余姚市生态公益林主要群落物种多样性及生物量空间格局影响因素研究

刘如梦, 张晓勉, 顾嘉诚, 许俊, 岳春雷, 李贺鹏, 黄旭波

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (5) : 103-112.

PDF(3446 KB)
PDF(3446 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (5) : 103-112. DOI: 10.12302/j.issn.1000-2006.202402015
研究论文

余姚市生态公益林主要群落物种多样性及生物量空间格局影响因素研究

作者信息 +

Research on species diversity, biomass spatial pattern and its influencing factors of the main community in the ecological public welfare forest in Yuyao City

Author information +
文章历史 +

摘要

【目的】探索余姚市生态公益林6种主要群落物种多样性及生物量空间格局,分析环境因子对公益林生物量和物种多样性的影响。【方法】以2020年浙江省余姚市生态公益林175个样地调查数据为基础,采集各样地乔木、灌木层的物种、树高、胸径、地径、盖度等数据,结合林分因子及相应气候和土壤因子数据,分析余姚市生态公益林6种主要群落类型物种多样性、生物量空间格局及与环境因子间的关系。【结果】①余姚市生态公益林生物量现存总量为6.048×106 t,平均单位面积生物量为163.61 t/hm2。②公益林主要群落生物量表现出明显的空间规律,整体呈北高南低的空间分布特征,与海拔、纬度、平均树高和平均胸径均显著正相关(P<0.05),与降水量显著正相关(P<0.05),与土壤容重显著负相关(P<0.05),与土壤氮和土壤磷含量显著正相关(P<0.05)。③不同群落Shannon-Wiener指数总体差异显著(P<0.05),从大到小表现为阔叶林>针阔混交林>竹林>杉木林>松林>灌木林,Shannon-Wiener指数与郁闭度、平均胸径呈显著相关(P<0.05),与土壤氮、有机质含量和土壤含水率显著正相关(P<0.05)。【结论】余姚市生态公益林主要群落生物量空间异质性呈显著的地理分层特征,在空间分布上受多维度环境因素综合作用,主要受地形因子(海拔、纬度)、林分特征(平均胸径、树高)与土壤条件(土壤氮、磷含量、容重)的耦合驱动。群落物种多样性对环境梯度呈现差异响应:阔叶林通过郁闭度与土壤肥力(有机质、含水率)的协同作用维持最大Shannon-Wiener指数;降水驱动公益林生物化学过程,与群落生物量积累存在显著相关性。

Abstract

【Objective】The study aims to investigate the species diversity and biomass spatial patterns of six dominant community types in Yuyao’s ecological welfare forests, and to elucidate the impacts of environmental factors on forest biomass and biodiversity. 【Method】Based on 2020 survey data from 175 sample plots in Yuyao City, Zhejiang Province, this study analyzed tree and shrub layer characteristics including species composition, tree height, DBH (diameter at breast height), basal diameter, and coverage. Combined with stand factors, climatic data, and soil parameters, we systematically examined the spatial distribution patterns of species diversity and biomass across different communities, along with their relationships with environmental variables. 【Result】(1) The total standing biomass of ecological welfare forests in Yuyao reached 6.048 million tons, with an average biomass density of 163.61 t/hm2. (2) Significant spatial heterogeneity in biomass distribution was observed, showing a distinct “north-high, south-low pattern”. Biomass demonstrated significant positive correlations with altitude (P<0.05), latitude (P<0.05), mean tree height (P<0.05), DBH (P<0.05), precipitation(P<0.05), soil nitrogen content (P<0.05), and soil phosphorus content(P<0.05), while exhibiting significant negative correlation with soil bulk density(P<0.05). (3)The Shannon-Wiener diversity index varied significantly among communities (P<0.05), showing the following descending order: broad-leaved forests > coniferous-broadleaved mixed forests > bamboo forests > Chinese fir forests > pine forests > shrublands. The diversity index displayed significant positive correlations with canopy closure (P<0.05), mean DBH (P<0.05), soil nitrogen content(P<0.05), soil organic matter content (P<0.05), and soil moisture content (P<0.05).【Conclusion】The spatial heterogeneity of biomass in major communities of Yuyao’s ecological welfare forests exhibits significant geographical stratification characteristics, with its spatial distribution governed by the integrated effects of multidimensional environmental factors. Specifically, it is primarily driven by the coupling effects of topographic factors (altitude, latitude), stand characteristics (mean DBH, tree height), and soil conditions (soil nitrogen, phosphorus, and bulk density). Community species diversity demonstrates differential responses to environmental gradients: broad-leaved forests maintain the maximum Shannon-Wiener index through synergistic effects between canopy closure and soil fertility (organic matter, moisture content). Precipitation-driven forest biogeochemical processes show significant correlations with community biomass accumulation.

