步甲科昆虫对阔叶混交林与毗邻红松人工林不同生境的响应

王佳生, 佟佳琦, 赵红蕊, 刘婉婷, 张嘉航

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (5) : 200-208.

PDF(1638 KB)
PDF(1638 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (5) : 200-208. DOI: 10.12302/j.issn.1000-2006.202402013
研究论文

步甲科昆虫对阔叶混交林与毗邻红松人工林不同生境的响应

作者信息 +

Response of Carabidae insects in different habitats of broad-leaved mixed forest and adjacent Pinus koraiensis plantation forest

Author information +
文章历史 +

摘要

【目的】了解退耕还林后阔叶混交林与毗邻红松(Pinus koraiensis)人工林中步甲科(Carabidae)昆虫群落结构及其多样性差异,确定指示监测物种,揭示研究区边缘效应,明确红松人工林在维护生物多样性中的作用。【方法】于2017与2018年5—9月在吉林市丰满区研究区根据距离梯度划分为红松人工林、交错区以及阔叶混交林,并采用巴氏罐诱捕法,在3种生境内均布设27个诱杯,对步甲进行为期2 a的连续诱集,根据形态学进行分类鉴定。此外,步甲群落结构及α多样性指数差异采用单因素方差分析进行判断,不同α多样性指数间相关性采用Pearson相关系数进行判断,物种数、常见物种数及优势物种数随个体数变化趋势采用Hill多样性内插外推分析判断,β多样性采用非度量多维尺度分析、置换多元方差分析及相似性百分比进行判断,指示物种采用IndVal指示值进行判断。【结果】捕获昆虫中步甲共计9亚科41种3 755头,红松人工林中8亚科34种1 037头,交错区中9亚科38种1 643头,阔叶混交林中9亚科32种1 075头,3种生境共有步甲29种。步甲亚科(Carabinae)个体数在阔叶混交林中显著高于其他2种生境(P<0.05),地甲亚科(Harpalinae)个体数在红松人工林中显著高于阔叶混交林(P<0.05),奇颚步甲亚科(Licininae)个体数在交错区中显著高于阔叶混交林(P<0.05),细胫步甲亚科(Platyninae)个体数在交错区中显著高于其他2种生境(P<0.05);地甲亚科和偏须步甲亚科(Panagaeinae)物种数在阔叶混交林中显著低于其他2种生境(P<0.05),通缘步甲亚科(Pterostichinae)物种数在交错区中显著高于其他2种生境(P<0.05)。Hill多样性内插外推分析表明虽交错区物种数最多,但红松人工林常见物种数与优势物种数均最多。α多样性指数中,个体数在交错区中显著高于其他2种生境(P<0.05),物种数、Chao1指数与ACE指数在交错区中显著高于阔叶混交林(P<0.05),丰富度指数在阔叶混交林中显著低于其他2种生境(P<0.05),众多指数与物种数存在显著相关性(P<0.05)。非度量多维尺度分析与置换多元方差分析显示不同生境间群落结构差异显著(P<0.05),相似性百分比显示奇颚步甲亚科和步甲亚科对群落结构差异贡献较大。指示值显示红松人工林中无指示监测物种,交错区中监测物种有4种,阔叶混交林中指示物种有2种。研究区边缘效应整体呈较弱的正效应。【结论】不同生境步甲群落结构和多样性存在差异说明不同亚科步甲对生境选择各有差异,这与生活习性存在密切关系,但结果表明步甲整体更倾向于在交错区中进行活动,这与步甲在研究区呈正边缘效应相互印证,红松人工林中常见种和优势种最高说明红松人工林在维护生物多样性方面具有一定作用,另外,由于交错区与阔叶混交林中具有多个指示或监测物种,建议进行监测同时选择多个物种。

