2.14** | 1.74 | 0.58* | -0.01 |
高亲值BPV | 309.95 | 4.80 | 10.64 | 8.49 | 126.43 | 145.72 | 95.33 | 40.98 | 47.07 |
超高亲优势Hb | -45.10** | 0.08 | -0.52** | 0.15 | -16.42** | -26.44** | -2.55* | 0.55 | -2.06** |
中亲优势率/% RHm | -1.12 | 11.86 | -1.80 | 1.75 | 0.33 | -1.76 | 1.91 | 1.42 | -0.03 |
超高亲优势率/% RHb | -14.55 | 1.67 | -4.89 | 1.77 | -12.99 | -18.14 | -2.67 | 1.34 | -4.38 |
表9
年均生长量及叶片解剖结构性状间相关性分析"
指标 index | 年均高 生长量 average annual growth of height | 年均胸径 生长量 average annual growth of dbh | 叶片厚度 leaf thickness | 角质层 厚度 cuticle thickness | 上表皮 厚度 upper epidermis thickness | 下表皮 厚度 lower epidermis thickness | 栅栏组织 厚度 thickness of palisade tissue | 海绵组织 厚度 thickness of spongy tissue | 栅海比 palisade to spongy ratio | 叶片组织 紧密度 compaction of leaf tissue | 叶片组织 疏松度 porosity of leaf tissue |
---|---|---|---|---|---|---|---|---|---|---|---|
年均高生长量 average annual growth of height | 1.000 | ||||||||||
年均胸径生长量 average annual growth of DBH | 0.915** | 1.000 | |||||||||
叶片厚度 leaf thickness | 0.155 | 0.056 | 1.000 | ||||||||
角质层厚度 cuticle thickness | 0.587** | 0.713** | 0.157 | 1.000 | |||||||
上表皮厚度 upper epidermis thickness | 0.049 | -0.026 | 0.421* | 0.166 | 1.000 | ||||||
下表皮厚度 lower epidermis thickness | 0.246 | 0.099 | 0.841** | 0.254 | 0.587** | 1.000 | |||||
栅栏组织厚度 palisade tissue thickness | -0.113 | -0.156 | 0.827** | -0.064 | 0.141 | 0.446* | 1.000 | ||||
海绵组织厚度 spongy tissue thickness | 0.073 | 0.077 | 0.288 | 0.368* | 0.713** | 0.458* | 0.137 | 1.000 | |||
栅海比 palisade to spongy ratio | 0.344 | 0.240 | 0.022 | 0.303 | 0.416* | 0.534** | -0.516** | 0.298 | 1.000 | ||
叶片组织紧密度 compaction of leaf tissue | 0.245 | 0.112 | 0.182 | 0.259 | 0.489** | 0.685** | -0.301 | 0.435* | 0.941** | 1.000 | |
叶片组织疏松度 porosity of leaf tissue | -0.425* | -0.368* | 0.116 | -0.334 | -0.313 | -0.342 | 0.653** | -0.138 | -0.942** | -0.776** | 1.000 |
表10
不同无性系叶片解剖结构指标主成分载荷矩阵"
指标 index | 主成分1 PC1 | 主成分2 PC2 |
---|---|---|
叶片组织紧密度 compaction of leaf tissue | 0.935 | -0.087 |
栅海比 palisade/spongy | 0.932 | -0.325 |
叶片组织疏松度 porosity of leaf tissue | -0.831 | 0.504 |
栅栏组织厚度 palisade tissue thickness | 0.694 | 0.547 |
上表皮厚度 upper epidermis thickness | 0.660 | 0.503 |
下表皮厚度 lower epidermis thickness | 0.577 | 0.545 |
角质层厚度 cuticle thickness | 0.445 | 0.075 |
海绵组织厚度 spongy tissue thickness | -0.287 | 0.892 |
表11
30个杨树无性系抗旱性的综合评价结果"
无性系 clone | 隶属函数值 membership function value | 均值 mean | 抗旱能力 排序 sort drought tolerance | ||||||
---|---|---|---|---|---|---|---|---|---|
