小叶杨×欧洲黑杨杂交F1代生长及叶片解剖结构杂种优势分析与抗旱性评价

张伟溪, 丁密, 苏晓华, 李爱平, 王小江, 余金金, 李政宏, 黄秦军, 丁昌俊

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1) : 46-58.

PDF(35813 KB)
PDF(35813 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1) : 46-58. DOI: 10.12302/j.issn.1000-2006.202310036
研究论文

小叶杨×欧洲黑杨杂交F1代生长及叶片解剖结构杂种优势分析与抗旱性评价

作者信息 +

Heterosis and drought resistance assessment of Populus simonii × P. nigra F1 hybrids based on growth traits and leaf anatomical structures

Author information +
文章历史 +

摘要

【目的】以内蒙古通辽天然小叶杨(Populus simonii)与荷兰北部欧洲黑杨(P. nigra)杂交F1代的30个无性系为试验材料,对其自然半干旱条件下的F1代生长性状及叶片解剖结构性状进行综合评价研究,为选育抗旱适应性强的杨树品种及亲本资源利用提供依据。【方法】对F1代30个无性系的不同林龄(4、5、6 a)生长性状及9个叶片解剖结构性状(6年生)进行差异比较、遗传变异分析和杂种优势研究,采用相关性分析评判各指标的关联程度,采用主成分分析筛选典型叶片解剖结构性状,最后采用隶属函数法对30个杨树无性系6年生典型叶片解剖结构与生长性状进行抗旱性综合评价。【结果】不同无性系间9个叶片解剖结构及生长性状均存在极显著差异;树高和胸径生长性状变异系数变化范围分别为17.28%~19.24%和28.22%~29.87%,不同树龄树高和胸径均明显高于双亲,高亲优势率为29.27%~36.83%,部分杂交无性系的树高和胸径生长性状已经形成明显的超亲优势;各叶片解剖结构性状变异系数范围为5.78%~18.82%,重复力变化范围为0.91~0.97;F1代的下表皮厚度、栅海比和叶片组织紧密度、栅栏组织厚度的正向超中亲优势明显,且角质层厚度、下表皮厚度、叶片组织紧密度出现明显正向超高亲优势,超高亲优势率为1.34%~1.77%。相关性分析结果表明,各指标之间具有较高的相关性,最终筛选出角质层厚度、叶片组织疏松度、叶片组织紧密度、栅海比和海绵组织厚度5个指标为小叶杨×欧洲黑杨杂交子代抗旱性评价的叶片解剖结构指标。通过隶属函数分析,最终筛选出02-06、02-01、02-05、02-24、02-03、02-13等6个最具有生长潜力和抗旱能力的无性系。【结论】小叶杨×欧洲黑杨杂交F1代的生长和叶片解剖结构性状变异丰富,具有较大的选择潜力和杂种优势,初步筛选出6个最具有生长和抗旱潜力的无性系,为干旱地区选育高产高抗杨树新品种及育种亲本选配提供重要依据。

Abstract

【Objective】30 F1 hybrids of Populus simonii (from Tongliao, Inner Mongolia) × P. nigra (from northern Netherland) were used as experimental materials in this study. Aimed to comprehensive evaluate the growth and leaf anatomical structure traits of the F1 hybrids under natural semi-arid conditions, which will provide a basis for selecting poplar varieties with strong drought tolerance adaptability and utilizing parental resources. 【Method】 Differences, genetic variation analysis, and heterosis analysis were conducted on the growth traits of F1 hybrids at four, five, six years and nine leaf anatomical structure traits at six years. Correlation analysis was used to evaluate the correlation of each parameter. The principal component analysis was used to screen typical leaf anatomical structure traits. The membership function method was used to comprehensively evaluate the drought tolerance. 【Result】Growth traits and leaf anatomical structures were significant different among F1 hybrids. The coefficient of variative (CV) of tree height (H) and diameter at breast height (DBH) is 17.28%-19.24% and 28.22%-29.87%, respectively. The H and DBH of F1 hybrids at different ages are significantly higher than those of their parents, with a high-parent heterosis rate (RHb) 29.27%-36.83%. Partial hybrid clones have exhibited high-parent heterosis (Hb) at H and DBH. The CV of leaf anatomical structure traits is 5.78%-18.82%, with repeatability of which is 0.91-0.97. F1 hybrids showed a significant positive mid-parent heterosis in lower epidermis thickness, thickness ratio of palisade to spongy, compaction of leaf tissue, thickness of palisade tissue, and a significant positive Hb in cuticle thickness, lower epidermis thickness and compaction of leaf tissue, with RHb of 1.34%-1.77%. There is a high correlation between various indicators, and compaction of leaf tissue, cuticle thickness, compaction of leaf tissue, palisade/spongy and thickness of spongy tissue were ultimately selected as the main component indicators of leaf anatomical structures for evaluating drought resistance of F1 hybrids. Six clones (02-06, 02-01, 02-05, 02-24, 02-03, 02-13) with potential of growth and drought tolerance were ultimately selected. 【Conclusion】 Growth traits and leaf anatomical structure varied greatly in F1 hybrids of P. simonii× P. nigra, which have great potential of selection and heterosis. Anatomical structure of leaves could be used to evaluate drought resistance of F1 hybrids. Six clones (02-06, 02-01, 02-05, 02-24, 02-03, 02-13) with potential of fast growth and drought toterlance were initially selected. These results can provide candidate clones and important information of selecting breeding parents for breeding new high-yield and high resistance poplar varieties in arid areas.

