山田胶锈菌效应蛋白GyHGSRE1的功能初探

高馨梅, 邵晨曦, 梁英梅, 劳文浩

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (5) : 209-216.

PDF(2917 KB)
PDF(2917 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (5) : 209-216. DOI: 10.12302/j.issn.1000-2006.202312029
研究论文

山田胶锈菌效应蛋白GyHGSRE1的功能初探

作者信息 +

Preliminary study on the function of Gymnosporangium yamadae effector GyHGSRE1

Author information +
文章历史 +

摘要

【目的】明确山田胶锈菌(Gymnosporangium yamadae)吸器中效应蛋白GyHGSRE1的基础生物学功能,为进一步揭示山田胶锈菌效应蛋白作用的分子机制,制定持久的锈病防控策略奠定基础。【方法】基于前期获得的山田胶锈菌吸器转录组数据筛选具有高表达丰度的效应蛋白;通过MEME(http://meme-suite.org/)、AI(https://drug.ai.tencent.com)等在线网站预测GyHGSRE1的蛋白质结构;利用荧光定量PCR检测GyHGSRE1基因在山田胶锈菌侵染过程中的表达水平,以酵母菌分泌系统验证GyHGSRE1信号肽的分泌功能,并通过农杆菌介导的瞬时表达技术分析GyHGSRE1在本氏烟(Nicotiana benthamiana)和苹果(Malus domestica)叶片中的功能。【结果】在山田胶锈菌吸器转录组数据中获得了FPKM(fragments per Kb per million mapped reads)值为117.92、富含甘氨酸和丝氨酸的小分子分泌蛋白GyHGSRE1。其N端具有1个富含丝氨酸motif的信号肽。qRT-PCR显示GyHGSRE1基因在山田胶锈菌的吸器形成阶段以及性、锈孢子形成及发育阶段均上调表达,并定位于本氏烟叶片细胞的细胞质和细胞核,能够诱导细胞坏死并激发基础免疫防御反应,但含有信号肽的全长效应蛋白GyHGSRE1能够诱导苹果叶片细胞坏死,去除信号肽后诱导细胞坏死的能力减弱。【结论】富含甘氨酸和丝氨酸的非典型效应蛋白GyHGSRE1定位于植物细胞的细胞质和细胞核,能够诱导本氏烟及苹果叶片细胞坏死,因此可能具有广谱性的激发子活性。GyHGSRE1在山田胶锈菌侵染苹果叶片的定殖和孢子发育阶段显著表达从而发挥功能,其信号肽可能决定着对寄主特异性识别的相关功能。

Abstract

【Objective】The study determined the core biological function of the effector protein GyHGSRE1 secreted by the Gymnosporangium yamadae haustoria. This work provides foundational data for elucidating the molecular mechanisms of G. yamadae effector protein.【Method】The haustorial transcriptome of G. yamadae prioritized GyHGSRE1 as a highly expressed effector (FPKM = 117.92). MEME (http://meme-suite.org/) predicted its two-dimensional structure, while Tencent AI (https://drug.ai.tencent.com) generated the three-dimensional model. Real-time PCR quantified GyHGSRE1 expression level during fungal infection. Yeast secretion assays validated the signal peptide’s secretory capacity. Transient expression via Agrobacterium tumefaciens assessed GyHGSRE1 function in Nicotiana benthamiana and apple (Malus domestica) leaves.【Result】GyHGSRE1 contains an N-terminal serine-rich signal peptide. qRT-PCR demonstrated peak expression during haustorium maturation and spore development (pycniosporophores/aeciospores). The protein was localized to plant cell cytoplasm and nuclei, triggering cell death and immune responses in leaf cells of N. benthamiana. Full-length GyHGSRE1 induced cell death in apple leaves, but deletion of the signal peptide attenuated this activity.【Conclusion】The glycine-serine-rich atypical effector GyHGSRE1 exhibits dual localization and cell necrosis-inducing effects across plant species, implying broad-spectrum elicitor potential. Its expression correlates with critical infection stages (host colonization and sporulation). The signal peptide may mediate functional specificity, likely influencing host-pathogen recognition.