年均高 生长量 average annual growth of heigh | 年均胸径 生长量 average annual growth of DBH | 角质层 厚度 cuticle thickness | 叶片组织 疏松度 porosity of leaf tissue | 海绵组织厚度 thickness of spongy tissue | 栅海比 palisade to spongy ratio | 叶片组织 紧密度 compaction of leaf tissue | |||
02-06 | 1.060 71 | 0.824 24 | 0.677 37 | 0.780 91 | 0.502 16 | 0.888 40 | 1.000 00 | 0.819 11 | 1 |
02-01 | 0.857 14 | 0.618 18 | 0.935 23 | 0.762 39 | 0.527 51 | 0.854 64 | 0.964 65 | 0.788 53 | 2 |
02-05 | 0.832 14 | 1.000 00 | 1.000 00 | 0.631 65 | 0.433 94 | 0.609 65 | 0.620 06 | 0.732 49 | 3 |
02-24 | 0.635 71 | 0.500 00 | 0.464 77 | 0.787 90 | 0.667 03 | 1.000 00 | 0.931 94 | 0.712 48 | 4 |
02-03 | 0.878 57 | 0.875 76 | 0.535 67 | 0.729 98 | 0.536 64 | 0.624 55 | 0.534 87 | 0.673 72 | 5 |
02-13 | 0.821 43 | 0.518 18 | 0.406 15 | 0.237 50 | 1.000 00 | 0.890 88 | 0.815 29 | 0.669 92 | 6 |
02-16 | 0.975 00 | 0.836 36 | 0.740 11 | 0.700 64 | 0.830 02 | 0.387 32 | 0.135 29 | 0.657 82 | 7 |
02-20 | 0.996 43 | 0.830 30 | 0.676 14 | 0.579 88 | 0.393 38 | 0.538 12 | 0.553 97 | 0.652 60 | 8 |
02-22 | 0.728 57 | 0.490 91 | 0.536 97 | 0.518 90 | 0.801 22 | 0.720 43 | 0.650 75 | 0.635 39 | 9 |
02-10 | 0.889 29 | 0.463 64 | 0.192 12 | 0.828 21 | 0.452 48 | 0.724 07 | 0.869 86 | 0.631 38 | 10 |
02-23 | 0.707 14 | 0.533 33 | 0.273 14 | 0.724 51 | 0.454 94 | 0.838 42 | 0.835 92 | 0.623 91 | 11 |
02-25 | 0.760 71 | 0.515 15 | 0.233 49 | 0.837 25 | 0.549 04 | 0.699 15 | 0.648 87 | 0.606 24 | 12 |
02-18 | 1.000 00 | 0.881 82 | 0.361 30 | 0.646 47 | 0.266 32 | 0.536 55 | 0.526 28 | 0.602 68 | 13 |
02-28 | 0.682 14 | 0.439 39 | 0.393 15 | 0.522 62 | 0.785 31 | 0.720 31 | 0.553 60 | 0.585 22 | 14 |
02-32 | 0.682 14 | 0.460 61 | 0.270 85 | 0.440 94 | 0.469 33 | 0.877 67 | 0.877 44 | 0.582 71 | 15 |
02-27 | 0.728 57 | 0.618 18 | 0.746 92 | 0.762 85 | 0.290 66 | 0.397 40 | 0.391 91 | 0.562 36 | 16 |
02-26 | 0.742 86 | 0.448 48 | 0.427 31 | 1.000 00 | 0.153 84 | 0.469 50 | 0.448 24 | 0.527 18 | 17 |
02-29 | 0.764 29 | 0.615 15 | 0.497 78 | 0.449 25 | 0.427 69 | 0.491 32 | 0.422 26 | 0.523 96 | 18 |
02-12 | 0.996 43 | 0.884 85 | 0.399 80 | 0.559 91 | 0.392 21 | 0.181 84 | 0.130 27 | 0.506 47 | 19 |
02-14 | 0.910 71 | 0.793 94 | 0.343 19 | 0.948 63 | 0.078 77 | 0.119 82 | 0.230 27 | 0.489 33 | 20 |
02-08 | 0.650 00 | 0.560 61 | 0.331 72 | 0.521 83 | 0.773 76 | 0.285 09 | 0.275 77 | 0.485 54 | 21 |
02-21 | 0.589 29 | 0.342 42 | 0.314 95 | 0.307 68 | 0.428 77 | 0.709 70 | 0.696 09 | 0.484 13 | 22 |
02-31 | 0.732 14 | 0.463 64 | 0.135 27 | 0.567 99 | 0.408 24 | 0.431 16 | 0.389 85 | 0.446 90 | 23 |
02-30 | 0.482 14 | 0.166 67 | 0.271 93 | 0.867 27 | 0.253 46 | 0.460 52 | 0.525 16 | 0.432 45 | 24 |