关键词

小叶杨×欧洲黑杨 / 生长 / 叶片解剖结构 / 遗传变异 / 杂种优势

Key words

Populus simonii × P. nigra / growth / leaf anatomical structures / genetic variation / heterosis

引用本文

导出引用
张伟溪, 丁密, 苏晓华, . 小叶杨×欧洲黑杨杂交F1代生长及叶片解剖结构杂种优势分析与抗旱性评价[J]. 南京林业大学学报(自然科学版). 2025, 49(1): 46-58 https://doi.org/10.12302/j.issn.1000-2006.202310036
ZHANG Weixi, DING Mi, SU Xiaohua, et al. Heterosis and drought resistance assessment of Populus simonii × P. nigra F1 hybrids based on growth traits and leaf anatomical structures[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(1): 46-58 https://doi.org/10.12302/j.issn.1000-2006.202310036
中图分类号: S722.3   

参考文献

[1]
ZHANG T Q, ZHANG W X, DING C J, et al. A breeding strategy for improving drought and salt tolerance of poplar based on CRISPR/Cas9[J]. Plant Biotechnol J, 2023, 21(11):2160-2162.DOI: 10.1111/pbi.14147.
[2]
苏晓华, 丁昌俊, 马常耕. 我国杨树育种的研究进展及对策[J]. 林业科学研究, 2010, 23(1):31-37.
SU X H, DING C J, MA C G. Research progress and strategies of poplar breeding in China[J]. For Res, 2010, 23(1):31-37.
[3]
丁昌俊, 张伟溪, 高暝, 等. 不同生长势美洲黑杨转录组差异分析[J]. 林业科学, 2016, 52(3):47-58.
DING C J, ZHANG W X, GAO M, et al. Analysis of transcriptome differences among Populus deltoides with different growth potentials[J]. Sci Silvae Sin, 2016, 52(3):47-58.DOI: 10.11707/j.1001-7488.20160306.
[4]
陈晓杰, 杨保安, 范家霖, 等. 小麦杂种优势利用研究进展[J]. 种子, 2022, 41(1): 66-73.
CHEN X J, YANG B A, FAN J L, et al. Advancesin utilization of heterosis in wheat[J]. Seed, 2022, 41(1): 66-73. DOI: 10.16590/j.cnki.1001-4705.2022.01.066.
[5]
康向阳. 林木遗传育种研究进展[J]. 南京林业大学学报(自然科学版), 2020, 44(3):1-10.
KANG X Y. Research progress of forest genetics and tree breeding[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):1-10.DOI: 10.3969/j.issn.1000-2006.202002033.
[6]
陈赢男, 韦素云, 曲冠正, 等. 现代林木育种关键核心技术研究现状与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6):1-9.
CHEN Y N, WEI S Y, QU G Z, et al. The key and core technologies for accelerating the tree breeding process[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(6):1-9.DOI: 10.12302/j.issn.1000-2006.202206020.
[7]
王瑞文, 黄国伟, 李振芳, 等. 黑杨派杨树不同杂交组合F1代遗传分析及苗期选择[J]. 中国农学通报, 2017, 33(10):48-52.
WANG R W, HUANG G W, LI Z F, et al. F1 genetic analysis and seedling selection of different cross combinations of black poplar[J]. Chin Agric Sci Bull, 2017, 33(10):48-52.
[8]
杜克兵, 许林, 沈宝仙, 等. 黑杨派杨树杂交子代的遗传分析及苗期选择[J]. 华中农业大学学报, 2009, 28(5):624-630.
DU K B, XU L, SHEN B X, et al. Genetic analysis and seedling selection of the poplar progenies of aigeiros section[J]. J Huazhong Agric Univ, 2009, 28(5):624-630.DOI: 10.3321/j.issn:1000-2421.2009.05.024.
[9]
高暝, 黄秦军, 丁昌俊, 等. 美洲黑杨及其杂种F1不同生长势无性系叶片δ13C和氮素利用效率[J]. 林业科学, 2013, 49(8):51-57.