关键词

山田胶锈菌 / 非典型效应蛋白 / 激发子 / 信号肽 / 植物免疫

Key words

Gymnosporangium yamadae / atypical effector protein / elicitor / signal peptide / plant immunity

引用本文

导出引用
高馨梅, 邵晨曦, 梁英梅, . 山田胶锈菌效应蛋白GyHGSRE1的功能初探[J]. 南京林业大学学报(自然科学版). 2025, 49(5): 209-216 https://doi.org/10.12302/j.issn.1000-2006.202312029
GAO Xinmei, SHAO Chenxi, LIANG Yingmei, et al. Preliminary study on the function of Gymnosporangium yamadae effector GyHGSRE1[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(5): 209-216 https://doi.org/10.12302/j.issn.1000-2006.202312029
中图分类号: S763;Q89   

参考文献

[1]
JONES J D, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329. DOI: 10.1038/nature05286.
[2]
YUAN M H, NGOU B P M, DING P T, et al. PTI-ETI crosstalk: an integrative view of plant immunity[J]. Current Opinion in Plant Biology, 2021, 62: 102030. DOI: 10.1016/j.pbi.2021.102030.
[3]
GARNICA D P, NEMRI A, UPADHYAYA N M, et al. The ins and outs of rust haustoria[J]. PLoS Pathogens, 2014, 10(9): e1004329. DOI: 10.1371/journal.ppat.1004329.
[4]
SAUNDERS D G, WIN J, CANO L M, et al. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi[J]. PLoS One, 2012, 7(1): e29847. DOI: 10.1371/journal.pone.0029847.
[5]
XU Q, TANG C L, WANG L K, et al. Haustoria-arsenals during the interaction between wheat and Puccinia striiformis f. sp. tritici[J]. Molecular Plant Pathology, 2020, 21(1): 83-94. DOI: 10.1111/mpp.12882.
[6]
CATANZARITI A M, DODDS P N, LAWRENCE G J, et al. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors[J]. Plant Cell, 2006, 18(1): 243-256. DOI: 10.1105/tpc.105.035980.
[7]
刘霞, 陶思齐, 翁涵, 等. 山田胶锈菌和亚洲胶锈菌吸器提取体系建立[J]. 菌物学报, 2019, 38(9): 1430-1439.
LIU X, TAO S Q, WENG H, et al. Construction of haustorial isolation systems of Gymnosporangium yamadae and G. asiaticum[J]. Mycosystema, 2019, 38(9): 1430-1439. DOI: 10.13346/j.mycosystema.190049.
[8]
翁涵, 刘霞, 陶思齐, 等. 山田胶锈菌和亚洲胶锈菌吸器的比较转录组分析[J]. 生物工程学报, 2022, 38(10): 3825-3843.
WENG H, LIU X, TAO S Q, et al. Comparative transcriptomic analysis of the haustoria of Gymnosporangium yamadae and G. asiaticum[J]. Chinese Journal of Biotechnology, 2022, 38(10): 3825-3843. DOI: 10.13345/j.cjb.220379.
[9]
TAO S Q, CAO B, TIAN C M, et al. Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum)[J]. BMC Genomics, 2017, 18(1): 651. DOI: 10.1186/s12864-017-4059-x.
[10]
TAO S Q, CAO B, MORIN E, et al. Comparative transcriptomics of Gymnosporangium spp. teliospores reveals a conserved genetic program at this specific stage of the rust fungal life cycle[J]. BMC Genomics, 2019, 20(1): 723. DOI: 10.1186/s12864-019-6099-x.
[11]
TAO S Q, AUER L, MORIN E, et al. Transcriptome analysis of apple leaves infected by the rust fungus Gymnosporangium yamadae at two sporulation stages[J]. Molecular Plant-Microbe Interactions, 2020, 33(3): 444-461. DOI: 10.1094/MPMI-07-19-0208-R.
[12]
SHAO C X, LAO W H, LIANG Y M. Reference genes selection of Gymnosporangium yamadae during the interaction with apple leaves[J]. Journal of Fungi, 2022, 8(8): 830. DOI: 10.3390/jof8080830.
[13]
GIETZ R D, SCHIESTL R H, WILLEMS A R, et al. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure[J]. Yeast, 1995, 11(4): 355-360. DOI: 10.1002/yea.320110408.
