南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (5): 48-56.doi: 10.12302/j.issn.1000-2006.202312027
叶丽敏1(), 许元科1, 周肄智1, 陈郑璐1, 王懿祥2, 葛宏立2,*()
收稿日期:
2023-12-07
修回日期:
2024-04-16
出版日期:
2024-09-30
发布日期:
2024-10-03
通讯作者:
* 葛宏立(honglige@zafu.edu.cn),教授。作者简介:
叶丽敏(191953314@qq.com),高级工程师。
基金资助:
YE Limin1(), XU Yuanke1, ZHOU Yizhi1, CHEN Zhenglu1, WANG Yixiang2, GE Hongli2,*()
Received:
2023-12-07
Revised:
2024-04-16
Online:
2024-09-30
Published:
2024-10-03
摘要:
【目的】探究近成过熟杉木(Cunninghamia lanceolata)林中草药种植活动(包括相关的割灌除草、整地、施肥、日常抚育和林下作物生长等)对林木单株材积生长产生的综合影响。【方法】在浙西南景宁畲族自治县境内的大漈林场与草鱼塘林场近成过熟杉木人工林中,分别设置有3年林下种植中草药和没有林下种植的各10个样地,每个样地选择1株平均木进行树干解析,基于最近3年的材积连年生长量采用适应性强的线性模型方法,进行林下种植的影响评价。【结果】在同时考虑林木年龄、胸径、树高、密度、地位指数等因子的前提下,林下中草药种植活动对单株材积生长具有显著的促进作用。【结论】林下种植活动可显著促进近成过熟杉木林单株材积生长,有利于大径材培育,但这种促进作用受到林木年龄的制约。线性模型方法适用于情况复杂、无法对试验进行严格控制情况下的数据分析,但在小样本情况下使用线性模型方法需要在建模过程中对数据进行一系列是否满足条件的检验,对不满足要求的数据需采用一定方法进行调整。
中图分类号:
叶丽敏,许元科,周肄智,等. 林下中草药种植活动对近成过熟杉木林单株材积生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 48-56.
YE Limin, XU Yuanke, ZHOU Yizhi, CHEN Zhenglu, WANG Yixiang, GE Hongli. Comprehensive effect of understory medicinal herb cultivation on individual volume growth in near-mature, mature and overmature Cunninghamia lanceolata forests[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(5): 48-56.DOI: 10.12302/j.issn.1000-2006.202312027.
表1
样地统计数据"
林下种植 understory planting type | 统计项 statistical item | 平均 胸径/cm mean DBH | 平均 树高/m mean height | 公顷蓄积/ (m3·hm-2) hectare accumulation | 公顷株数/ (株·hm-2) number of trees per hectare | 郁闭度 closure | 海拔/m altitude | 地位指数 SI | 林木年龄/a tree age | 林分密度 指数 SDI |
---|---|---|---|---|---|---|---|---|---|---|
yes | 最小值 | 10.4 | 7.9 | 69 | 465 | 0.70 | 1 012 | 11.2 | 19 | 83 175 |
最大值 | 34.6 | 20.9 | 366 | 2 385 | 0.87 | 1 186 | 16.4 | 55 | 163 815 | |
均值 | 25.1 | 15.3 | 237 | 861 | 0.79 | 1 092 | 13.9 | 35.8 | 122 850 | |
中位数 | 26.5 | 16.4 | 246 | 720 | 0.80 | 1 091 | 13.4 | 33 | 128 280 | |
标准差 | 7.6 | 4.0 | 102 | 568 | 0.05 | 61 | 1.89 | 13.2 | 22 305 | |
变异系数/% | 30.30 | 26.31 | 43.04 | 65.97 | 6.33 | 5.59 | 13.60 | 36.87 | 18.16 | |
no | 最小值 | 15.4 | 11.1 | 99 | 555 | 0.72 | 955 | 11.8 | 25 | 91 905 |
最大值 | 35.6 | 20.7 | 488 | 1 155 | 0.89 | 1 286 | 17.7 | 52 | 198 585 | |
均值 | 25.1 | 16.1 | 283 | 867 | 0.80 | 1 153 | 14.5 | 39.0 | 143 835 | |
中位数 | 24.2 | 16.4 | 265 | 908 | 0.81 | 1 163 | 14.4 | 40.5 | 144 285 | |
标准差 | 6.1 | 3.4 | 129 | 195 | 0.07 | 115 | 1.96 | 11.6 | 32 055 | |
变异系数/% | 24.47 | 21.23 | 45.58 | 22.49 | 8.70 | 9.97 | 13.52 | 29.74 | 22.29 |
表2
解析木主要数据"