02-11 | 0.692 86 | 0.287 88 | 0.105 85 | 0.621 08 | 0.444 24 | 0.421 15 | 0.306 02 | 0.411 30 | 25 |
02-15 | 0.625 00 | 0.396 97 | 0.173 53 | 0.006 49 | 0.518 84 | 0.582 93 | 0.484 87 | 0.398 38 | 26 |
02-02 | 0.371 43 | 0.018 18 | 0.094 59 | 0.415 98 | 0.270 99 | 0.536 16 | 0.709 68 | 0.345 29 | 27 |
02-09 | 0.000 00 | -0.148 48 | 0.000 00 | 0.303 63 | 0.564 27 | 0.838 08 | 0.838 21 | 0.342 24 | 28 |
02-19 | 0.389 29 | 0.154 55 | 0.307 59 | 0.860 36 | 0.000 00 | 0.303 46 | 0.329 00 | 0.334 89 | 29 |
02-04 | 0.203 57 | 0.000 00 | 0.124 02 | 0.000 00 | 0.224 06 | 0.000 00 | 0.000 00 | 0.078 81 | 30 |
[1] | ZHANG T Q, ZHANG W X, DING C J, et al. A breeding strategy for improving drought and salt tolerance of poplar based on CRISPR/Cas9[J]. Plant Biotechnol J, 2023, 21(11):2160-2162.DOI: 10.1111/pbi.14147. |
[2] | 苏晓华, 丁昌俊, 马常耕. 我国杨树育种的研究进展及对策[J]. 林业科学研究, 2010, 23(1):31-37. |
SU X H, DING C J, MA C G. Research progress and strategies of poplar breeding in China[J]. For Res, 2010, 23(1):31-37. | |
[3] | 丁昌俊, 张伟溪, 高暝, 等. 不同生长势美洲黑杨转录组差异分析[J]. 林业科学, 2016, 52(3):47-58. |
DING C J, ZHANG W X, GAO M, et al. Analysis of transcriptome differences among Populus deltoides with different growth potentials[J]. Sci Silvae Sin, 2016, 52(3):47-58.DOI: 10.11707/j.1001-7488.20160306. | |
[4] | 陈晓杰, 杨保安, 范家霖, 等. 小麦杂种优势利用研究进展[J]. 种子, 2022, 41(1): 66-73. |
CHEN X J, YANG B A, FAN J L, et al. Advancesin utilization of heterosis in wheat[J]. Seed, 2022, 41(1): 66-73. DOI: 10.16590/j.cnki.1001-4705.2022.01.066. | |
[5] | 康向阳. 林木遗传育种研究进展[J]. 南京林业大学学报(自然科学版), 2020, 44(3):1-10. |
KANG X Y. Research progress of forest genetics and tree breeding[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):1-10.DOI: 10.3969/j.issn.1000-2006.202002033. | |
[6] | 陈赢男, 韦素云, 曲冠正, 等. 现代林木育种关键核心技术研究现状与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6):1-9. |
CHEN Y N, WEI S Y, QU G Z, et al. The key and core technologies for accelerating the tree breeding process[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(6):1-9.DOI: 10.12302/j.issn.1000-2006.202206020. | |
[7] | 王瑞文, 黄国伟, 李振芳, 等. 黑杨派杨树不同杂交组合F1代遗传分析及苗期选择[J]. 中国农学通报, 2017, 33(10):48-52. |
WANG R W, HUANG G W, LI Z F, et al. F1 genetic analysis and seedling selection of different cross combinations of black poplar[J]. Chin Agric Sci Bull, 2017, 33(10):48-52. | |
[8] | 杜克兵, 许林, 沈宝仙, 等. 黑杨派杨树杂交子代的遗传分析及苗期选择[J]. 华中农业大学学报, 2009, 28(5):624-630. |
DU K B, XU L, SHEN B X, et al. Genetic analysis and seedling selection of the poplar progenies of aigeiros section[J]. J Huazhong Agric Univ, 2009, 28(5):624-630.DOI: 10.3321/j.issn:1000-2421.2009.05.024. | |
