浙西南低山丘陵区林分类型对土壤碳氮磷化学计量特征的影响

周方, 叶兰华, 童冉, 彭辉, 朱念福, 楼晨阳, 苗永朝, 吴统贵, 沈庆华

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (5) : 29-37.

PDF(1718 KB)
PDF(1718 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (5) : 29-37. DOI: 10.12302/j.issn.1000-2006.202402017
专题报道:土壤碳汇与养分元素循环利用研究(执行主编 张金池 薛建辉 阮宏华)

浙西南低山丘陵区林分类型对土壤碳氮磷化学计量特征的影响

作者信息 +

Impacts of forest stand types on the stoichiometric characteristics of soil carbon,nitrogen, and phosphorus in low hilly region of southwest Zhejiang Province

Author information +
文章历史 +

摘要

【目的】南方低山丘陵区是我国亚热带森林重要分布区,探究该区典型林分类型土壤碳、氮、磷化学计量特征及其影响因素,为南方低山丘陵区土壤肥力评估和施肥计划制定等提供理论依据。【方法】以浙西南低山丘陵区杉木(Cunninghamia lanceolata)林、马尾松(Pinus massoniana)林、杉木×马尾松混交林和杉木×毛竹(Phyllostachys edulis)混交林等林分的土壤为研究对象,分析土壤有机碳(SOC)、全氮(TN)、全磷(TP)质量分数及化学计量比对林分类型、土层深度、土壤有效养分的响应规律,以及化学计量特征间相关性、全量养分质量分数间的异速增长关系等。【结果】①0~40 cm土层的土壤TN、TP质量分数在4种林分类型间差异显著,平均值分别为1.20和0.19 g/kg,均为杉木×毛竹混交林土壤中最高;土壤碳氮比(表示为C/N)和碳磷比(C/P)的平均值分别为17.20和106.53,杉木×毛竹混交林土壤C/N和C/P均显著低于杉木林和杉木×马尾松混交林。②随着土层加深,整体及各林分类型土壤SOC与TN、TP质量分数均表现出减少的趋势,而土壤C/N和氮磷比(N/P)则分别表现出增加和减少的趋势。③相关性分析表明,土壤SOC与TN、TP质量分数及相关化学计量比之间均呈显著正相关,土壤TN和TP质量分数之间呈显著正相关;标准化主轴分析表明,土壤TP质量分数增长速率略低于TN,而显著低于SOC;冗余分析表明,土壤pH对C/P起到负向调控作用,土壤水解氮对TN、TP质量分数及化学计量比起到显著调控作用。【结论】浙西南低山丘陵区林分类型对土壤碳和养分质量分数及化学计量比影响显著,杉木×毛竹混交林可能通过减轻土壤酸化等途径对土壤养分状况起到一定的改善效果。