解析木号 analytic tree No. | 林下种植 understory planting | Δv/m3 | A/a | A2/a | D/cm | D2/cm | H/m | H2/m | 林分密度 指数 SDI | 地位指数 SI |
---|---|---|---|---|---|---|---|---|---|---|
1 | yes | 0.0189 98 | 52 | 49 | 23.1 | 21.6 | 17.2 | 15.8 | 132 090 | 12.5 |
2 | yes | 0.037 736 | 30 | 27 | 21.4 | 17.7 | 15.6 | 14.2 | 127 785 | 15.2 |
3 | yes | 0.026 892 | 34 | 31 | 22.5 | 19.8 | 14.6 | 13.4 | 138 645 | 13.2 |
4 | yes | 0.031 871 | 33 | 30 | 23.1 | 21.1 | 18.6 | 16.4 | 106 050 | 16.4 |
11 | yes | 0.029 205 | 33 | 30 | 25.4 | 23.8 | 18.3 | 15.9 | 163 815 | 15.9 |
12 | yes | 0.011 453 | 23 | 20 | 14.2 | 12.2 | 12.3 | 10.4 | 106 740 | 13.4 |
13 | yes | 0.009 932 | 25 | 22 | 16.5 | 14.9 | 10.5 | 9.2 | 83 175 | 11.2 |
15 | yes | 0.001 253 | 19 | 16 | 8.9 | 8.4 | 7.9 | 7.5 | 100 965 | 11.5 |
17 | yes | 0.028 642 | 54 | 51 | 31.1 | 29.9 | 20.9 | 20.4 | 140 490 | 16.1 |
18 | yes | 0.018 211 | 55 | 52 | 29.1 | 27.9 | 17.3 | 16.9 | 128 775 | 13.3 |
5 | no | 0.016 662 | 52 | 49 | 26.2 | 25.3 | 20.5 | 20.0 | 198 585 | 16.2 |
6 | no | 0.014 700 | 49 | 46 | 22.7 | 22.0 | 15.5 | 14.5 | 168 675 | 12.4 |
7 | no | 0.027 756 | 29 | 26 | 21.5 | 18.5 | 17.4 | 15.8 | 172 170 | 17.7 |
8 | no | 0.012 312 | 27 | 24 | 18.5 | 16.7 | 13.2 | 12.4 | 141 915 | 14.0 |
9 | no | 0.015 134 | 33 | 30 | 20.4 | 19.1 | 16.2 | 15.6 | 128 490 | 15.4 |
10 | no | 0.003 651 | 25 | 22 | 12.7 | 12.0 | 11.3 | 10.5 | 919 20 | 12.6 |
14 | no | 0.011 870 | 48 | 45 | 20.7 | 19.7 | 16.6 | 15.5 | 115 185 | 13.4 |
16 | no | 0.003 665 | 27 | 24 | 14.8 | 14.3 | 11.1 | 10.6 | 105 675 | 11.8 |
19 | no | 0.012 303 | 50 | 47 | 25.7 | 24.9 | 18.6 | 18.2 | 146 670 | 14.8 |
20 | no | 0.020 485 | 50 | 47 | 27.9 | 27.0 | 20.7 | 20.0 | 169 095 | 16.5 |
平均 mean | 0.017 670 | 37 | 34.4 | 21.3 | 19.8 | 15.7 | 14.7 | 133 346 | 14.2 |
表5
基于AIC准则5个最佳模型和全子集模型的显著性结果"
模型 model | 指标 indicator | a0/常数 a0/constant | a1/U | a2/ | a3/D2 | a4/ H2 | a5/ISDI | a6/ISI | AIC | F | P | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 参数 | -0.087 03 | 0.011 89 | 0.003 43 | 0.002 94 | -221.2 | 43.26 | <0.001 | 0.870 | |||
P0 | <0.001 | <0.001 | <0.001 | <0.001 | ||||||||
2 | 参数 | -0.086 05 | 0.012 33 | 0.003 33 | 4.8×10-7 | 0.002 67 | -220.2 | 32.05 | <0.001 | 0.867 | ||
P0 | <0.001 | <0.001 | <0.001 | 0.410 | <0.001 | |||||||
3 | 参数 | -0.091 96 | 0.012 59 | 0.003 62 | -<0.001 43 | 7.8×10-7 | 0.003 00 | -219.6 | 25.95 | <0.001 | 0.868 | |
P0 | <0.001 | <0.001 | <0.001 | 0.322 | 0.244 | <0.001 | ||||||
4 | 参数 | -0.090 13 | 0.011 89 | 0.003 60 | -<0.001 20 | 0.003 17 | -219.6 | 31.08 | <0.001 | 0.864 | ||
P0 | <0.001 | <0.001 | <0.001 | 0.598 | <0.001 | |||||||
