南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (1): 11-20.doi: 10.12302/j.issn.1000-2006.202402006
• 林学前沿(执行主编 尹佟明 陈金慧) • 上一篇 下一篇
收稿日期:
2024-02-07
修回日期:
2024-10-15
出版日期:
2025-01-30
发布日期:
2025-01-21
通讯作者:
* 安新民(anxinmin@bjfu.edu.cn),教授。作者简介:
姜波(961788757@qq.com),博士生。
基金资助:
Received:
2024-02-07
Revised:
2024-10-15
Online:
2025-01-30
Published:
2025-01-21
摘要:
基因组精准编辑技术正在重新定义对生命奥秘的理解,其核心在于能够在特定的基因组位点精确地插入、删除或替换DNA序列,从而实现对生物体内遗传信息的定向精准编辑。这些技术已经成为现代生物领域研究的基石,从早期的探索到CRISPR系统的开创性应用,每一步都展示了科学探索的深远影响。CRISPR系统的应用带来了基因组编辑的巨大飞跃,它催化了更精准的编辑工具出现,如碱基编辑器和先导编辑器等,它们显著增强了精准编辑基因组的能力。这一历史性转变已经在农业改良、疾病治疗等领域展现出巨大的潜力。基因编辑技术的应用前景广阔,CRISPR/Cas系统能敲除多个基因,具有高靶向效率、易于设计和操作,且成本较低等优点,因此在作物、林木遗传改良中被广泛应用;但它也有不少不足之处,而每一款新编辑工具的出现都使这一技术得以不断完善。随着技术的不断进步,基因编辑技术有望在未来解决更多复杂的生物学问题,为人类健康和农林业发展带来更多的创新和突破力。
中图分类号:
姜波,安新民. 基因组精准编辑技术及其在林木育种中的应用[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 11-20.
JIANG Bo, AN Xinmin. Precise genomic editing technology and its application in the improvement of woody plants[J].Journal of Nanjing Forestry University (Natural Science Edition), 2025, 49(1): 11-20.DOI: 10.12302/j.issn.1000-2006.202402006.
表1
不同的胞嘧啶碱基编辑器"
胞嘧啶碱基编辑器 cytosine base editor | PAM序列 PAM sequence | 编辑器结构 editor structure | NLS个数 number of NLS | 活性窗口位置 active window position | 参考文献 reference |
---|---|---|---|---|---|
BE1 | NGG | rAPOBEC1-dCas9 | 1 | 4—8 | [ |
BE2 | NGG | rAPOBEC1-dCas9-UGI | 1 | 4—8 | [ |
BE3 | NGG | rAPOBEC1-nCas9(D10A) -UGI | 1 | 4—8 | [ |
hA3A-BE3 | NGG | hAPOBEC3A-nCas9(D10A)-UGI | 1 | 2—13 | [ |
BE3-NG | NG | rAPOBEC1-nCas9(D10A)-NG-UGI | 1 | 4—8 | [ |
Target-AID | NGG | nCas9(D10A)-PmCDA1-UGI | 1 | 2—8 | [ |
BE4 | NGG | rAPOBEC1-nCas9(D10A)-UGI-UGI | 1 | 4—8 | [ |
BE4max | NGG | rAPOBEC1-nCas9(D10A)-UGI-UGI | 2 | 4—8 | [ |
TAM | NGG | dCas9-hAIDx | 1 | 4—10 | [ |
xBE3 | NGN、GAA、GAT | rAPOBEC1-nxCas9(D10A)-UGI | 1 | 4—8 | [ |
表2
不同的腺嘌呤碱基编辑器"
腺嘌呤碱基编辑器 adenine base editor | PAM序列 PAM sequence | 编辑器结构 editor structure | NLS个数 number of NLS | 活性窗口位置 active window position | 参考文献 reference |
---|---|---|---|---|---|
ABE7.10 | NGG | TadA-TadA*-nCas9(D10A) | 1 | 4—7 | [ |
xABE | NGN、GAA、GAT | TadA-TadA*-nxCas9(D10A) | 1 | 4—7 | [ |
xABEmax | NGN、GAA、GAT | TadA-TadA*-nxCas9(D10A) | 2 | 4—8 | [ |
表3
精准编辑技术在疾病治疗与植物育种等方面的一些应用"
编辑器类型 editor type | 优点 advantage | 不足 limitation | 物种 species | 应用 application | 参考文献 reference | |||||
---|---|---|---|---|---|---|---|---|---|---|
胞嘧啶碱基编辑器 CBE | 编辑效率相对较高 high editing efficiency | 只能进行几种碱基转换 only a few base transitions can be performed 脱靶效应高 high off target effect 编辑范围局限 limitations of editing scope | 小鼠 Mus musculus | 胆固醇疾病 cholesterol disorders | [ | |||||
猕猴 Macaca mulatta | 胆固醇疾病 cholesterol disorders | [ | ||||||||
人类 Homo sapiens | β-地中海贫血症 β-thalassemia | [ | ||||||||
马凡综合征 marfan syndrome | [ | |||||||||
水稻 Oryza sativa | ALS基因 | [ | ||||||||
玉米 Zea mays | ALS基因 | [ | ||||||||
小麦 Triticum aestivum | ALS基因 | [ | ||||||||
ACCase基因 | [ | |||||||||
烟草 Nicotiana tabacum | ALS基因 | [ | ||||||||
甜橙 Citrus sinensis | ALS基因 | [ | ||||||||
杨树 Populus | Platz基因 | [ | ||||||||