关键词

生态公益林 / 生物量 / 物种多样性 / 空间格局 / 环境因子 / 浙江余姚市

Key words

ecological public welfare forest / biomass / species diversity / spatial pattern / environmental factor / Yuyao City

引用本文

导出引用
刘如梦, 张晓勉, 顾嘉诚, . 余姚市生态公益林主要群落物种多样性及生物量空间格局影响因素研究[J]. 南京林业大学学报(自然科学版). 2025, 49(5): 103-112 https://doi.org/10.12302/j.issn.1000-2006.202402015
LIU Rumeng, ZHANG Xiaomian, GU jiacheng, et al. Research on species diversity, biomass spatial pattern and its influencing factors of the main community in the ecological public welfare forest in Yuyao City[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(5): 103-112 https://doi.org/10.12302/j.issn.1000-2006.202402015
中图分类号: S718.5   

参考文献

[1]
薛立, 杨鹏. 森林生物量研究综述[J]. 福建林学院学报, 2004, 24(3):283-288.
XUE L, YANG P. Summary of research on forest biomass[J]. Journal of Forest and Environment, 2004, 24(3):283-288.DOI: 10.3969/j.issn.1001-389X.2004.03.021.
[2]
LOREAU M, NAEEM S, INCHAUSTI P, et al. Biodiversity and ecosystem functioning:current knowledge and future challenges[J]. Science, 2001, 294(5543):804-808.DOI: 10.1126/science.1064088.
[3]
谢聪, 徐晋涛. 森林社会经济效益问题探讨[J]. 世界林业研究, 2020, 33(3):101-106.
XIE C, XU J T. A discussion on forest socioeconomic benefit[J]. World Forestry Research, 2020, 33(3):101-106.DOI: 10.13348/j.cnki.sjlyyj.2020.0041.y.
[4]
GRASSI G, HOUSE J, DENTENER F, et al. The key role of forests in meeting climate targets requires science for credible mitigation[J]. Nature Climate Change, 2017, 7(3):220-226.DOI: 10.1038/nclimate3227.
[5]
ROZENDAAL D MA, CHAZDON R L, ARREOLA-VILLA F, et al. Demographic drivers of aboveground biomass dynamics during secondary succession in neotropical dry and wet forests[J]. Ecosystems, 2017, 20(2):340-353.DOI: 10.1007/s10021-016-0029-4.
[6]
WU C P, VELLEND M, YUAN W G, et al. Patterns and determinants of plant biodiversity in non-commercial forests of eastern China[J]. PLoS One, 2017, 12(11):e0188409.DOI: 10.1371/journal.pone.0188409.
[7]
戴黎聪, 柯浔, 曹莹芳, 等. 青藏高原矮嵩草草甸地下和地上生物量分配格局及其与气象因子的关系[J]. 生态学报, 2019, 39(2):486-493.
DAI L C, KE X, CAO Y F, et al. Allocation patterns of above- and belowground biomass and its response to meteorological factors on an alpine meadow in Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 2019, 39(2):486-493.DOI: 10.5846/stxb201711172050.
[8]
LANTA V, LEPŠ J. Effects of species and functional group richness on production in two fertility environments:an experiment with communities of perennial plants[J]. Acta Oecologica, 2007, 32(1):93-103.DOI: 10.1016/j.actao.2007.03.007.
[9]
王瑞华, 葛晓敏, 唐罗忠. 林下植被多样性、生物量及养分作用研究进展[J]. 世界林业研究, 2014, 27(1):43-48.
WANG R H, GE X M, TANG L Z. A review of diversity,biomass and nutrient effect of understory vegetation[J]. World Forestry Research, 2014, 27(1):43-48.DOI: 10.13348/j.cnki.sjlyyj.2014.01.008.
[10]