5 | 参数 | -0.088 97 | 0.012 02 | 0.003 56 | -<0.001 08 | 0.003 02 | -219.4 | 30.74 | <0.001 | 0.862 | ||
P0 | <0.001 | <0.001 | 0.001 | 0.711 | <0.001 | |||||||
全集模型 full set model | 参数 | -0.092 01 | 0.012 49 | 0.003 61 | <0.001 05 | -<0.001 52 | 7.6×10-7 | 0.003 05 | -217.6 | 20.09 | <0.001 | 0.858 |
P0 | <0.001 | <0.001 | <0.001 | 0.935 | 0.664 | 0.286 | 0.006 |
[1] | 陈幸良. 林下经济学的缘起、发展与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 105-114. |
CHEN X L. The origin, development and prospect of non-timber forest-based economics[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(6): 105-114. DOI: 10.12302./j.issn.1000-2006.202210024. | |
[2] | SINCLAIR F L. A general classification of agroforestry practice[J]. Agroforest Systems, 1999, 46:161-180. DOI:10.1023/A:1006278928088. |
[3] | ZOMER R, TRABUCCO A, COE R, et al. Trees on farm: analysis of global extent and geographical patterns of agroforestry[R]. Nairobi, Kenya: ICRAF Working Paper, No. 89. World Agroforestry Centre, 2009. |
[4] | NAIR P K R, GARRITY D. Agroforestry-the future of global land use[M]. Gainesville: Springer, 2012. |
[5] | STEPHENSON N L, DAS A J, CONDIT R, et al. Rate of tree carbon accumulation increases continuously with tree size[J]. Nature, 2014, 507: 90-93. DOI:10.1038/nature12914. |
[6] | CHAMAGNE J, TANADINI M, FRANK D, et al. Forest diversity promotes individual tree growth in central european forest stands[J]. Journal of Applied Ecology, 2017, 54: 71-79. DOI: 10.1111/1365-2664.12783. |
[7] | CHRISTINA V, JOHAN S, CHRISTIAN S. Moderate shading did not affect barley yield in temperate silvoarable agroforestry systems[J]. Agroforest Systems, 2022, 96: 799-810. DOI: 10.1007/s10457-022-00740-z. |
[8] | 袁玉欣, 裴保华, 王九龄, 等. 国外混农林业系统中林木与农作物的相互关系研究进展[J]. 世界林业研究, 1999, 12(6):13-17. |
YUAN Y X, PEI B H, WANG J L, et al. A review to interaction between tree and crop in agroforestry system world forestry research[J]. 1999, 12(6): 13-17. DOI: 10.13348/j.cnki.sjlyyj.1999.06.003. | |
[9] | 袁玉欣, 裴保华, 贾渝彬, 等. 农林间作条件下的杨树生长研究[J]. 林业科学, 2000, 36(增刊1): 44-50. |
YUAN Y X, PEI B H, JIA Y B, et al. Study on Poplar growth under agro-silvicultural intercropping conditions[J]. Scientia Silvae Sinicae, 2000, 36(Sp. 1): 44-50.DOI:10.3321/j.issn:1001-7488.2000.Z1.006. | |
[10] | 王邦富. 杉木林分郁闭度对林下黄花倒水莲生长及皂苷含量的影响[J]. 江苏林业科技, 2021, 48(4): 24-27. |
WANG B F. Influence of canopy density of Chinese fir stand on the undergrowth and polygalacin content of Polygala fallax[J]. Journal of Jiangsu Forestry Science & Technology, 2021, 48(4): 24-27. DOI: 1001-7380(2021)04-0024-04. | |