腺嘌呤碱基编辑器 ABE | 小鼠 Mus musculus | Ⅰ型酪氨酸血症 yype Ⅰ tyrosinemia | [ | |||||||
杜氏肌营养不良症 duchenne muscular dystrophy | [ | |||||||||
Ⅰ型黏多糖病 type Ⅰ mucopolysaccharidosis | [ | |||||||||
早衰症 progeria | [ | |||||||||
水稻 O. sativa | ACCase基因 | [ | ||||||||
甜橙 C. sinensis | 溃疡病 ulcer | [ | ||||||||
葡萄柚 C. paradise | 溃疡病 ulcer | [ | ||||||||
糖基化酶碱基 编辑器GBE | 水稻 O. sativa | ALS基因 | [ | |||||||
先导编辑器 PE | 能够实现12种碱基替换 12 types of base substitutions can be achieved 多碱基替换 multiple base substitutions 小片段的插入或删除 insertion or deletion of small fragments 脱靶效应低 low off target effect 编辑范围广 wide editing scope | 编辑效率相对较低 low editing efficiency 使用设计过程复杂 complex design process | 人类 H. sapiens | 杜氏肌营养不良症 duchenne muscular dystrophy | [ | |||||
小鼠 Mus musculus | Ⅰ型酪氨酸血症 yype Ⅰ tyrosinemia | [ | ||||||||
雷柏氏先天性黑矇症 leber’s congenital melanosis | [ | |||||||||
水稻 O. sativa | ACCase基因 | [ | ||||||||
玉米 Z. mays | ALS基因 | [ | ||||||||
ACCase基因 | [ |
[1] | BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819):1709-1712.DOI: 10.1126/science.1138140. |
[2] | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.DOI: 10.1126/science.1225829. |
[3] | MOLLA K A, SRETENOVIC S, BANSAL K C, et al. Precise plant genome editing using base editors and prime editors[J]. Nat Plants, 2021, 7(9):1166-1187.DOI: 10.1038/s41477-021-00991-1. |
[4] | MALI P, ESVELT K M, CHURCH G M. Cas9 as a versatile tool for engineering biology[J]. Nat Methods, 2013, 10(10):957-963.DOI: 10.1038/nmeth.2649. |
[5] | QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5):1173-1183.DOI: 10.1016/j.cell.2013.02.022. |
[6] | STRECKER J, JONES S, KOOPAL B, et al. Engineering of CRISPR-Cas12b for human genome editing[J]. Nat Commun, 2019, 10(1):212.DOI: 10.1038/s41467-018-08224-4. |
[7] | MA X L, ZHU Q L, CHEN Y L, et al. CRISPR/Cas9 platforms for genome editing in plants:developments and applications[J]. Mol Plant, 2016, 9(7):961-974.DOI: 10.1016/j.molp.2016.04.009. |
[8] | SYMINGTON L S, GAUTIER J. Double-strand break end resection and repair pathway choice[J]. Annu Rev Genet, 2011, 45:247-271.DOI: 10.1146/annurev-genet-110410-132435. |
[9] | CHANG L, GRAHAM P H, HAO J, et al. PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis,reducing autophagy,suppressing NHEJ and HR repair pathways[J]. Cell Death Dis, 2014, 5(10):e1437.DOI: 10.1038/cddis.2014.415. |
[10] | WANG G H, WANG C M, CHU T, et al. Deleting specific residues from the HNH linkers creates a CRISPR-SpCas9 variant with high fidelity and efficiency[J]. J Biotechnol, 2023, 368:42-52.DOI: 10.1016/j.jbiotec.2023.04.008. |
[11] | GILBERT L A, LARSON M H, MORSUT L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2):442-451.DOI: 10.1016/j.cell.2013.06.044. |
[12] | HUANG S, YAN Y L, SU F, et al. Research progress in gene editing technology[J]. Front Biosci, 2021, 26(10):916-927.DOI: 10.52586/4997. |
[13] | REES H A, LIU D R. Base editing:precision chemistry on the genome and transcriptome of living cells[J]. Nat Rev Genet, 2018, 19(12):770-788.DOI: 10.1038/s41576-018-0059-1. |