[9] | 高暝, 黄秦军, 丁昌俊, 等. 美洲黑杨及其杂种F1不同生长势无性系叶片δ13C和氮素利用效率[J]. 林业科学, 2013, 49(8):51-57. |
GAO M, HUANG Q J, DING C J, et al. Foliar δ13C and nitrogen use efficient of Populus deltoides and the different growth vigor F1 hybrid clones[J]. Sci Silvae Sin, 2013, 49(8):51-57.DOI: 10.11707/j.1001-7488.20130808. | |
[10] | 高暝, 丁昌俊, 苏晓华, 等. 美洲黑杨及其杂种F1无性系光合特性的研究[J]. 林业科学研究, 2014, 27(6):721-728. |
GAO M, DING C J, SU X H, et al. Comparison of photosynthetic characteristics of Populus deltoides and their F1 hybrid clones[J]. For Res, 2014, 27(6):721-728. | |
[11] | 孙佩, 姬慧娟, 张亚红, 等. 丹红杨×通辽1号杨杂交子代苗期抗旱性初步评价[J]. 植物遗传资源学报, 2019, 20(2):297-308. |
SUN P, JI H J, ZHANG Y H, et al. Preliminary evaluation of drought resistance for Populus deltoides ‘Danhong’ × P.simonii ‘Tongliao1’ hybrid progenies at the seedling stage[J]. J Plant Genet Resour, 2019, 20(2):297-308.DOI: 10.13430/j.cnki.jpgr.20180717001. | |
[12] | 周志春, 金国庆, 秦国峰, 等. 马尾松纸浆材重要经济性状配合力及杂种优势分析[J]. 林业科学, 2004, 40(4):52-57. |
ZHOU Z C, JIN G Q, QIN G F, et al. Analysis on combining ability and heterosis of main economic traits of Pinus massoniana for pulp production[J]. Sci Silvae Sin, 2004, 40(4):52-57.DOI: 10.3321/j.issn:1001-7488.2004.04.009. | |
[13] | 沈乐, 徐建民, 李光友, 等. 尾叶桉与巨桉杂种F1代生长性状遗传分析[J]. 林业科学, 2019, 55(7):68-76. |
SHEN L /Y, XU J M, LI G Y, et al. Genetic parameters for growth traits in Eucalyptus urophylla × E. grandis F1 hybrids[J]. Sci Silvae Sin, 2019, 55(7):68-76.DOI: 10.11707/j.1001-7488.20190707. | |
[14] | 贾庆彬, 刘庚, 赵佳丽, 等. 红松半同胞家系生长性状变异分析与优良家系选择[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 109-116. |
JIA Q B, LIUG, ZHAO J L, et al. Variation analyses of growth traits in half-sib families of Korean pine and superior families selection[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(2): 109-116. DOI:10.12302/j.issn.1000-2006.202107040. | |
[15] | 王云鹏, 张蕊, 周志春, 等. 10年生木荷生长和材性性状家系变异及选择[J]. 南京林业大学学报(自然科学版), 2020, 44(5):85-92. |
WANG Y P, ZHANG R, ZHOU Z C, et al. A variation and selection of growth and wood traits for 10-year-old Schima superba[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(5):85-92.DOI: 10.3969/j.issn.1000-2006.202003086. | |
[16] | 吕义, 刘扬, 方升佐, 等. 南方型杨树无性系间生长性状和木材材性的遗传差异[J]. 南京林业大学学报(自然科学版), 2018, 42(6):20-26. |
LÜ Y, LIU Y, FANG S Z, et al. Genetic variation in growth and wood properties for southern type poplar clones[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(6):20-26.DOI: 10.3969/j.issn.1000-2006.201804024. | |