[11] | 朱建军, 陈裕鹏, 李秀芬, 等. 林药模式对林地环境的影响[J]. 上海农业学报, 2016, 32(6): 108-112. |
ZHU J J, CHEN Y P, LI X F, et al. Influence of forest-medicinal plant mode on forest land environment[J]. Acta Agriculturae Shanghai, 2016, 32(6): 108-112. DOI: 10.15955/j.issn1000-3924.2016.06.19. | |
[12] | 国靖, 汪贵斌, 封超年, 等. 银杏林下经济模式分类及模式综合效益评价[J]. 中南林业科技大学学报, 2017, 30(1): 118-122. |
GUO J, WANG G B, FENG C N, et al. The model classification and comprehensive benefits evaluation of Ginkgo under-forestry economy[J]. Journal of Central South University of Forestry & Technology, 2017, 30(1): 118-122. DOI: 10.14067/j.cnki.1673-923x.2017.01.020. | |
[13] | 高丹丹, 郭思源, 李顺龙. 黑龙江省国有重点林区不同投入要素对林下经济发展的动态驱动效果[J]. 东北林业大学学报, 2020, 48(12): 58-69. |
GAO D D, GUO S Y, LI S L. Dynamic driving effect of different input factors on understory economic development in the key state-owned forest regions of Heilongjiang Province[J]. Journal of Northeast Forestry University, 2020, 48(12): 58-69. DOI: 10.13759/j.cnki.dlxb.2020.12.011. | |
[14] | 王坤. 黑龙江省国有森工林区林下经济发展水平及其影响因素的动态变化[J]. 东北林业大学学报, 2022, 50(3): 113-118. |
WANG K. Forestry economic development level and dynamic changes in component elements in state-owned forest industry region of Heilongjiang Province[J]. Journal of Northeast Forestry University, 2022, 50(3): 113-118. DOI: 10.13759/j.cnki.dlxb.2022.03.013. | |
[15] | 姜岳忠, 刘盛芳, 马履一, 等. 毛白杨幼林间作效应研究[J]. 北京林业大学学报, 2006, 28(3): 81-85. |
JIANG Y Z, LIU S F, MA L Y, et al. Effects of tree-crop intercropping on young plantations of Populus tomentosa[J]. Journal of Beijing Forestry University, 2006, 28(3): 81-85. DOI: 10.13332/j.1000-1522.2006.03.01. | |
[16] | 邹双全. 杉木幼林套种经济植物的模式[J]. 福建农林大学学报 (自然科学版), 2005, 34(2): 234-238. |
ZOU S Q. The interplanting patterns of economic crops with young Chinese fir plantations[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2005, 34(2): 234-238. DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2005.02.02. | |
[17] | 李泉杉. 林下种植粮食作物模式研究与示范[J]. 农业工程, 2020, 10(9): 112-119. |
LI Q S. Research and demonstration of planting grain crops under forest[J]. Agricultural Engineering, 2020, 10(9): 112-119. DOI: 2095-1795(2020)09-0112-08. | |
[18] | 郭红艳, 谷卫彬, 徐磊. 国家储备林建设中开展林下经济的探讨[J]. 中国林业经济, 2022(1): 85-88. |
GUO H Y, GU W B, XU L. Discussion on the development of under-forest economy in the construction of national reserve forest[J]. China Forestry Economics, 2022(1): 85-88. DOI:10.13691/j.cnki.cn23-1539/f.2022.01.018. | |
[19] | 郑长瑞. 不同经营措施对杉木幼林生长的影响[J]. 亚热带水土保持, 2013, 25(2): 23-30. |