[14] | KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603):420-424.DOI: 10.1038/nature17946. |
[15] | WANG X, DING C F, YU W X, et al. Cas12a base editors induce efficient and specific editing with low DNA damage response[J]. Cell Rep, 2020, 31(9):107723.DOI: 10.1016/j.celrep.2020.107723. |
[16] | HU J C, SUN Y, LI B S, et al. Strand-preferred base editing of organellar and nuclear genomes using CyDENT[J]. Nat Biotechnol, 2024, 42:936-945.DOI: 10.1038/s41587-023-01910-9. |
[17] | WANG X, LI J N, WANG Y, et al. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion[J]. Nat Biotechnol, 2018, 36(10):946-949.DOI: 10.1038/nbt.4198. |
[18] | NISHIDA K, ARAZOE T, YACHIE N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 2016, 353(6305):aaf8729.DOI: 10.1126/science.aaf8729. |
[19] | HESS G T, FRÉSARD L, HAN K, et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells[J]. Nat Methods, 2016, 13(12):1036-1042.DOI: 10.1038/nmeth.4038. |
[20] | KOBLAN L W, DOMAN J L, WILSON C, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J]. Nat Biotechnol, 2018, 36(9):843-846.DOI: 10.1038/nbt.4172. |
[21] | NISHIMASU H, SHI X, ISHIGURO S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science, 2018, 361(6408):1259-1262.DOI: 10.1126/science.aas9129. |
[22] | KOMOR A C, ZHAO K T, PACKER M S, et al. Improved base excision repair inhibition and bacteriophage mu gam protein yields C:G-to-T:a base editors with higher efficiency and product purity[J]. Sci Adv, 2017, 3(8):eaao4774.DOI: 10.1126/sciadv.aao4774. |
[23] | HU J H, MILLER S M, GEURTS M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699):57-63.DOI: 10.1038/nature26155. |
[24] | GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681):464-471.DOI: 10.1038/nature24644. |
[25] | HUANG T P, ZHAO K T, MILLER S M, et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors[J]. Nat Biotechnol, 2019, 37(6):626-631.DOI: 10.1038/s41587-019-0134-y. |
[26] | ZHAO D D, LI J, LI S W, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nat Biotechnol, 2021, 39(1):35-40.DOI: 10.1038/s41587-020-0592-2. |
[27] | YE L J, ZHAO D D, LI J, et al. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells[J]. Nat Biotechnol, 2024, 42(10):1538-1547.DOI: 10.1038/s41587-023-02050-w. |
[28] | ZHANG X H, ZHU B Y, CHEN L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nat Biotechnol, 2020, 38(7):856-860.DOI: 10.1038/s41587-020-0527-y. |
[29] | GRÜNEWALD J, ZHOU R H, LAREAU C A, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nat Biotechnol, 2020, 38(7):861-864.DOI: 10.1038/s41587-020-0535-y. |
[30] | LI C, ZHANG R, MENG X B, et al. Targeted,random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nat Biotechnol, 2020, 38(7):875-882.DOI: 10.1038/s41587-019-0393-7. |
[31] | SAKATA R C, ISHIGURO S, MORI H, et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations[J]. Nat Biotechnol, 2020, 38(7):865-869.DOI: 10.1038/s41587-020-0509-0. |