GAO M, HUANG Q J, DING C J, et al. Foliar δ13C and nitrogen use efficient of Populus deltoides and the different growth vigor F1 hybrid clones[J]. Sci Silvae Sin, 2013, 49(8):51-57.DOI: 10.11707/j.1001-7488.20130808.
[10]
高暝, 丁昌俊, 苏晓华, 等. 美洲黑杨及其杂种F1无性系光合特性的研究[J]. 林业科学研究, 2014, 27(6):721-728.
GAO M, DING C J, SU X H, et al. Comparison of photosynthetic characteristics of Populus deltoides and their F1 hybrid clones[J]. For Res, 2014, 27(6):721-728.
[11]
孙佩, 姬慧娟, 张亚红, 等. 丹红杨×通辽1号杨杂交子代苗期抗旱性初步评价[J]. 植物遗传资源学报, 2019, 20(2):297-308.
SUN P, JI H J, ZHANG Y H, et al. Preliminary evaluation of drought resistance for Populus deltoides ‘Danhong’ × P.simonii ‘Tongliao1’ hybrid progenies at the seedling stage[J]. J Plant Genet Resour, 2019, 20(2):297-308.DOI: 10.13430/j.cnki.jpgr.20180717001.
[12]
周志春, 金国庆, 秦国峰, 等. 马尾松纸浆材重要经济性状配合力及杂种优势分析[J]. 林业科学, 2004, 40(4):52-57.
ZHOU Z C, JIN G Q, QIN G F, et al. Analysis on combining ability and heterosis of main economic traits of Pinus massoniana for pulp production[J]. Sci Silvae Sin, 2004, 40(4):52-57.DOI: 10.3321/j.issn:1001-7488.2004.04.009.
[13]
沈乐, 徐建民, 李光友, 等. 尾叶桉与巨桉杂种F1代生长性状遗传分析[J]. 林业科学, 2019, 55(7):68-76.
SHEN L /Y, XU J M, LI G Y, et al. Genetic parameters for growth traits in Eucalyptus urophylla × E. grandis F1 hybrids[J]. Sci Silvae Sin, 2019, 55(7):68-76.DOI: 10.11707/j.1001-7488.20190707.
[14]
贾庆彬, 刘庚, 赵佳丽, 等. 红松半同胞家系生长性状变异分析与优良家系选择[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 109-116.
JIA Q B, LIUG, ZHAO J L, et al. Variation analyses of growth traits in half-sib families of Korean pine and superior families selection[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(2): 109-116. DOI:10.12302/j.issn.1000-2006.202107040.
[15]
王云鹏, 张蕊, 周志春, 等. 10年生木荷生长和材性性状家系变异及选择[J]. 南京林业大学学报(自然科学版), 2020, 44(5):85-92.
WANG Y P, ZHANG R, ZHOU Z C, et al. A variation and selection of growth and wood traits for 10-year-old Schima superba[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(5):85-92.DOI: 10.3969/j.issn.1000-2006.202003086.
[16]
吕义, 刘扬, 方升佐, 等. 南方型杨树无性系间生长性状和木材材性的遗传差异[J]. 南京林业大学学报(自然科学版), 2018, 42(6):20-26.
Y, LIU Y, FANG S Z, et al. Genetic variation in growth and wood properties for southern type poplar clones[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(6):20-26.DOI: 10.3969/j.issn.1000-2006.201804024.
[17]
张庆源, 田野, 王淼, 等. 美洲黑杨与青杨杂交F1 代苗期表型性状的分化及其类型划分[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 40-48.
ZHANG Q Y, TIAN Y, WANG M, et al. Phenotypic traits differentiations and classifications of the F1 hybrid progenies of Populus deltoides × P. cathayana at the seedling stage[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(5): 40-48. DOI:10.12302/j.issn.1000-2006.202104031.
[18]