ZHENG C R. Research on the effects of different operation measures to young Chinese fir forest[J]. Subtropical Soil and Water Conservation, 2013, 25(2): 23-30. DOI: 1002-2651(2013)02-0023-04. | |
[20] | 赵铭, 何功秀, 文仕知, 等. 不同配方施肥对杉木人工林幼林生态化学计量特征的影响[J]. 中南林业科技大学学报, 2023, 43(8):138-148. |
ZHAO M, HE G X, WEN S Z, et al. Divergent fertilizer effect on stoichiometry characteristics of Cunninghamia lanceolata young plantation[J]. Journal of Central South University of Forestry & Technology, 2023, 43(8): 138-148. DOI: 10.14067/j.cnki.1673-923x.2023.08.014. | |
[21] | 赵铭臻, 刘静, 邹显花, 等. 间伐施肥对杉木中龄林生长和材种结构的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(2):70-78. |
ZHAO M Z, LIU J, ZOU X H, et al. Effects of thinning and fertilization on the growth and timber assortment structure of middle-aged Chinese fir forest[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(2): 70-78. DOI: 10.12302/j.issn.1000-2006.202106007. | |
[22] | 任衍敏, 陈敏健, 李惠通, 等. 配方施肥对杉木中龄林生长及土壤化学计量特征的影响[J]. 亚热带农业研究, 2022, 18(1):23-31. |
REN Y M, CHEN M J, LI H T, et al. Effect of formula fertilization on growth and soil stoichiometric characteristics of middle-aged Cunninghamia lanceolata forest[J]. Subtropical Agriculture Research, 2022, 18(1): 23-31. DOI: 10.13321/j.cnki.subtrop.agric.res.2022.01.005. | |
[23] | 田地, 陈义堂, 史月冬, 等. 间伐和施肥对杉木近熟林土壤微生物特征的影响[J]. 森林与环境学报, 2023, 43(6):569-578. |
TIAN D, CHEN Y T, SHI Y D, et al. Effects of thinning and fertilization on soil microbial characteristics in a near-mature Chinese fir plantation[J]. Journal of Forest and Environment, 2023, 43(6): 569-578. DOI: 10.13324/j.cnki.jfcf.2023.06.002. | |
[24] | 任衍敏, 陈敏健, 李惠通, 等. 配方施肥对杉木近熟林大径材材种结构的影响[J]. 森林与环境学报, 2021, 41(1):18-25. |
REN Y M, CHEN M J, LI H T, et al. Effects of formula fertilization on species structure of large diameter wood in near mature forest of Chinese fir[J]. Journal of Forest and Environment, 2021, 41(1): 18-25. DOI:10.13324/j.cnki.jfcf.2021.01.003. | |
[25] | 赵铭臻, 王利艳, 刘静, 等. 间伐和施肥对杉木成熟林生长和材种结构的影响[J]. 浙江农林大学学报, 2022, 39(2):338-346. |
ZHAO M Z, WANG L Y, LIU J, et al. Effects of thinning and fertilization on growth and timber structure of mature Chinese fir forest[J]. Journal of Zhejiang A&F University, 2022, 39(2): 338-346. DOI: 10.11833/j.issn.2095-0756.20210226. | |
[26] | 徐清乾, 黄帆, 徐少东, 等. 杉木大径材培育施肥配方选择研究[J]. 湖南林业科技, 2020, 47(5):31-35. |
XU Q Q, HUANG F, XU S D, et al. Study on selection of fertilizer formula for large diameter tree cultivation in Chinese fir plantation[J]. Hunan Forestry Science & Technology, 2020, 47(5): 31-35. DOI: 10.3969/j.issn.1003-5710.2020.05.006. | |
[27] | 唐隆校, 潘建华, 赖根伟. 施肥与间伐对杉木大径材培育的影响[J]. 浙江林业科技, 2016, 36(3):56-60. |