LIU Y C, YU G R, WANG Q F, et al. How temperature,precipitation and stand age control the biomass carbon density of global mature forests[J]. Global Ecology and Biogeography, 2014, 23(3):323-333.DOI: 10.1111/geb.12113.
[11]
LARJAVAARA M, MULLER-LANDAU H C. Temperature explains global variation in biomass among humid old-growth forests[J]. Global Ecology and Biogeography, 2012, 21(10):998-1006. DOI: 10.1111/j.1466-8238.2011.00740.x.
[12]
周广胜, 张新时. 全球气候变化的中国自然植被的净第一性生产力研究[J]. 植物生态学报, 1996, 20(1): 11-19.
ZHOU G S, ZHANG S X. Study on NPP of natural vegetation in China under global climate change[J]. Chinese Journal of Plant Ecology, 1996, 20(1): 11-19. DOI: 10.1007/BF02951625.
[13]
王叶, 延晓冬. 全球气候变化对中国森林生态系统的影响[J]. 大气科学, 2006, 30(5):1009-1018.
WANG Y, YAN X D. The response of the forest ecosystem in China to global climate change[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(5):1009-1018.
[14]
BARALOTO C, RABAUD S, MOLTO Q, et al. Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests[J]. Global Change Biology, 2011, 17(8):2677-2688. DOI: 10.1111/j.1365-2486.2011.02432.x.
[15]
杨远盛, 张晓霞, 于海艳, 等. 中国森林生物量的空间分布及其影响因素[J]. 西南林业大学学报, 2015, 35(6):45-52.
YANG Y S, ZHANG X X, YU H Y, et al. The spatial distribution of China’s forest biomass and its influencing factors[J]. Journal of Southwest Forestry University, 2015, 35(6):45-52.DOI: 10.11929/j.issn.2095-1914.2015.06.008.
[16]
康昕, 王笑梅, 侯嫦英, 等. 林木个体大小差异对群落地上生物量及物种多样性的影响[J]. 生态学杂志, 2016, 35(9):2286-2292.
KANG X, WANG X M, HOU C Y, et al. Effect of size inequality on aboveground biomass and species diversity of plant communities[J]. Chinese Journal of Ecology, 2016, 35(9):2286-2292.DOI: 10.13292/j.1000-4890.201609.034.
[17]
杨龙, 陈克龙, 李双成, 等. 达日县高寒草甸土壤理化性质与物种多样性、地上生物量的关系[J]. 国土与自然资源研究, 2012(3):92-94.
YANG L, CHEN K L, LI S C, et al. The soil physical-chemical properties of alpine meadow in relation to species diversity and aboveground biomass in Dari County[J]. Territory & Natural Resources Study, 2012(3):92-94.DOI: 10.16202/j.cnki.tnrs.2012.03.029.
[18]
MALEKI S, KHORMALI F, BODAGHABADI M B, et al. Role of geomorphic surface on the above-ground biomass and soil organic carbon storage in a semi-arid region of Iranian Loess Plateau[J]. Quaternary International, 2020, 552:111-121.DOI: 10.1016/j.quaint.2018.11.001.
[19]
袁位高. 浙江省生态公益林主要群落结构的比较研究[D]. 北京: 中国林业科学研究院, 2009.
YUAN W G. Comparative study on main community structure of ecological public welfare forest in Zhejiang Province[D]. Beijing: Chinese Academy of Forestry, 2009.
[20]
宋小云. 凯氏法测定土壤全氮的方法改进[J]. 环境与发展, 2019, 31(8):120-121.
SONG X Y. Improvement of the method for determination of total nitrogen in soil by Kjeldahl method[J]. Environment and Development, 2019, 31(8):120-121.DOI: 10.16647/j.cnki.cn15-1369/X.2019.08.068.
[21]
中国林业科学研究院林业研究所森林土壤研究室. 森林土壤全磷的测定[Z]. 1999.