Abstract

【Objective】To characterize the community structure and diversity of Carabidae insects in different habitats in broad-leaved mixed forest and adjacent Pinus koraiensis plantation forest following farmland conversion to forests, to identify indicator or monitor species to investigate the edge effect in the study area and to elucidate the role of P. koraiensis plantation forests in the maintenance of diversity.【Method】During May to September in 2017 and 2018, the study area was divided into three habitats—Pinus koraiensis plantation forest, ecotone, and broad-leaved mixed forest-based on distance gradients. Using the pitfall trapping method, 27 pitfall traps were deployed in each habitat to continuously trap and collect Carabidae insects over two years. Collected specimens were subsequently classified and identified based on morphological characteristics. One-way ANOVA was used to assess differences in Carabidae insects community structure and α-diversity indices. Pearson correlation coefficients were employed to examine correlations among these α-diversity indices. Hill diversity rarefaction and extrapolation analyses were conducted to characterize trends in the number of species, common species, and dominant species in relation to the number of individuals. For β-diversity, NMDS, PERMANOVA, and SIMPER were applied. Indicator species were identified using IndVal indices.【Result】A total of 3 755 Carabidae insects of 41 species from nine subfamilies were captured, there were 1 037 Carabidae insects of 34 species from eight subfamilies in the P. koraiensis plantation forest, 1 643 Carabidae insects of 38 species from nine subfamilies in ecotone, 1 075 Carabidae insects of 32 species from nine subfamilies in the broad-leaved mixed forest, there were all 29 species in three habitats. The number of individuals of Carabinae in broad-leaved mixed forest was significantly higher than that the other two habitats (P<0.05), the number of individuals of Harpalinae in the P. koraiensis plantation forest was significantly higher than in that broad-leaved mixed forests (P<0.05), the number of individuals of Licininae in ecotone was significantly higher than that in the broad-leaved mixed forests (P<0.05), the number of individuals of Platyninae in ecotone was significantly higher than that in the other two habitats (P<0.05). The number of species of Harpalinae and Panagaeinae in broad-leaved mixed forests were significantly lower than that in the other two habitats (P<0.05), the number of species of Pterostichinae in ecotone was significantly higher than that in the other two habitats (P<0.05). Rarefaction and extrapolation of Hill diversity showed that although ecotone had the highest number of species, P. koraiensis plantation forest had the highest number of common and dominant species. Among α diversity indices, the number of individuals in ecotone was significantly higher than that in the other two habitats (P<0.05), the number of species, Chao1 index and ACE index in ecotone were significantly higher than those in broad-leaved mixed forests (P<0.05), Margalef index in broad-leaved mixed forests was significantly lower than that in the other two habitats (P<0.05), and many indices were are significantly correlated with the number of species (P<0.05). NMDS and PERMANOVA showed significant differences in community structure in different habitats (P<0.05), SIMPER showed Licininae and Carabinae had large contribution to differences in different community structure. IndVal index showed no indicator and monitor species in P. koraiensis plantation forest,four monitor species in ecotone, and two indicator species in broad-leaved mixed forest. The edge effect was weakly positive overall in the study area.【Conclusion】Differences in the community structure and diversity of Carabidae insects across habitats suggest distinct habitat preferences among different taxa, which are closely linked to their ecological behaviors. Notably, the finding that Carabidae insects exhibited a strong tendency to inhabit ecotones further corroborates with the presence of a positive edge effect for this group in the study area. The highest number of common and dominant species observed in P. koraiensis plantation forests indicates that these plantations play a critical role in maintaining local biodiversity. Additionally, given the multiple indicator and monitoring species identified in both ecotones and broad-leaved mixed forests, a multi-species monitoring approach is recommended to effectively assess habitat conditions.

关键词

步甲科 / 生物多样性 / 阔叶混交林 / 红松人工林 / 边缘效应 / 交错区 / 指示物种

Key words

Carabidae / biodiversity / broad-leaved mixed forest / Pinus koraiensis plantation / edge effect / ecotone / indicator species

引用本文

导出引用
王佳生, 佟佳琦, 赵红蕊, . 步甲科昆虫对阔叶混交林与毗邻红松人工林不同生境的响应[J]. 南京林业大学学报(自然科学版). 2025, 49(5): 200-208 https://doi.org/10.12302/j.issn.1000-2006.202402013
WANG Jiasheng, TONG Jiaqi, ZHAO Hongrui, et al. Response of Carabidae insects in different habitats of broad-leaved mixed forest and adjacent Pinus koraiensis plantation forest[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(5): 200-208 https://doi.org/10.12302/j.issn.1000-2006.202402013
中图分类号: Q968.1;S718.7   