[14]
赵薇, 许彤骏, 王喻元, 等. 溶藻细菌的筛选及群体感应信号对其活力的调节作用[J]. 生物加工过程, 2023, 21(4):461-470.
ZHAO W, XU T J, WANG Y Y, et al. Screening the algicidal bacteria from phycosphere environment and evaluate their algicidal activity under quorum sensing regulation[J]. Chinese Journal of Bioprocess Engineering, 2023, 21(4):461-470. DOI:10.3969/j.issn.1672-3678.2023.04.010.
[15]
QI T, GUO J, LIU P, et al. Stripe rust effector PstGSRE1 disrupts nuclear localization of ROS-promoting transcription factor TaLOL2 to defeat ROS-induced defense in wheat[J]. Molecular Plant, 2019, 12(12): 1624-1638. DOI: 10.1016/j.molp.2019.09.010.
[16]
LIU C, WANG Y Q, WANG Y F, et al. Glycine-serine-rich effector PstGSRE4 in Puccinia striiformis f. sp. tritici inhibits the activity of copper zinc superoxide dismutase to modulate immunity in wheat[J]. PLoS Pathogens, 2022, 18(7): e1010702. DOI: 10.1371/journal.ppat.1010702.
[17]
DUPLESSIS S, LORRAIN C, PETRE B, et al. Host adaptation and virulence in heteroecious rust fungi[J]. Annual Review of Phytopathology, 2021, 59: 403-422. DOI: 10.1146/annurev-phyto-020620-121149.
[18]
OWJI H, NEZAFAT N, NEGAHDARIPOUR M, et al. A comprehensive review of signal peptides: structure, roles, and applications[J]. European Journal of Cell Biology, 2018, 97(6): 422-441. DOI: 10.1016/j.ejcb.2018.06.003.
[19]
XU Q, HU S, JIN M X, et al. The N-terminus of a Fusarium graminearum-secreted protein enhances broad-spectrum disease resistance in plants[J]. Molecular Plant Pathology, 2022, 23(12): 1751-1764. DOI: 10.1111/mpp.13262.
[20]
LORRAIN C, PETRE B, DUPLESSIS S. Show me the way: rust effector targets in heterologous plant systems[J]. Current Opinion Microbiology, 2018, 46: 19-25. DOI: 10.1016/j.mib.2018.01.016.
[21]
MA L, LUKASIK E, GAWEHNS F, et al. The use of agroinfiltration for transient expression of plant resistance and fungal effector proteins in Nicotiana benthamiana leaves[J]. Methods in Molecular Biology, 2012, 835: 61-74. DOI: 10.1007/978-1-61779-501-5_4.
[22]
MA Z G, LIU J J, ZAMANY A, et al. Transient gene expression in western white pine using agroinfiltration[J]. Journal of Forestry Research, 2020, 31(5): 1823-1832. DOI: 10.1007/s11676-019-00938-5.
[23]
ZHANG Q L, XU C R, WEI H Y, et al. Two pathogenesis-related proteins interact with leucine-rich repeat proteins to promote Alternaria leaf spot resistance in apple[J]. Horticulture Research, 2021, 8(1): 219. DOI: 10.1038/s41438-021-00654-4.
[24]
MA Z G, LIU J J, ZAMANY A. Identification and functional characterization of an effector secreted by Cronartium ribicola[J]. Phytopathology, 2019, 109(6): 942-951. DOI: 10.1094/PHYTO-11-18-0427-R.
[25]
AZMI N S A, SINGKARAVANIT-OGAWA S, IKEDA K, et al. Inappropriate expression of an NLP effector in Colletotrichum orbiculare impairs infection on Cucurbitaceae cultivars via plant recognition of the C-terminal region[J]. Molecular Plant-Microbe Interactions, 2018, 31(1): 101-111. DOI: 10.1094/MPMI-04-17-0085-FI.

基金

国家自然科学基金项目(32371885)

编辑: 王国栋
PDF(2917 KB)

Accesses

Citation

Detail

段落导航
相关文章

/