[17] | 张庆源, 田野, 王淼, 等. 美洲黑杨与青杨杂交F1 代苗期表型性状的分化及其类型划分[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 40-48. |
ZHANG Q Y, TIAN Y, WANG M, et al. Phenotypic traits differentiations and classifications of the F1 hybrid progenies of Populus deltoides × P. cathayana at the seedling stage[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(5): 40-48. DOI:10.12302/j.issn.1000-2006.202104031. | |
[18] | BOSABALIDIS A M, KOFIDIS G. Comparative effects of drought stress on leaf anatomy of two olive cultivars[J]. Plant Sci, 2002, 163(2):375-379.DOI: 10.1016/s0168-9452(02)00135-8. |
[19] | FISCHER U, POLLE A. Populus responses to abiotic stress[M]//Genetics and Genomics of Populus. New York: Springer, 2009:225-246.DOI: 10.1007/978-1-4419-1541-2_11. |
[20] | MUNTOREANU T G, DA SILVA C R, MELO-DE-PINNA G F. Comparative leaf anatomy and morphology of some neotropical Rutaceae:Pilocarpus Vahl and related genera[J]. Plant Syst Evol, 2011, 296(1):87-99.DOI: 10.1007/s00606-011-0478-3. |
[21] | 常英俏, 徐文远, 穆立蔷, 等. 干旱胁迫对3种观赏灌木叶片解剖结构的影响及抗旱性分析[J]. 东北林业大学学报, 2012, 40(3):36-40. |
CHANG Y Q, XU W Y, MU L Q, et al. Effects of drought stress on anatomical structure of leaves of three species of shrubs and their drought resistances[J]. J Northeast For Univ, 2012, 40(3):36-40.DOI: 10.3969/j.issn.1000-5382.2012.03.010. | |
[22] | ENNAJEH M, VADEL A M, COCHARD H, et al. Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar[J]. J Hortic Sci Biotechnol, 2010, 85(4):289-294.DOI: 10.1080/14620316.2010.11512670. |
[23] | BOUGHALLEB F, HAJLAOUI H. Physiological and anatomical changes induced by drought in two olive cultivars (cv. Zalmati and Chemlali)[J]. Acta Physiol Plant, 2011, 33(1):53-65.DOI: 10.1007/s11738-010-0516-8. |
[24] | 于海燕, 胡潇予, 何春霞, 等. 文冠果不同种源叶片结构对水分胁迫的差异性响应[J]. 北京林业大学学报, 2019, 41(1): 57-63. |
YU H Y, HU X Y, HE C X, et al. Differential response of water stress on leaf morphological anatomical structures of varied provenances Xanthocera sorbifolium[J]. J Beijing For Univ, 2019, 41(1) : 57-63.DOI: 10.13332/j.1000-1522.201800312. | |
[25] | 曹林青, 钟秋平, 罗帅, 等. 干旱胁迫下油茶叶片结构特征的变化[J]. 林业科学研究, 2018, 31(3):136-143. |
CAO L Q, ZHONG Q P, LUO S, et al. Variation in leaf structure of Camellia oleifera under drought stress[J]. For Res, 2018, 31(3):136-143.DOI: 10.13275/j.cnki.lykxyj.2018.03.018. | |
[26] | 何凤, 杜红岩, 刘攀峰, 等. 干旱胁迫对杜仲叶片结构特征的影响[J]. 植物研究, 2021, 41(6): 947-956. |
HE F, DU H Y, LIU P F, et al. Effects of drought stress on leaf structure of Eucommia ulmoides[J]. Bulletin of Botanical Research, 2021, 41(6):947-956. DOI: 10.7525/j.issn.1673-5102.2021.06.013. | |