参考文献

[1]
邵全琴, 樊江文, 刘纪远, 等. 重大生态工程生态效益监测与评估研究[J]. 地球科学进展, 2017, 32(11):1174-1182.
SHAO Q Q, FAN J W, LIU J Y, et al. Approaches for monitoring and assessment of ecological benefits of national key ecological projects[J]. Advances in Earth Science, 2017, 32(11):1174-1182.DOI: 10.11867/j.issn.1001-8166.2017.11.1174.
[2]
张利, 高晓东, 张志博, 等. 基于YOLOv8的陕西黄土高原刺槐林枯立木识别[J]. 林业工程学报, 2024, 9(4):112-121.
ZHANG L, GAO X D, ZHANG Z B, et al. Identification of standing dead trees in typical Robinia pseudoacacia plantation in the Loess Plateau of Shaanxi Province based on YOLOv8[J]. Journal of Forestry Engineering, 2024, 9(4):112-121.DOI: 10.13360/j.issn.2096-1359.202306002.
[3]
SAUNDERS D A, HOBBS R J, MARGULES C R. Biological consequences of ecosystem fragmentation:a review[J]. Conservation Biology, 1991, 5(1):18-32. DOI: 10.1111/j.1523-1739.1991.tb00384.x.
[4]
ZHAO H R, MENG Q F, LI Y, et al. Community diversity of ground-dwelling beetles in secondary oak forest and its adjacent restored poplar Forest[J]. Phytoparasitica, 2020, 48(5):727-742.DOI: 10.1007/s12600-020-00838-z.
[5]
刘生冬, 孟昕, 孟庆繁, 等. 阔叶红松林不同林分对地表甲虫群落的影响[J]. 林业科学, 2018, 54(2):110-118.
LIU S D, MENG X, MENG Q F, et al. Influence of different stands on ground-dwelling beetle community in broad-leaved Korean pine forests[J]. Scientia Silvae Sinicae, 2018, 54(2):110-118.DOI: 10.11707/j.1001-7488.20180212.
[6]
LAIOLO P, PATO J, OBESO J R. Ecological and evolutionary drivers of the elevational gradient of diversity[J]. Ecology Letters, 2018, 21(7):1022-1032.DOI: 10.1111/ele.12967.
[7]
RENKEMA J M, LYNCH D H, CUTLER G C, et al. Ground and rove beetles (Coleoptera:Carabidae and Staphylinidae) are affected by mulches and weeds in highbush blueberries[J]. Environmental entomology, 2012, 41(5):1097-1106.DOI: 10.1603/EN12122.
[8]
颜铮明, 阮宏华, 廖家辉, 等. 不同林龄杨树人工林地表甲虫群落多样性特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6):236-242.
YAN Z M, RUAN H H, LIAO J H, et al. Abundance and diversity of soil beetles on the forest floor in different aged poplar plantations[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2023, 47(6):236-242.DOI: 10.12302/j.issn.1000-2006.202203058.
[9]
李丹春, 付作霖, 罗子渝, 等. 白龙江林区地表甲虫沿海拔梯度的群落结构及动态分析[J]. 应用昆虫学报, 2022, 59(1):193-202.
LI D C, FU Z L, LUO Z Y, et al. Community structure and dynamics of ground beetles along an altitudinal gradient in the Bailongjiang forest[J]. Chinese Journal of Applied Entomology, 2022, 59(1):193-202.DOI: 10.7679/j.issn.2095-1353.2022.022.
[10]
TSAFACK N, XIE Y Z, WANG X P, et al. Influence of climate and local habitat characteristics on carabid beetle abundance and diversity in northern Chinese steppes[J]. Insects, 2019, 11(1):19.DOI: 10.3390/insects11010019.
[11]
施莹, 张华麟, 关西越, 等. 长白山西坡苔原带地表甲虫群落结构分析[J]. 吉林农业大学学报, 2020, 42(2):141-147.