Forest Soil Research Office,Institute of Forestry, Chinese Academy of Forestry. Determination of total phosphorus in forest soil[Z]. 1999.
[22]
中国林业科学研究院林业研究所森林土壤研究室. 森林土壤全钾的测定[Z]. 1999.
Forest Soil Research Office,Institute of Forestry, Chinese Academy of Forestry. Determination of total potassium in forest soil[Z]. 1999.
[23]
环境保护部. 土壤有机碳的测定重铬酸钾氧化-分光光度法:HJ 615—2011[S]. 北京: 中国环境科学出版社, 2011.
Ministry of Environmental Protection of the People’s Republic of China. Soil determination of organic carbon: potassium dichromate oxidation:HJ 615—2011[S]. Beijing: China Environmental Science Press, 2011.
[24]
HARRIS I, OSBORN T J, JONES P, et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset[J]. Scientific Data, 2020, 7(1):109.DOI: 10.1038/s41597-020-0453-3.
[25]
袁位高, 江波, 葛永金, 等. 浙江省重点公益林生物量模型研究[J]. 浙江林业科技, 2009, 29(2):1-5.
YUAN W G, JIANG B, GE Y J, et al. Study on biomass model of key ecological forest in Zhejiang Province[J]. Journal of Zhejiang Forestry Science and Technology, 2009, 29(2):1-5.DOI: 10.3969/j.issn.1001-3776.2009.02.001.
[26]
马克平. 生物群落多样性的测度方法Ⅰ:α多样性的测度方法(上)[J]. 生物多样性, 1994, 2 (3): 162-168.
MA K P. Methods for measuring the diversity of biological communities I. Methods for measuring the diversity of αdiversity (I)[J]. Biodiversity Science, 1994, 2 (3): 162-168. DOI: CNKI:SUN:SWDY.0.1994-03-006.
[27]
朱杰, 吴安驰, 邹顺, 等. 南亚热带常绿阔叶林树木多样性与生物量和生产力的关联及其影响因素[J]. 生物多样性, 2021, 29: 1435-1446.
ZHU J, WU A C, ZOU S, et al. Relationships between tree diversity and biomass/productivity and their influence factors in a lower subtropical evergreen broad-leaved forest[J]. Biodiversity Science, 2021, 29: 1435-1446. DOI: 10.17520/biods.2021014.
[28]
崔倩, 潘存德, 李贵华, 等. 喀纳斯泰加林群落物种多样性环境解释与自然火干扰[J]. 生态学杂志, 2018, 37(6):1824-1832.
CUI Q, PAN C D, LI G H, et al. Effects of environmental factors and natural fire disturbance on species diversity in Kanas taiga forest[J]. Chinese Journal of Ecology, 2018, 37(6):1824-1832.DOI: 10.13292/j.1000-4890.201806.022.
[29]
郭建兴, 叶茂, 殷锡凯, 等. 阿尔泰山两河源牧区草地群落生物量及物种多样性[J]. 西北植物学报, 2022, 42(11):1936-1944.
GUO J X, YE M, YIN X K, et al. Biomass and diversity of grassland community in the two-river source pastoral areas of Altai Mountains[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(11):1936-1944.DOI: 10.7606/j.issn.1000-4025.2022.11.1936.
[30]
沙威, 董世魁, 刘世梁, 等. 阿尔金山自然保护区植物群落生物量和物种多样性的空间格局及其影响因素[J]. 生态学杂志, 2016, 35(2):330-337.
SHA W, DONG S K, LIU S L, et al. Spatial patterns of plant community biomass and species diversity in Aerjin Mountain Nature Reserve and their influencing factors[J]. Chinese Journal of Ecology, 2016, 35(2):330-337.DOI: 10.13292/j.1000-4890.201602.032.
[31]
KITAYAMA K, AIBA S I. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu,Borneo[J]. Journal of Ecology, 2002, 90(1):37-51. DOI: 10.1046/j.0022-0477.2001.00634.x.