Abstract

【Objective】The low hilly region of south China constitutes critical distribution areas for subtropical forests. This study investigates the stoichiometric characteristics of soil carbon, nitrogen, and phosphorus under typical stand types in these regions, as well as their influencing factors, to provide a theoretical foundation for soil fertility assessment and fertilization planning in the southern low hilly regions. 【Method】This study focused on soils from four stand types in the low hilly region of southwestern Zhejiang Province, including Cunninghamia lanceolata forest, Pinus massoniana forest, C. lanceolata and P. massoniama mixed forest, and C. lanceolata and P. edulis mixed forest. We systematically analyzed the response patterns of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) mass fractions, as well as their stoichiometric ratios (C/N, C/P, N/P), to stand type, soil depth, and available nutrients. Additionally, correlations among stoichiometric characteristics and allometric growth relationships between total nutrient mass fractions were investigated. 【Result】(1) In the 0-40 cm soil layer, soil TN and TP mass fraction exhibited statistically significant differences among the four stand types, with mean values of 1.20 and 0.19 g/kg, respectively. Both soil TN and TP reached their highest level in the C. lanceolata and P. edulis mixed forest. The mean values of the ratio of SOC to TN (C/N, mass fraction ratio, the same below) and the ratio of SOC to TP (C/P) in soil were 17.20 and 106.53, respectively. The soil C/N and C/P ratios in the C. lanceolata and P. edulis mixed forest were significantly lower than those in C. lanceolata forest and C. lanceolata and P. massoniama mixed forest. (2) With increasing soil depth, the mass fraction of soil SOC, TN, and TP exhibited a declining trend both in the aggregated dataset and within each individual stand type. In contrast, the soil C/N displayed an upward trend, while the nitrogen-to-phosphorus ratio (N/P) showed declining trend with depth. (3) Correlation analysis demonstrated significant positive correlations between soil SOC, TN, and TP mass fractions, as well as their associated stoichiometric ratios. Additionally, a significant positive correlation was identified between TN and TP mass fractions. Standardized major axis analysis demonstrated that the accumulation rate of soil TP mass fraction was slightly lower than that of TN, while being significantly lower than that of SOC. Redundancy analysis indicated that soil pH exerted a negative regulatory effect on the C/P ratio, while soil hydrolysable nitrogen significantly modulated both the mass fractions of TN and TP and their stoichiometric ratios. 【Conclusion】Stand types in the low hilly region of western Zhejiang have significant effects on soil carbon and nutrient mass fractions and stoichiometric ratios. The C. lanceolata and P. edulis mixed forest may improve soil nutrient status by reducing soil acidification and other apporoaches.

关键词

南方低山丘陵区 / 亚热带常绿混交林 / 土壤养分 / 化学计量特征

Key words

low hilly region of south China / subtropical evergreen mixed forest / soil nutrient / stoichiometric characteristic

引用本文

导出引用
周方, 叶兰华, 童冉, . 浙西南低山丘陵区林分类型对土壤碳氮磷化学计量特征的影响[J]. 南京林业大学学报(自然科学版). 2025, 49(5): 29-37 https://doi.org/10.12302/j.issn.1000-2006.202402017
ZHOU Fang, YE Lanhua, TONG Ran, et al. Impacts of forest stand types on the stoichiometric characteristics of soil carbon,nitrogen, and phosphorus in low hilly region of southwest Zhejiang Province[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(5): 29-37 https://doi.org/10.12302/j.issn.1000-2006.202402017
中图分类号: S718.5;S154.1   