SHI Y, ZHANG H L, GUAN X Y, et al. Community structure of ground beetles in west slope tundra zone of Changbai Mountain[J]. Journal of Jilin Agricultural University, 2020, 42(2):141-147.DOI: 10.13327/j.jjlau.2020.3960.
[12]
边振兴, 吴佳璇, 杨玉静, 等. 非耕作生境对相邻耕地步甲和蜘蛛分布影响的差异性[J]. 中国生态农业学报(中英文), 2023, 31(7):1026-1037.
BIAN Z X, WU J X, YANG Y J, et al. Differences in effects of non-crop habitat on the distribution of carabid beetles and spiders in adjacent farmlands[J]. Chinese Journal of Eco-Agriculture, 2023, 31(7):1026-1037.DOI: 10.12357/cjea.20220963.
[13]
冯怡琳, 杨竟艺, 王永珍, 等. 祁连山国家公园煤矿修复对地表节肢动物多样性的影响[J]. 生态学报, 2024, 44(4):1575-1587.
FENG Y L, YANG J Y, WANG Y Z, et al. Effects of coal mine restoration on ground arthropod diversity in Qilian Mountain National Park[J]. Acta Ecologica Sinica, 2024, 44(4):1575-1587.DOI: 10.20103/j.stxb.202302280363.
[14]
林永一, 王永珍, 冯怡琳, 等. 河西走廊中部戈壁地表甲虫群落动态变化及其影响因素[J]. 生物多样性, 2022, 30(12):72-83.
LIN Y Y, WANG Y Z, FENG Y L, et al. Dynamic change of ground-dwelling beetle community in a Gobi Desert of the middle of Hexi Corridor and its influencing factors[J]. Biodiversity Science, 2022, 30(12):72-83.DOI: 10.17520/biods.2022343.
[15]
马美轩, 宋悦心, 桑卫国, 等. 大兴安岭地区兴安落叶松林步甲群落多样性时间动态分析[J]. 生态学报, 2021, 41(24):9910-9919.
MA M X, SONG Y X, SANG W G, et al. Temporal-dynamics of ground beetles in Larix gmelinii forest in Greater Khingan Mountains,China[J]. Acta Ecologica Sinica, 2021, 41(24):9910-9919.DOI: 10.5846/stxb202012013072.
[16]
董六文, 韩佳龙, 赵文智, 等. 黑河流域湖泊湿地及毗邻沙丘地表节肢动物群落结构比较[J]. 中国沙漠, 2020, 40(6):250-258.
DONG L W, HAN J L, ZHAO W Z, et al. Comparison of ground arthropod community between lake wetland and adjacent sand dune in Heihe River Basin[J]. Journal of Desert Research, 2020, 40(6):250-258.DOI: 10.7522/j.issn.1000-694X.2020.00033.
[17]
GRODSKY S M, HERNANDEZ R R, CAMPBELL J W, et al. Ground beetle (Coleoptera:Carabidae) response to harvest residue retention:implications for sustainable forest bioenergy production[J]. Forests, 2019, 11(1):48.DOI: 10.3390/f11010048.
[18]
RAISA S, ANATOLIY S, TIMUR M, et al. Fluctuating asymmetry in ground beetles (Coleoptera,Carabidae) and conditions of its manifestation[J]. Symmetry, 2019, 11(12):1475.DOI: 10.3390/sym11121475.
[19]
陈光志, 赵洪雁. 湾沟林业局退耕还林工程实施情况及几点做法[J]. 吉林林业科技, 2004, 33(5):18-20.
CHEN G Z, ZHAO H Y. Implementation and practice of quitting cultivation and return to forest project in Wan’gou Forestry Bureau of Jilin,China[J]. Journal of Jilin Forestry Science and Technology, 2004, 33(5):18-20.DOI: 10.3969/j.issn.1005-7129.2004.05.006.
[20]
李占君, 马珂, 徐宜彬, 等. 表面活性剂诱导红松种鳞油脂和原花青素超声提取工艺[J]. 森林工程, 2024, 40(1):160-170.
LI Z J, MA K, XU Y B, et al. Ultrasonic extraction of oil and proanthocyanidins from Pinus koraiensis seed scales induced by surfactant[J]. Forest Engineering, 2024, 40(1):160-170.DOI: 10.3969/j.issn.1006-8023.2024.01.019.