TANG L X, PAN J H, LAI G W. Effect of thinning and fertilization on increment in DBH and volume of Cunninghamia lanceolata plantation[J]. Journal of Zhejiang Forest Science & Technology, 2016, 36(3): 56-60. DOI: 1001-3776(2016)03-0056-05. | |
[28] | 张先仪, 盛炜彤, 邓宗付, 等. 杉木幼林不同抚育方法效果的评价[J]. 林业科学研究, 1994, 7(4):394-398. |
ZHANG X Y, SHENG W T, DENG Z F, et al. Experiment on different tending method for juvenile Chinese fir (Cunninghamia laneeolata)[J]. Forest Research, 1994, 7(4): 394-398. DOI: 10.13275/j.cnki.lykxyj.1994.04.008. | |
[29] | 王济川, 王小倩, 姜宝法. 结构方程模型:方法与应用[M]. 北京: 高等教育出版社, 2011. |
WANG J C, WANG X Q, JIANG B F. Structural equation models: methods and applications[M]. Beijing: Higher Education Press, 2011. | |
[30] | 刘江涛, 赵洁, 吴发富. 结构方程模型及其在地学数据建模中的回顾与展望[J]. 地质力学学报, 2021, 27(3): 350-364. |
LIU J T, ZHAO J, WU F F. Review and prospect of structural equation modeling in geoscience data modeling and analysis[J]. Journal of Geomechanics, 2021, 27(3): 350-364. DOI: 10.12090/j.issn.1006-6616.2021.27.03.032. | |
[31] | KAVEH N, EBRAHIMI A, ASADI E. Comparative analysis of random forest, exploratory regression, and structural equation modeling for screening key environmental variables in evaluating rangeland above-ground biomass[J]. Ecological Informatics, 2023, 77:102251. DOI: 10.1016/j.ecoinf.2023.102251. |
[32] | 贾勃, 王新杰. 东北针阔混交林生物量动态过程及稳定性研究[J]. 林业科学研究, 2023, 36(5):41-49. |
JIA B, WANG X J. Dynamics and stability of biomass of coniferous and broad leaved mixed forests in northeast China[J]. Forest Research, 2023, 36(5):41-49. DOI:10.12403/j.1001-1498.20230072. | |
[33] | OBATA A, YOSHIDA T, HIURA T. Estimation of stand biomass and species-specific biomass in Japanese northern mixed forests in 1920-1930s: understanding environmental factors affecting carbon sequestration before recent climate change[J]. Ecological Indicators, 2023, 154:10495. DOI: 10.1016/j.ecolind.2023.110495. |
[34] | 董灵波, 田栋元, 陈莹, 等. 基于结构方程模型的兴安落叶松天然林更新影响因素[J]. 应用生态学报, 2021, 32(8): 2763-2772. |
DONG L B, TIAN D Y, CHEN Y, et al. Clarifying the factors affecting Larix gmelinii forest regeneration based on structural equation model[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2763-2772. DOI: 10.13287/j.1001-9332.202108.010. | |
[35] | 唐守正. 多元统计分析[M]. 北京: 中国林业出版社, 1986: 191-230. |
TANG S Z. Multivariate statistical analysis[M]. Beijing: China Forestry Press, 1986: 191-230. | |
[36] | REINEKE L. Perfecting a stand-density index for even-aged forests[J]. Journal of Agricultural Research, 1933, 46(7): 627-638. |