BOSABALIDIS A M, KOFIDIS G. Comparative effects of drought stress on leaf anatomy of two olive cultivars[J]. Plant Sci, 2002, 163(2):375-379.DOI: 10.1016/s0168-9452(02)00135-8.
[19]
FISCHER U, POLLE A. Populus responses to abiotic stress[M]//Genetics and Genomics of Populus. New York: Springer, 2009:225-246.DOI: 10.1007/978-1-4419-1541-2_11.
[20]
MUNTOREANU T G, DA SILVA C R, MELO-DE-PINNA G F. Comparative leaf anatomy and morphology of some neotropical Rutaceae:Pilocarpus Vahl and related genera[J]. Plant Syst Evol, 2011, 296(1):87-99.DOI: 10.1007/s00606-011-0478-3.
[21]
常英俏, 徐文远, 穆立蔷, 等. 干旱胁迫对3种观赏灌木叶片解剖结构的影响及抗旱性分析[J]. 东北林业大学学报, 2012, 40(3):36-40.
CHANG Y Q, XU W Y, MU L Q, et al. Effects of drought stress on anatomical structure of leaves of three species of shrubs and their drought resistances[J]. J Northeast For Univ, 2012, 40(3):36-40.DOI: 10.3969/j.issn.1000-5382.2012.03.010.
[22]
ENNAJEH M, VADEL A M, COCHARD H, et al. Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar[J]. J Hortic Sci Biotechnol, 2010, 85(4):289-294.DOI: 10.1080/14620316.2010.11512670.
[23]
BOUGHALLEB F, HAJLAOUI H. Physiological and anatomical changes induced by drought in two olive cultivars (cv. Zalmati and Chemlali)[J]. Acta Physiol Plant, 2011, 33(1):53-65.DOI: 10.1007/s11738-010-0516-8.
[24]
于海燕, 胡潇予, 何春霞, 等. 文冠果不同种源叶片结构对水分胁迫的差异性响应[J]. 北京林业大学学报, 2019, 41(1): 57-63.
YU H Y, HU X Y, HE C X, et al. Differential response of water stress on leaf morphological anatomical structures of varied provenances Xanthocera sorbifolium[J]. J Beijing For Univ, 2019, 41(1) : 57-63.DOI: 10.13332/j.1000-1522.201800312.
[25]
曹林青, 钟秋平, 罗帅, 等. 干旱胁迫下油茶叶片结构特征的变化[J]. 林业科学研究, 2018, 31(3):136-143.
CAO L Q, ZHONG Q P, LUO S, et al. Variation in leaf structure of Camellia oleifera under drought stress[J]. For Res, 2018, 31(3):136-143.DOI: 10.13275/j.cnki.lykxyj.2018.03.018.
[26]
何凤, 杜红岩, 刘攀峰, 等. 干旱胁迫对杜仲叶片结构特征的影响[J]. 植物研究, 2021, 41(6): 947-956.
HE F, DU H Y, LIU P F, et al. Effects of drought stress on leaf structure of Eucommia ulmoides[J]. Bulletin of Botanical Research, 2021, 41(6):947-956. DOI: 10.7525/j.issn.1673-5102.2021.06.013.
[27]
郭文文, 卓么草, 周尧治. 西藏高原硬叶柳叶片结构对寒旱环境的适应机制[J]. 西北植物学报, 2019, 39(5):784-790.
GUO W W, ZHUO M C, ZHOU Y Z. The Salix sclerophylla leaves to adapt to the cold and drought environment on the Tibetan Plateau[J]. Acta Bot Boreali Occidentalia Sin, 2019, 39(5):784-790.DOI: 10.7606/j.issn.1000-4025.2019.05.0784.
[28]
马红英, 吕小旭, 计雅男, 等. 17种锦鸡儿属植物叶片解剖结构及抗旱性分析[J]. 水土保持研究, 2020, 27(1):340-346,352.
MA H Y, X X, JI Y N, et al. Leaf anatomical structure and drought resistance of 17 Caragana species[J]. Res Soil Water Conserv, 2020, 27(1):340-346,352.
[29]
范志霞, 陈越悦, 付荷玲. 成都地区10种园林灌木叶片结构与抗旱性关系研究[J]. 植物科学学报, 2019, 37(1):70-78.