[21]
刘明睿, 贾炜玮. 基于地基雷达数据构建红松人工林树高、枝下高及接触高模型[J]. 森林工程, 2024, 40(1):26-36.
LIU M R, JIA W W. Building tree height, height to crown base and crown contact height model for Korean pine plantation based on terrestrial laser scanning data[J]. Forest Engineering, 2024, 40(1):26-36.DOI: 10.3969/j.issn.1006-8023.2024.01.004.
[22]
仇逊超, 张春越, 张怡卓, 等. 流形学习在红松籽仁蛋白质含量近红外检测中的应用[J]. 江苏农业学报, 2023, 39(1):246-254.
QIU X C, ZHANG C Y, ZHANG Y Z, et al. Application of manifold learning in quantitative detection of protein in Korean pine seed kernels using near-infrared quantitative detection[J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(1):246-254.DOI: 10.3969/j.issn.1000-4440.2023.01.028.
[23]
魏亚伟, 张彤, 刘静, 等. 红松叶片与土壤有机碳、氮、磷、钙的空间分布及其化学计量学特征[J]. 沈阳农业大学学报, 2021, 52(4):419-427.
WEI Y W, ZHANG T, LIU J, et al. Spatial distribution and stoichiometry characteristics of leaves and soil organic carbon,nitrogen,phosphorus and calcium of the main needle tree species—Pinus koraiensis[J]. Journal of Shenyang Agricultural University, 2021, 52(4):419-427.DOI: 10.3969/j.issn.1000-1700.2021.04.005.
[24]
谭凌照, 范春雨, 范秀华. 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系[J]. 植物生态学报, 2017, 41(11):1149-1156.
TAN L Z, FAN C Y, FAN X H. Relationships between species diversity or community structure and productivity of woody-plants in a broad-leaved Korean pine forest in Jiaohe,Jilin,China[J]. Chinese Journal of Plant Ecology, 2017, 41(11):1149-1156.DOI: 10.17521/cjpe.2016.0321.
[25]
CALVIÑO-CANCELA M, RUBIDO-BARÁ M, VAN ETTEN E J B. Do eucalypt plantations provide habitat for native forest biodiversity?[J]. Forest Ecology and Management, 2012, 270:153-162.DOI: 10.1016/j.foreco.2012.01.019.
[26]
BERNDT L A, BROCKERHOFF E G, JACTEL H. Relevance of exotic pine plantations as a surrogate habitat for ground beetles (Carabidae) where native forest is rare[J]. Biodiversity and Conservation, 2008, 17(5):1171-1185.DOI: 10.1007/s10531-008-9379-3.
[27]
HELIÖLÄ J, KOIVULA M, NIEMELÄ J. Distribution of carabid beetles (Coleoptera,Carabidae) across a boreal forest-clearcut ecotone[J]. Conservation Biology, 2001, 15(2):370-377. DOI: 10.1046/j.1523-1739.2001.015002370.x.
[28]
HSIEH T C, MA K H, CHAO A. iNEXT:an R package for rarefaction and extrapolation of species diversity (Hill numbers)[J]. Methods in Ecology and Evolution, 2016, 7(12):1451-1456.DOI: 10.1111/2041-210x.12613.
[29]
CHAO A, LEE S M. Estimating the number of classes via sample coverage[J]. Journal of the American Statistical Association, 1992, 87(417):210-217.DOI: 10.1080/01621459.1992.10475194.
[30]
CHAO A. Nonparametric estimation of the number of classes in a population[J]. Scandinavian Journal of Statistics, 1984, 11:265-270.DOI: 10.2307/4615964.