[27] | 郭文文, 卓么草, 周尧治. 西藏高原硬叶柳叶片结构对寒旱环境的适应机制[J]. 西北植物学报, 2019, 39(5):784-790. |
GUO W W, ZHUO M C, ZHOU Y Z. The Salix sclerophylla leaves to adapt to the cold and drought environment on the Tibetan Plateau[J]. Acta Bot Boreali Occidentalia Sin, 2019, 39(5):784-790.DOI: 10.7606/j.issn.1000-4025.2019.05.0784. | |
[28] | 马红英, 吕小旭, 计雅男, 等. 17种锦鸡儿属植物叶片解剖结构及抗旱性分析[J]. 水土保持研究, 2020, 27(1):340-346,352. |
MA H Y, LÜ X X, JI Y N, et al. Leaf anatomical structure and drought resistance of 17 Caragana species[J]. Res Soil Water Conserv, 2020, 27(1):340-346,352. | |
[29] | 范志霞, 陈越悦, 付荷玲. 成都地区10种园林灌木叶片结构与抗旱性关系研究[J]. 植物科学学报, 2019, 37(1):70-78. |
FAN Z X, CHEN Y Y, FU H L. Study on drought resistance and leaf structure in 10 species of garden shrubs in Chengdu[J]. Plant Sci J, 2019, 37(1):70-78.DOI: 10.11913/PSJ.2095-0837.2019.10070. | |
[30] | 王烟霞, 樊军锋, 程玮哲, 等. 基于叶片解剖结构的12个杨树无性系抗旱性分析[J]. 西北农林科技大学学报(自然科学版), 2021, 49(11):147-154. |
WANG Y X, FAN J F, CHENG W Z, et al. Drought resistances analysis of 12 poplar clones based on leaf anatomical structures[J]. J Northwest A & F Univ (Nat Sci Ed), 2021, 49(11):147-154.DOI: 10.13207/j.cnki.jnwafu.2021.11.018. | |
[31] | 曹佳乐. 银白杨×毛白杨新杂种无性系抗寒性与叶片旱生结构研究[D]. 杨凌: 西北农林科技大学, 2016. |
CAO J L. Study on cold resistance and leaf xerophytic structure of new hybrid clones of Populus tomentosa × Populus tomentosa[D]. Yangling: Northwest A & F University, 2016. | |
[32] | 黄绢, 陈存, 张伟溪, 等. 干旱胁迫对转JERF36银中杨苗木叶片解剖结构及光合特性的影响[J]. 林业科学, 2017, 53(5):8-15. |
HUANG J, CHEN C, ZHANG W X, et al. Effects of drought stress on anatomical structure and photosynthetic characteristics of transgenic JERF36 Populus alba × P.berolinensis seedling leaves[J]. Sci Silvae Sin, 2017, 53(5):8-15.DOI: 10.11707/j.1001-7488.20170502. | |
[33] | 丁昌俊, 黄秦军, 张冰玉, 等. 北方型美洲黑杨不同无性系重要性状评价[J]. 林业科学研究, 2016, 29(3):331-339. |
DING C J, HUANG Q J, ZHANG B Y, et al. Evaluation of important traits of different clones of north-typed Populus deltoides[J]. For Res, 2016, 29(3):331-339.DOI: 10.3969/j.issn.1001-1498.2016.03.004. | |
[34] | 刘红茹, 冯永忠, 王得祥, 等. 延安城区10种阔叶园林植物叶片结构及其抗旱性评价[J]. 西北植物学报, 2012, 32(10):2053-2060. |
LIU H R, FENG Y Z, WANG D X, et al. Drought resistance evaluation and leaf structures of ten species of broad-leaved ornamental plants in Yan’an urban area[J]. Acta Bot Boreali Occidentalia Sin, 2012, 32(10):2053-2060.DOI: 10.3969/j.issn.1000-4025.2012.10.019. | |
[35] | 朱栗琼, 李吉跃, 招礼军. 六种阔叶树叶片解剖结构特征及其耐旱性比较[J]. 广西植物, 2007, 27(3):431-434,474. |