参考文献

[1]
BALDRIAN P. Microbial activity and the dynamics of ecosystem processes in forest soils[J]. Current Opinion in Microbiology, 2017, 37:128-134.DOI: 10.1016/j.mib.2017.06.008.
[2]
PRESCOTT C E. Litter decomposition:what controls it and how can we alter it to sequester more carbon in forest soils[J]. Biogeochemistry, 2010, 101(1):133-149.DOI: 10.1007/s10533-010-9439-0.
[3]
CROVO O, ABURTO F, ALBORNOZ M F, et al. Soil type modulates the response of C,N,P stocks and stoichiometry after native forest substitution by exotic plantations[J]. CATENA, 2021, 197:104997.DOI: 10.1016/j.catena.2020.104997.
[4]
JOSHI R K, GARKOTI S C. Influence of vegetation types on soil physical and chemical properties,microbial biomass and stoichiometry in the central Himalaya[J]. CATENA, 2023, 222:106835.DOI: 10.1016/j.catena.2022.106835.
[5]
GERKE J. The central role of soil organic matter in soil fertility and carbon storage[J]. Soil Systems, 2022, 6(2):33.DOI: 10.3390/soilsystems6020033.
[6]
ZHAO X Y, ZHANG W Q, FENG Y J, et al. Soil organic carbon primarily control the soil moisture characteristic during forest restoration in subtropical China[J]. Frontiers in Ecology and Evolution, 2022, 10:1003532.DOI: 10.3389/fevo.2022.1003532.
[7]
新华, 张斌, 赵其国. 土壤有机碳库与土壤结构稳定性关系的研究进展[J]. 土壤学报, 2004, 41(4):618-623.
PENG X H, ZHANG B, ZHAO Q G. A review on relationship between soil organic carbon pools and soil structure stability[J]. Acta Pedologica Sinica, 2004, 41(4):618-623.DOI: 10.3321/j.issn:0564-3929.2004.04.019.
[8]
DU E Z, TERRER C, PELLEGRINI A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation[J]. Nature Geoscience, 2020, 13(3):221-226.DOI: 10.1038/s41561-019-0530-4.
[9]
FERNÁNDEZ-MARTÍNEZ M, VICCA S, JANSSENS I A, et al. Nutrient availability as the key regulator of global forest carbon balance[J]. Nature Climate Change, 2014, 4(6):471-476.DOI: 10.1038/nclimate2177.
[10]
曹小玉, 李际平, 封尧, 等. 杉木生态公益林林分空间结构分析及评价[J]. 林业科学, 2015, 51(7):37-48.
CAO X Y, LI J P, FENG Y, et al. Analysis and evaluation of the stand spatial structure of Cunninghamia lanceolata ecological forest[J]. Scientia Silvae Sinicae, 2015, 51(7):37-48.DOI: 10.11707/j.1001-7488.20150705.
[11]
秦国峰, 王锦上, 张丽瑶, 等. 马尾松优质高产纸浆林培育技术及经营效益[J]. 林业科学研究, 2003, 16(1):45-51.
QIN G F, WANG J S, ZHANG L Y, et al. Study on cultivation of a high-yielding Masson pine pulp stand and analysis on its economic benefits[J]. Forest Research, 2003, 16(1):45-51.DOI: 10.3321/j.issn:1001-1498.2003.01.008.
[12]
林英华, 汪来发, 田晓堃, 等. 三峡库区杉木马尾松混交林土壤C、N空间特征[J]. 生态学报, 2011, 31(23):326-334.
LIN Y H, WANG L F, TIAN X K, et al. Spatial structures of soil carbon and nitrogen of China fir and Masson pine mixed forest in the Three Gorger Reservoir areas[J]. Acta Ecologica Sinica, 2011, 31(23):326-334.DOI: 10.20103/j.stxb.2011.23.038.
[13]
刘美玲. 杉木马尾松混交林生长特性与养分竞争关系研究[D]. 长沙: 中南林业科技大学, 2020. .
LIU M L. Study on the relationship between growth characteristics and nutrient competition of Chinese fir and Pinus massoniana mixed forest[D]. Changsha: Central South University of Forestry & Technology, 2020.DOI: 10.27662/d.cnki.gznlc.2020.000023.
[14]
SUN H P, HU W Y, DAI Y X, et al. Moso bamboo (Phyllostachys edulis (Carrière) J.HouZeau) invasion affects soil microbial communities in adjacent planted forests in the Lijiang River basin,China[J]. Frontiers in Microbiology, 2023, 14:1111498.DOI: 10.3389/fmicb.2023.1111498.