[31]
韩艺茹, 薛琪琪, 宋厚娟, 等. 燕山地区访花昆虫多样性及其影响因子[J]. 生物多样性, 2022, 30(3):48-59.
HAN Y R, XUE Q Q, SONG H J, et al. Diversity and influencing factors of flower-visiting insects in the Yanshan Area[J]. Biodiversity Science, 2022, 30(3):48-59.DOI: 10.17520/biods.2021448.
[32]
李静纳, 林仲桂, 魏甲彬, 等. 不同品系黑老虎田间节肢动物的群落结构与多样性[J]. 江苏农业学报, 2024, 40(3):415-426.
LI J N, LIN Z G, WEI J B, et al. Arthropod community structure and diversity in the field of different strains of Kadsura coccinea[J]. Jiangsu Journal of Agricultural Sciences, 2024, 40(3):415-426.DOI: 10.3969/j.issn.1000-4440.2024.03.004.
[33]
刘欢欢, 李晨阳, 李梦莉, 等. 广西马尾松人工林与毗邻天然林昆虫群落组成及多样性研究[J]. 西南林业大学学报(自然科学), 2024, 44(2):144-154.
LIU H H, LI C Y, LI M L, et al. Study on insect community composition and diversity between Pinus massoniana plantation and the adjacent natural forest in Guangxi[J]. Journal of Southwest Forestry University(Natural Sciences), 2024, 44(2):144-154.DOI: 10.11929/j.swfu.202212017.
[34]
刘静如, 曹艺, 李晗, 等. 四川低山丘陵区香樟和马尾松凋落叶分解进程中土壤节肢动物多样性[J]. 林业科学, 2021, 57(11):119-133.
LIU J R, CAO Y, LI H, et al. Diversity of soil arthropods during Cinnamomum camphora and Pinus massoniana litter decomposition in low mountainous and hilly areas of Sichuan[J]. Scientia Silvae Sinicae, 2021, 57(11):119-133.DOI: 10.11707/j.1001-7488.20211112.
[35]
马美轩. 中国北方温带森林不同林分步甲多样性分布特征及指示作用研究[D]. 北京: 中央民族大学, 2022.
MA M X. Study on the distribution characteristics and indication of the diversity of Phyllostachys stephensis in different temperate forests in northern China[D]. Beijing: Central University for Nationalities, 2022.DOI: 10.27667/d.cnki.gzymu.2022.000060.
[36]
段曼微, 李香, 周阳, 等. 基于蛾类多样性研究人工林斑块的边缘效应[J]. 生物多样性, 2023, 31(5):65-75.
DUAN M W, LI X, ZHOU Y, et al. Edge effect in plantation patches based on moth diversity[J]. Biodiversity Science, 2023, 31(5):65-75.DOI: 10.17520/biods.2023074.
[37]
刘生冬, 孟昕, 孟庆繁, 等. 吉林蛟河阔叶红松林中甲虫(鞘翅目)群落时间动态分析[J]. 林业科学, 2018, 54(10):80-88.
LIU S D, MENG X, MENG Q F, et al. Temporal dynamics of beetles (Coleoptera) communities in a broad-leaved Korean pine forest in Jiaohe,Jilin Province[J]. Scientia Silvae Sinicae, 2018, 54(10):80-88. DOI: 10.11707/j.1001-7488.20181010
[38]
郭瑞, 王义平, 翁东明, 等. 浙江清凉峰不同植物群落步甲物种多样性及其与环境因子的关系[J]. 浙江农林大学学报, 2016, 33(4):551-557.
GUO R, WANG Y P, WENG D M, et al. Carabid beetle(Coleoptera,Carabidae) species diversity and environmental factors in biotopes of Zhejiang Qingliangfeng National Nature Reserve,China[J]. Journal of Zhejiang A&F University, 2016, 33(4):551-557.DOI: 10.11833/j.issn.2095-0756.2016.04.001.

基金

吉林省科技厅自然科学基金项目(YDZJ202301ZYTS504)
长白山区昆虫生物多样性与生态系统功能重点实验室项目(YDZJ202102CXJD032)
吉林省科技发展计划项目(20240303095NC)
吉林省教育厅项目(JJKH20230075KJ)

编辑: 王国栋
PDF(1638 KB)

Accesses

Citation

Detail

段落导航
相关文章

/