ZHU L Q, LI J Y, ZHAO L J. Comparison on leaf anatomical structures and droughts resistance of six broad-leaved plant species[J]. Guihaia, 2007, 27(3):431-434,474.DOI: 10.3969/j.issn.1000-3142.2007.03.010. | |
[36] | LU M, CHEN M M, SONG J Y, et al. Anatomy and transcriptome analysis in leaves revealed how nitrogen (N) availability influence drought acclimation of Populus[J]. Trees, 2019, 33(4):1003-1014.DOI: 10.1007/s00468-019-01834-5. |
[37] | ZHU K, YUAN F H, WANG A Z, et al. Effects of soil rewatering on mesophyll and stomatal conductance and the associated mechanisms involving leaf anatomy and some physiological activities in Manchurian ash and Mongolian oak in the Changbai Mountains[J]. Plant Physiol Biochem, 2019, 144:22-34.DOI: 10.1016/j.plaphy.2019.09.025. |
[1] | 杨孟晴, 黄盛怡, 王斌, 周志春, 徐小牛, 徐卫可, 吴仁超. 赤皮青冈容器苗生长和根系发育对缓释肥添加的动态响应[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 103-111. |
[2] | 林强, 徐进, 李上前, 林云斌, 章允清, 欧阳磊. 福建福鼎柳杉种子园半同胞子代遗传变异分析与早期选择[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 78-86. |
[3] | 曹永慧, 陈庆标, 周本智, 葛晓改, 王小明. 不同截雨干旱时间对毛竹叶片氮含量时空分布的影响[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 155-161. |
[4] | 杨袁木, 李娜, 陈新宇, 徐放, 潘文, 张卫华. 红锥种源与无性系的材性变异研究[J]. 南京林业大学学报(自然科学版), 2024, 48(6): 41-50. |
[5] | 郝兆东, 马筱筱, 王丹丹, 陆叶, 施季森, 陈金慧. 鹅掌楸LcPIN1a基因的克隆及其对植株生长发育的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(6): 51-61. |
[6] | 李潘亭, 杜满义, 王玥, 裴顺祥, 辛学兵. 元宝枫幼苗生长及光合特性对水肥耦合的响应[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 113-122. |
[7] | 王玉虓, 张斌, 马秋月, 付威, 康真, 朱长红, 李淑娴. 元宝枫嫩枝扦插技术及生根过程的生理生化分析[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 123-130. |
[8] | 叶丽敏, 许元科, 周肄智, 陈郑璐, 王懿祥, 葛宏立. 林下中草药种植活动对近成过熟杉木林单株材积生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 48-56. |
[9] | 王佳兴, 闫平玉, 孙佰飞, 刘劲宏, 冯可乐, 张含国. 长白落叶松自由授粉家系生长变异及优良家系早期选择[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 81-89. |
[10] | 刘小芳, 岳喜良, 方升佐, 李晴, 孙昕. 氮磷配施对青钱柳生长及叶生物活性物质含量的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 57-66. |
[11] | 杨皓, 刘超, 庄家尧, 张树同, 张文韬, 毛国豪. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 81-89. |
[12] | 王改萍, 章雷, 曹福亮, 丁延朋, 赵群, 赵慧琴, 王峥. 红蓝光质对银杏苗木生长生理特性及黄酮积累的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 105-112. |
[13] | 韩新宇, 高露双, 秦莉, 庞荣荣, 刘鸣谦, 朱一泓, 田益雨, 张金. 林分密度对兴安落叶松径向生长-气候关系的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 182-190. |
[14] | 尹增芳, 欧香, 陈瑶, 杨爱香, 孙李勇. 望春玉兰生物学基础研究进展与展望[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 256-262. |
[15] | 魏绪英, 张瑶, 马美霞, 姜雪茹, 陈慧婷, 吴靖, 杨玉, 蔡军火. 石蒜年生长周期内NSC及其代谢酶活性变化[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 106-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||