[15]
江思源, 程雪飞, 张金池, 等. 毛竹入侵对杉木人工林表层土壤真菌多样性及群落结构的影响[J]. 东北林业大学学报, 2023, 51(2):91-96,122.
JIANG S Y, CHENG X F, ZHANG J C, et al. Effects of Phyllostachys edulis invasion on surface soil fungal diversity and community structure in Cunninghamia lanceolata plantation[J]. Journal of Northeast Forestry University, 2023, 51(2):91-96,122.DOI: 10.3969/j.issn.1000-5382.2023.02.015.
[16]
WANG Y, CHEN L, XIANG W H, et al. Forest conversion to plantations:a meta-analysis of consequences for soil and microbial properties and functions[J]. Global Change Biology, 2021, 27(21):5643-5656.DOI: 10.1111/gcb.15835.
[17]
曾婷婷, 张玲玲, 李意德, 等. 林型转化对土壤pH、有机碳组分和交换性矿质元素的影响[J]. 生态环境学报, 2016, 25(4):576-582.
ZENG T T, ZHANG L L, LI Y D, et al. Effect of forest conversion on soil pH,organic carbon fractions and exchangeable mineral nutrients[J]. Ecology and Environmental Sciences, 2016, 25(4):576-582.DOI: 10.16258/j.cnki.1674-5906.2016.04.005.
[18]
国家林业局. LY/T 1239—1999 森林土壤pH值的测定[S]. 北京: 中国林业出版社, 1999.
State Forestry Administration. LY/T 1239-1999 Determination of pH in forest soil[S]. Beijing: China Forestry Publishing House, 1999.
[19]
国家林业局. LY/T 1237—1999 森林土壤有机质的测定及碳氮比的计算[S]. 北京: 中国林业出版社, 1999.
State Forestry Administration. LY/T 1237-1999. Determination of organic matter in forest soil and calculation of carbon-nitrogen ratio[S]. Beijing: China Forestry Publishing House, 1999.
[20]
国家林业局. LY/T 1228—2015 森林土壤氮的测定[S]. 北京: 中国标准出版社, 2015.
State Forestry Administration. LY/T 1228-2015 Determination of nitrogen in forest soil[S]. Beijing: China Standards Press, 2015.
[21]
国家林业局. LY/T 1232—2015 森林土壤磷的测定[S]. 北京: 中国标准出版社, 2015.
State Forestry Administration. LY/T 1232-2015 Determination of phosphorus in forest soil[S]. Beijing: China Standards Press, 2015.
[22]
WILDING L P. Soil spatial variability: its documentation, accommodation and implication to soil surveys[J]. Spatial Variation, 1985: 166-187.
[23]
潘蕊蕊, 李小雁, 胡广荣, 等. 青海湖流域季节性冻土区坡面土壤有机碳分布特征及其影响因素[J]. 生态学报, 2020, 40(18):6374-6384.
PAN R R, LI X Y, HU G R, et al. Characteristics of soil organic carbon distribution and its controlling factors on hillslope in seasonal frozen area of Qinghai Lake basin[J]. Acta Ecologica Sinica, 2020, 40(18):6374-6384.DOI: 10.5846/stxb201910172176.
[24]
LIU Y, LI S Y, SUN X Y, et al. Variations of forest soil organic carbon and its influencing factors in east China[J]. Annals of Forest Science, 2016, 73(2):501-511.DOI: 10.1007/s13595-016-0543-8.
[25]
WIESMEIER M, URBANSKI L, HOBLEY E, et al. Soil organic carbon storage as a key function of soils: a review of drivers and indicators at various scales[J]. Geoderma, 2019, 333:149-162.DOI: 10.1016/j.geoderma.2018.07.026.
[26]
王大鹏, 王文斌, 郑亮, 等. 中国主要人工林土壤有机碳的比较[J]. 生态环境学报, 2014, 23(4):698-704.
WANG D P, WANG W B, ZHENG L, et al. Compared of soil organic carbon of different plantations in China[J]. Ecology and Environmental Sciences, 2014, 23(4):698-704.DOI: 10.16258/j.cnki.1674-5906.2014.04.005.
[27]
TIAN H Q, CHEN G S, ZHANG C, et al. Pattern and variation of C∶N∶P ratios in China’s soils:a synthesis of observational data[J]. Biogeochemistry, 2010, 98(1):139-151.DOI: 10.1007/s10533-009-9382-0.