[32] | YUAN T L, WU L L, LI S Y, et al. Deep learning models incorporating endogenous factors beyond DNA sequences improve the prediction accuracy of base editing outcomes[J]. Cell Discov, 2024, 10(1):20.DOI: 10.1038/s41421-023-00624-1. |
[33] | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785):149-157.DOI: 10.1038/s41586-019-1711-4. |
[34] | LIN Q P, ZONG Y, XUE C X, et al. Prime genome editing in rice and wheat[J]. Nat Biotechnol, 2020, 38(5):582-585.DOI: 10.1038/s41587-020-0455-x. |
[35] | DOMAN J L, PANDEY S, NEUGEBAUER M E, et al. Phage-assisted evolution and protein engineering yield compact,efficient prime editors[J]. Cell, 2023, 186(18):3983-4002.e26.DOI: 10.1016/j.cell.2023.07.039. |
[36] | CHADWICK A C, WANG X, MUSUNURU K. In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing[J]. Arterioscler Thromb Vasc Biol, 2017, 37(9):1741-1747.DOI: 10.1161/ATVBAHA.117.309881. |
[37] | MUSUNURU K, CHADWICK A C, MIZOGUCHI T, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in Primates[J]. Nature, 2021, 593(7859):429-434.DOI: 10.1038/s41586-021-03534-y. |
[38] | CHEMELLO F, CHAI A C, LI H, et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing[J]. Sci Adv, 2021, 7(18):eabg4910.DOI: 10.1126/sciadv.abg4910. |
[39] | HAN W Y, GAO B Q, ZHU J J, et al. Design and application of the transformer base editor in mammalian cells and mice[J]. Nat Protoc, 2023, 18(11):3194-3228.DOI: 10.1038/s41596-023-00877-w. |
[40] | ZENG Y T, LI J N, LI G L, et al. Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos[J]. Mol Ther, 2018, 26(11):2631-2637.DOI: 10.1016/j.ymthe.2018.08.007. |
[41] | KUANG Y J, LI S F, REN B, et al. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms[J]. Mol Plant, 2020, 13(4):565-572.DOI: 10.1016/j.molp.2020.01.010. |
[42] | LI Y M, ZHU J J, WU H, et al. Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize[J]. Crop J, 2020, 8(3):449-456.DOI: 10.1016/j.cj.2019.10.001. |
[43] | ZONG Y, SONG Q N, LI C, et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A[J]. Nat Biotechnol, 2018, 36: 950-95.DOI: 10.1038/nbt.4261. |
[44] | ZHANG R, LIU J X, CHAI Z Z, et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing[J]. Nat Plants, 2019, 5(5):480-485.DOI: 10.1038/s41477-019-0405-0. |
[45] | KANG B C, WOO J W, KIM S T, et al. Guidelines for C to T base editing in plants:base-editing window,guide RNA length,and efficient promoter[J]. Plant Biotechnol Rep, 2019, 13(5):533-541.DOI: 10.1007/s11816-019-00572-x. |
[46] | HUANG X E, WANG Y C, WANG N. Base editors for Citrus gene editing[J]. Front Genome Ed, 2022, 4:852867.DOI: 10.3389/fgeed.2022.852867. |
[47] | YAO T, YUAN G L, LU H W, et al. CRISPR/Cas9-based gene activation and base editing in Populus[J]. Hortic Res, 2023, 10(6):uhad085.DOI: 10.1093/hr/uhad085. |
[48] | KIM Y, HONG S A, YU J, et al. Adenine base editing and prime editing of chemically derived hepatic progenitors rescue genetic liver disease[J]. Cell Stem Cell, 2021, 28(9):1614-1624.e5.DOI: 10.1016/j.stem.2021.04.010. |
[49] | BOSE S K, WHITE B M, KASHYAP M V, et al. In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease[J]. Nat Commun, 2021, 12(1):4291.DOI: 10.1038/s41467-021-24443-8. |