FAN Z X, CHEN Y Y, FU H L. Study on drought resistance and leaf structure in 10 species of garden shrubs in Chengdu[J]. Plant Sci J, 2019, 37(1):70-78.DOI: 10.11913/PSJ.2095-0837.2019.10070.
[30]
王烟霞, 樊军锋, 程玮哲, 等. 基于叶片解剖结构的12个杨树无性系抗旱性分析[J]. 西北农林科技大学学报(自然科学版), 2021, 49(11):147-154.
WANG Y X, FAN J F, CHENG W Z, et al. Drought resistances analysis of 12 poplar clones based on leaf anatomical structures[J]. J Northwest A & F Univ (Nat Sci Ed), 2021, 49(11):147-154.DOI: 10.13207/j.cnki.jnwafu.2021.11.018.
[31]
曹佳乐. 银白杨×毛白杨新杂种无性系抗寒性与叶片旱生结构研究[D]. 杨凌: 西北农林科技大学, 2016.
CAO J L. Study on cold resistance and leaf xerophytic structure of new hybrid clones of Populus tomentosa × Populus tomentosa[D]. Yangling: Northwest A & F University, 2016.
[32]
黄绢, 陈存, 张伟溪, 等. 干旱胁迫对转JERF36银中杨苗木叶片解剖结构及光合特性的影响[J]. 林业科学, 2017, 53(5):8-15.
HUANG J, CHEN C, ZHANG W X, et al. Effects of drought stress on anatomical structure and photosynthetic characteristics of transgenic JERF36 Populus alba × P.berolinensis seedling leaves[J]. Sci Silvae Sin, 2017, 53(5):8-15.DOI: 10.11707/j.1001-7488.20170502.
[33]
丁昌俊, 黄秦军, 张冰玉, 等. 北方型美洲黑杨不同无性系重要性状评价[J]. 林业科学研究, 2016, 29(3):331-339.
DING C J, HUANG Q J, ZHANG B Y, et al. Evaluation of important traits of different clones of north-typed Populus deltoides[J]. For Res, 2016, 29(3):331-339.DOI: 10.3969/j.issn.1001-1498.2016.03.004.
[34]
刘红茹, 冯永忠, 王得祥, 等. 延安城区10种阔叶园林植物叶片结构及其抗旱性评价[J]. 西北植物学报, 2012, 32(10):2053-2060.
LIU H R, FENG Y Z, WANG D X, et al. Drought resistance evaluation and leaf structures of ten species of broad-leaved ornamental plants in Yan’an urban area[J]. Acta Bot Boreali Occidentalia Sin, 2012, 32(10):2053-2060.DOI: 10.3969/j.issn.1000-4025.2012.10.019.
[35]
朱栗琼, 李吉跃, 招礼军. 六种阔叶树叶片解剖结构特征及其耐旱性比较[J]. 广西植物, 2007, 27(3):431-434,474.
ZHU L Q, LI J Y, ZHAO L J. Comparison on leaf anatomical structures and droughts resistance of six broad-leaved plant species[J]. Guihaia, 2007, 27(3):431-434,474.DOI: 10.3969/j.issn.1000-3142.2007.03.010.
[36]
LU M, CHEN M M, SONG J Y, et al. Anatomy and transcriptome analysis in leaves revealed how nitrogen (N) availability influence drought acclimation of Populus[J]. Trees, 2019, 33(4):1003-1014.DOI: 10.1007/s00468-019-01834-5.
[37]
ZHU K, YUAN F H, WANG A Z, et al. Effects of soil rewatering on mesophyll and stomatal conductance and the associated mechanisms involving leaf anatomy and some physiological activities in Manchurian ash and Mongolian oak in the Changbai Mountains[J]. Plant Physiol Biochem, 2019, 144:22-34.DOI: 10.1016/j.plaphy.2019.09.025.

基金

科技创新2030-重大项目(2023ZD0405603)
国家自然科学基金面上项目(31870662)
中国林业科学研究院基本科研业务费专项资金项目(CAFYBB2020SZ002)

编辑: 吴祝华
PDF(35813 KB)

Accesses

Citation

Detail

段落导航
相关文章

/