[32]
刘新圣, 蔡路路, 张亦赟, 等. 黄山松林生物量随海拔梯度的变化特征[J]. 森林与环境学报, 2023, 43(5):516-522.
LIU X S, CAI L L, ZHANG Y Y, et al. Variations in the stand biomass of Pinus taiwanensis forests along an altitudinal gradient[J]. Journal of Forest and Environment, 2023, 43(5):516-522.DOI: 10.13324/j.cnki.jfcf.2023.05.009.
[33]
MOSER G, HERTEL D, LEUSCHNER C. Altitudinal change in LAI and stand leaf biomass in tropical montane forests:a transect study in Ecuador and a pan-tropical meta-analysis[J]. Ecosystems, 2007, 10(6):924-935.DOI: 10.1007/s10021-007-9063-6.
[34]
贾勃, 王新杰. 东北针阔混交林生物量动态过程及稳定性研究[J]. 林业科学研究, 2023, 36(5):41-49.
JIA B, WANG X J. Dynamics and stability of biomass of coniferous and broadleaved mixed forests in northeast China[J]. Forest Research, 2023, 36(5):41-49.DOI: 10.12403/j.1001-1498.20230072.
[35]
PENG L, XU X J, LIAO X F, et al. Ampelocalamus luodianensis (Poaceae),a plant endemic to karst,adapts to resource heterogeneity in differing microhabitats by adjusting its biomass allocation[J]. Global Ecology and Conservation, 2023,41:e02374.DOI: 10.1016/j.gecco.2023.e02374.
[36]
ZHANG H, SONG T Q, WANG K L, et al. Influences of stand characteristics and environmental factors on forest biomass and root-shoot allocation in southwest China[J]. Ecological Engineering, 2016, 91:7-15.DOI: 10.1016/j.ecoleng.2016.01.040.
[37]
HOSSAIN M L, BEIERKUHNLEIN C. Enhanced aboveground biomass by increased precipitation in a central European grassland[J]. Ecological Processes, 2018, 7(1):37.DOI: 10.1186/s13717-018-0149-1.
[38]
文志, 郑华, 欧阳志云. 生物多样性与生态系统服务关系研究进展[J]. 应用生态学报, 2020, 31(1):340-348.
WEN Z, ZHENG H, OUYANG Z Y. Research progress on the relationship between biodiversity and ecosystem services[J]. Chinese Journal of Applied Ecology, 2020, 31(1):340-348. DOI: 10.13287/j.1001-9332.202001.003.
[39]
DIELER J, UHL E, BIBER P, et al. Effect of forest stand management on species composition,structural diversity,and productivity in the temperate zone of Europe[J]. European Journal of Forest Research, 2017, 136(4):739-766.DOI: 10.1007/s10342-017-1056-1.
[40]
和紫微, 刘智军, 刘永杰, 等. 重庆市不同郁闭度天然乔木林林下草物种多样性研究[J]. 林业建设, 2023, 41(4): 40-47.
HE Z W, LIU Z J, LIU Y J, et al. Study on species diversity of understory herb in natural arbor forest with different canopy density in Chongqing[J]. Forestry Construction, 2023, 41(4): 40-47.
[41]
PAUDELS, SAH J P. Effects of different management practices on stand composition and species diversity in subtropical forests in Nepal:implications of community participation in biodiversity conservation[J]. Journal of Sustainable Forestry, 2015, 34(8):738-760.DOI: 10.1080/10549811.2015.1036298.
[42]
王依瑞, 王彦辉, 段文标, 等. 黄土高原刺槐人工林郁闭度对林下植物多样性特征的影响[J]. 应用生态学报, 2023, 34(2):305-314.