[50] | KOBLAN L W, ERDOS M R, WILSON C, et al. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice[J]. Nature, 2021, 589(7843):608-614.DOI: 10.1038/s41586-020-03086-7. |
[51] | LIU X S, QIN R Y, LI J, et al. A CRISPR-Cas9-mediated domain-specific base-editing screen enables functional assessment of ACCase variants in rice[J]. Plant Biotechnol J, 2020, 18(9):1845-1847.DOI: 10.1111/pbi.13348. |
[52] | TIAN Y F, SHEN R D, LI Z R, et al. Efficient C-to-G editing in rice using an optimized base editor[J]. Plant Biotechnol J, 2022, 20(7):1238-1240.DOI: 10.1111/pbi.13841. |
[53] | JANG H, JO D H, CHO C S, et al. Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases[J]. Nat Biomed Eng, 2022, 6(2):181-194.DOI: 10.1038/s41551-021-00788-9. |
[54] | XU W, ZHANG C W, YANG Y X, et al. Versatile nucleotides substitution in plant using an improved prime editing system[J]. Mol Plant, 2020, 13(5):675-678.DOI: 10.1016/j.molp.2020.03.012. |
[55] | QIAO D X, WANG J Y, LU M H, et al. Optimized prime editing efficiently generates heritable mutations in maize[J]. J Integr Plant Biol, 2023, 65(4):900-906.DOI: 10.1111/jipb.13428. |
[56] | HUANG J, LIN Q, QIU J L, et al. Discovery of deaminase functions by structure-based protein clustering[J/OL]. Cell, 2023. DOI:10.1016/j.cell2023.05.041. |
[57] | ZONG Y, LIU Y J, XUE C X, et al. An engineered prime editor with enhanced editing efficiency in plants[J]. Nat Biotechnol, 2022, 40(9):1394-1402.DOI: 10.1038/s41587-022-01254-w. |
[58] | NELSON J W, RANDOLPH P B, SHEN S P, et al. Engineered pegRNAs improve prime editing efficiency[J]. Nat Biotechnol, 2022, 40(3):402-410.DOI: 10.1038/s41587-021-01039-7. |
[59] | SUN C, LEI Y, LI B S, et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors[J]. Nat Biotechnol, 2024, 42:316-327.DOI: 10.1038/s41587-023-01769-w. |
[60] | HUA K, TAO X P, YUAN F T, et al. Precise A·T to G·C base editing in the rice genome[J]. Mol Plant, 2018, 11(4):627-630.DOI: 10.1016/j.molp.2018.02.007. |
[61] | 袁雪宁, 姚凤鸽, 安轶, 等. CRISPR/Cas基因组编辑在木本植物性状改良中的应用[J/OL]. 科学通报, 2024, 1-17. |
YUAN X N, YAO F G, AN Y, et al. Application of CRISPR/Cas genome editing in woody plant trait improvement[J/OL]. Chin Sci Bull, 2024,1-17. DOI: 10.1360/TB-2023-1125. (in Chinese) | |
[62] | LI G, SRETENOVIC S, EISENSTEIN E, et al. Highly efficient C-to-T and A-to-G base editing in a Populus hybrid[J]. Plant Biotechnol J, 2021, 19(6):1086-1088.DOI: 10.1111/pbi.13581. |
[1] | 王伟, 邱志楠, 李爽, 白向东, 刘桂丰, 姜静. CRISPR/Cas9核糖核蛋白介导的无T-DNA插入的白桦BpGLK1精准突变[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 11-17. |
[2] | 王竹雯, 国艳娇, 李爽, 周晨光, 姜立泉, 李伟. 基于CRISPR/Cas9的毛果杨PtrHBI1基因功能解析[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 31-39. |
[3] | 侯静, 毛金燕, 翟惠, 王洁, 尹佟明. CRISPR/Cas技术在木本植物改良中的应用[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 24-30. |
[4] | 孙佳彤, 国艳娇, 李爽, 周晨光, 姜立泉, 李伟. 基于CRISPR/Cas9的毛果杨bHLH106转录因子的功能研究[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 15-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||