[37] | 国家标准化管理委员会. 森林资源连续清查技术规程: GB/T 38590-2020[S]. 北京: 中国标准出版社, 2020. |
Standardization Administration. Technical regulations for continuous forest inventory: GB/T 38590-2020[S]. Beijing: Standards Press of China, 2020. | |
[38] | 毛志忠. 浙江省杉木实生林地位指数表的编制与应用[J]. 浙江林学院学报, 1987, 4(2): 107-114. |
MAO Z Z. Working-out and application of site index table for seeding stand of Chinese fir in Zhejiang Province[J]. Journal of Zhejiang Forestry College, 1987, 4(2): 107-114. | |
[39] | JOHNSON R A, WICHERN D W. Applied multivariate statistical analysis[M]. Sixth Edition. New Jersey: Prentice Hall, 2007. |
[40] | COOK R, WEISBERG S. Diagnostics for heteroscedasticity in regression[J]. Biometrika, 1983, 70: 1-10. DOI: 10.2307/2335938. |
[1] | 周梦田, 刘莉, 付若仙, 李孝刚. 杉木与木荷凋落物分解对杉木人工林土壤碳氮含量和酶活性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(5): 131-138. |
[2] | 肖晖, 林泽忠, 苏顺德, 江晓丽, 陈海强, 吴炜, 罗水金, 潘隆应, 郑仁华. 杉木无性系圃地测定性状遗传变异分析及超早期选择[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 63-70. |
[3] | 丁咏, 刘鑫, 张金池, 王宇浩, 陈美玲, 李涛, 刘孝武, 周悦湘, 孙连浩, 廖艺. 酸雨类型转变对杉木林地土壤和细根生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 90-98. |
[4] | 鲁旭东, 董禹然, 李垚, 毛岭峰. 中国亚热带杉木人工林不同林分发育阶段的群落构建机制[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 67-73. |
[5] | 王林龙, 张怀清, 杨廷栋, 张京, 雷可欣, 陈传松, 张华聪, 刘洋, 崔泽宇, 左袁青. 一种优化森林仿真的碰撞检测及响应算法研究[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 19-27. |
[6] | 何潇, 雷相东, 段光爽, 丰庆荣, 张逸如, 冯林艳. 气候变化对落叶松人工林生物量生长的影响模拟[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 120-128. |
[7] | 宋磊, 金星姬, PUKKALA Timo, 李凤日. 长白落叶松人工林多目标经营模式研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 150-158. |
[8] | 赵铭臻, 刘静, 邹显花, 郑宏, 范福金, 林开敏, 马祥庆, 李明. 间伐施肥对杉木中龄林生长和材种结构的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 70-78. |
[9] | 郭常酉, 郭宏仙, 王宝华. 基于气候因子的杉木单木胸径生长模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 47-56. |
[10] | 叶代全. 杉木第4代育种候选群体的12年生全同胞子代测定表现与选择[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 240-250. |
[11] | 王有良, 林开敏, 宋重升, 崔朝伟, 彭丽鸿, 郑宏, 郑鸣鸣, 任正标, 邱明镜. 间伐对杉木人工林生态系统碳储量的短期影响[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 65-73. |
[12] | 刘青青, 黄智军, 马祥庆, 王正宁, 邢先双, 刘博. 遮阴条件下杉木幼苗生长和C、N、P化学计量特征的变化[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 74-82. |
[13] | 薛蓓蓓, 田国双. 不同碳补贴机制下杉木人工林最优轮伐期和碳汇成本分析[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 27-34. |
[14] | 林莉莉, 胡安琪, 陈钢, 张霁月, 曹光球, 曹世江. 杉木ClWRKY44基因克隆及其表达特性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 203-209. |
[15] | 朱念福, 张怀清, 崔泽宇, 杨廷栋, 李永亮, 刘华. 基于空间结构的杉木枝下高可视化模拟研究[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 51-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||