WANG Y R, WANG Y H, DUAN W B, et al. Effects of canopy density on understory plant diversity in Robinia pseudoacacia plantations on the Loess Plateau of China[J]. Chinese Journal of Applied Ecology, 2023, 34(2):305-314.DOI: 10.13287/j.1001-9332.202302.008.
[43]
黄玉杰, 刘道纯, 赵师成. 自然生草桃园表层土壤水分和草地地上生物量的空间分布及其关系[J]. 经济林研究, 2020, 38(1):83-89.
HUANG Y J, LIU D C, ZHAO S C. Spatial distribution of topsoil water and aboveground grass biomass in a peach orchard under natural grassing condition[J]. Non-wood Forest Research, 2020, 38(1):83-89.DOI: 10.14067/j.cnki.1003-8981.2020.01.011.
[44]
曹梦, 潘萍, 欧阳勋志, 等. 飞播马尾松林林下植被组成、多样性及其与环境因子的关系[J]. 生态学杂志, 2018, 37(1):1-8.
CAO M, PAN P, OUYANG X Z, et al. Relationships between the composition and diversity of understory vegetation and environmental factors in aerially seeded Pinus massoniana plantations[J]. Chinese Journal of Ecology, 2018, 37(1):1-8.DOI: 10.13292/j.1000-4890.201801.009.
[45]
AMMER C. Diversity and forest productivity in a changing climate[J]. The New Phytologist, 2019, 221(1):50-66.DOI: 10.1111/nph.15263.
[46]
YANG Z Y, LIU X Q, ZHOU M H, et al. The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient[J]. Scientific Reports, 2015,5:15723.DOI: 10.1038/srep15723.
[47]
付刚, 周宇庭, 沈振西, 等. 藏北高原高寒草甸地上生物量与气候因子的关系[J]. 中国草地学报, 2011, 33(4):31-36.
FU G, ZHOU Y T, SHEN Z X, et al. Relationships between aboveground biomass and climate factors on alpine meadow in northern Tibet[J]. Chinese Journal of Grassland, 2011, 33(4):31-36.
[48]
杜卫. 中国森林生物量时空变化及其对气候变化响应[D]. 南京: 南京林业大学, 2018.
DU W. Temporal and spatial variation of forest biomass in China and its response to climate change[D]. Nanjing: Nanjing Forestry University, 2018.
[49]
FERRY J W, PAOLI G, MCGUIRE K, et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics[J]. Global Ecology and Biogeography, 2013, 22(12):1261-1271.DOI: 10.1111/geb.12092.
[50]
ZHU K, ZHANG J, NIU S L, et al. Limits to growth of forest biomass carbon sink under climate change[J]. Nature Communications, 2018, 9(1):2709.DOI: 10.1038/s41467-018-05132-5.
[51]
文国卫, 黄秋良, 吕增伟, 等. 气候变化情境下木荷潜在地理分布及生态适宜性分析[J]. 生态学报, 2023, 43(16):6617-6626.
WEN G W, HUANG Q L, LYU Z W, et al. Potential geographical distribution and ecological suitability of Schima superba under the situation of climate change[J]. Acta Ecologica Sinica, 2023, 43(16):6617-6626.DOI: 10.5846/stxb202201130121.
[52]
马骧, 谷雨晴, 邹朋峻, 等. 土壤理化性质对优势树种根系生物量的影响[J]. 江苏林业科技, 2023, 50(2):14-19.
MA X, GU Y Q, ZOU P J, et al. Effect of soil physio-chemical properties on root biomass of dominant trees[J]. Journal of Jiangsu Forestry Science & Technology, 2023, 50(2):14-19.DOI: 10.3969/j.issn.1001-7380.2023.02.003.
[53]
车卓, 石菁, 徐德亮. 河西走廊中段荒漠草地地上生物量分布特征及其与环境因子的关系[J]. 水土保持通报, 2016, 36(4):193-196,203.
CHE Z, SHI J, XU D L. Aboveground biomass distribution of desert grasslands and its responses to environmental factors in middle regions of Hexi Corridors[J]. Bulletin of Soil and Water Conservation, 2016, 36(4):193-196,203.DOI: 10.13961/j.cnki.stbctb.2016.04.034.
[54]
李婷婷, 唐永彬, 周润惠, 等. 云顶山不同人工林林下植物多样性及其与土壤理化性质的关系[J]. 生态学报, 2021, 41(3):1168-1177.
LI T T, TANG Y B, ZHOU R H, et al. Understory plant diversity and its relationship with soil physicochemical properties in different plantations in Yunding Mountain[J]. Acta Ecologica Sinica, 2021, 41(3):1168-1177.DOI: 10.5846/stxb202002270350.
[55]
王媚臻, 毕浩杰, 金锁, 等. 林分密度对云顶山柏木人工林林下物种多样性和土壤理化性质的影响[J]. 生态学报, 2019, 39(3):981-988.
WANG M Z, BI H J, JIN S, et al. Effects of stand density on understory species diversity and soil physicochemical properties of a Cupressus funebris plantation in Yunding Mountain[J]. Acta Ecologica Sinica, 2019, 39(3):981-988.DOI: 10.5846/stxb201803170528.
[56]
周国娜, 袁胜亮, 崔书文. 不同林分林下植被的多样性特征及生物量研究[J]. 湖北农业科学, 2012, 51(18):4052-4056.
ZHOU G N, YUAN S L, CUI S W. Research on diversity and biomass of undergrowth vegetation in different forest stands[J]. Hubei Agricultural Sciences, 2012, 51(18):4052-4056.DOI: 10.14088/j.cnki.issn0439-8114.2012.18.061.
[57]
OUYANG S, XIANG W H, WANG X P, et al. Significant effects of biodiversity on forest biomass during the succession of subtropical forest in South China[J]. Forest Ecology and Management, 2016, 372:291-302.DOI: 10.1016/j.foreco.2016.04.020.
[58]
郭正刚, 刘慧霞, 孙学刚, 等. 白龙江上游地区森林植物群落物种多样性的研究[J]. 植物生态学报, 2003, 27(3):388-395.
GUO Z G, LIU H X, SUN X G, et al. Characteristics of species diversity of plant communities in the upper reaches of Bailong River[J]. Acta Phytoecologica Sinica, 2003, 27(3):388-395.
[59]
ITURRATE-GARCIA M, O’BRIEN M J, KHITUN O, et al. Interactive effects between plant functional types and soil factors on tundra species diversity and community composition[J]. Ecology and Evolution, 2016, 6(22):8126-8137.DOI: 10.1002/ece3.2548.
[60]
金超, 李领寰, 吴初平, 等. 浙江省公益林生物多样性和立地对生物量的影响[J]. 浙江农林大学学报, 2021, 38(6):1083-1090.
JIN C, LI L H, WU C P, et al. Impact of biodiversity and site factors on biomass of public welfare forests in Zhejiang Province[J]. Journal of Zhejiang A & F University, 2021, 38(6):1083-1090.DOI: 10.11833/j.issn.2095-0756.20200696.
[61]
XU W M, LIU L, HE T H, et al. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest[J]. Scientific Reports, 2016,6:20652.DOI: 10.1038/srep20652.
[62]
冯健, 王骞春, 陆爱君, 等. 辽东山区长白落叶松异龄混交林植被多样性和土壤特征研究[J]. 西北农林科技大学学报(自然科学版), 2021, 49(3):57-66.
FENG J, WANG Q C, LU A J, et al. Study on vegetation diversity and soil characteristics of Larix olgensis uneven-aged mixed stand in eastern Liaoning mountain region[J]. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(3):57-66.DOI: 10.13207/j.cnki.jnwafu.2021.03.007.

基金

浙江省林业局项目(2022SY06)
浙江省重点研发计划(2021SY03)

编辑: 孟苗婧
PDF(3446 KB)

Accesses

Citation

Detail

段落导航
相关文章

/