[28]
刘伟, 程积民, 高阳, 等. 黄土高原草地土壤有机碳分布及其影响因素[J]. 土壤学报, 2012, 49(1):68-76.
LIU W, CHENG J M, GAO Y, et al. Distribution of soil organic carbon in grassland on Loess Plateau and its influencing factors[J]. Acta Pedologica Sinica, 2012, 49(1):68-76.
[29]
WYNN J G, BIRD M I, VELLEN L, et al. Continental-scale measurement of the soil organic carbon pool with climatic,edaphic,and biotic controls[J]. Global Biogeochemical Cycles, 2006, 20(1):2005GB002576.DOI: 10.1029/2005gb002576.
[30]
冯嘉仪, 储双双, 王婧, 等. 华南地区几种典型人工林土壤有机碳密度及其与土壤物理性质的关系[J]. 华南农业大学学报, 2018, 39(1):85-92.
FENG J Y, CHU S S, WANG J, et al. Soil organic carbon density and its relationship with soil physical properties of typical plantations in south China[J]. Journal of South China Agricultural University, 2018, 39(1):85-92.
[31]
辜翔, 张仕吉, 项文化, 等. 中亚热带4种森林类型土壤活性有机碳的季节动态特征[J]. 植物生态学报, 2016, 40(10):1064-1076.
GU X, ZHANG S J, XIANG W H, et al. Seasonal dynamics of active soil organic carbon in four subtropical forests in southern China[J]. Chinese Journal of Plant Ecology, 2016, 40(10):1064-1076.DOI: 10.17521/cjpe.2015.0412.
[32]
张丽霞, 白永飞, 韩兴国. N:P化学计量学在生态学研究中的应用[J]. 植物学报, 2003, 45(9):1009-1018.
ZHANG L X, BAI Y F, HAN X G. Application of N:P stoichiometry to ecology studies[J]. Journal of Integrative Plant Biology, 2003, 45(9):1009-1018.DOI: 10.3321/j.issn:1672-9072.2003.09.001.
[33]
曹娟, 闫文德, 项文化, 等. 湖南会同不同年龄杉木人工林土壤磷素特征[J]. 生态学报, 2014, 34(22):6519-6527.
CAO J, YAN W D, XIANG W H, et al. Characteristics of soil phosphorus in different aged stands of Chinese fir plantations in Huitong, Hunan Province[J]. Acta Ecologica Sinica, 2014, 34(22):6519-6527.DOI: 10.5846/stxb201404060655.
[34]
肖好燕, 刘宝, 余再鹏, 等. 亚热带不同林分土壤矿质氮库及氮矿化速率的季节动态[J]. 应用生态学报, 2017, 28(3):730-738.
XIAO H Y, LIU B, YU Z P, et al. Seasonal dynamics of soil mineral nitrogen pools and nitrogen mineralization rate in different forests in subtropical China[J]. Chinese Journal of Applied Ecology, 2017, 28(3):730-738.DOI: 10.13287/j.1001-9332.201703.036.
[35]
张一帆, 武海涛, 刘吉平, 等. 长白山地土壤碳、氮、磷含量及生态化学计量垂直特征[J]. 环境生态学, 2023, 5(1):7-15,81.
ZHANG Y F, WU H T, LIU J P, et al. Vertical characteristics of soil carbon,nitrogen and phosphorus contents and ecological stoichiometry in the Changbai Mountains[J]. Environmental Ecology, 2023, 5(1):7-15,81.
[36]
刘顺, 罗达, 刘千里, 等. 川西亚高山不同森林生态系统碳氮储量及其分配格局[J]. 生态学报, 2017, 37(4):1074-1083.
LIU S, LUO D, LIU Q L, et al. Carbon and nitrogen storage and distribution in different forest ecosystems in the subalpine of western Sichuan[J]. Acta Ecologica Sinica, 2017, 37(4):1074-1083.DOI: 10.5846/stxb201604150688.
[37]
袁再健, 马东方, 聂小东, 等. 南方红壤丘陵区林下水土流失防治研究进展[J]. 土壤学报, 2020, 57(1):12-21.
YUAN Z J, MA D F, NIE X D, et al. Progress in research on prevention and control of soil erosion under forest in red soil hilly region of south China[J]. Acta Pedologica Sinica, 2020, 57(1):12-21.DOI: 10.11766/trxb201901080614.
[38]
张娜, 王希华, 郑泽梅, 等. 浙江天童常绿阔叶林土壤的空间异质性及其与地形的关系[J]. 应用生态学报, 2012, 23(9):2361-2369.
ZHANG N, WANG X H, ZHENG Z M, et al. Spatial heterogeneity of soil properties and its relationships with terrain factors in broadleaved forest in Tiantong of Zhejiang Province,east China[J]. Chinese Journal of Applied Ecology, 2012, 23(9):2361-2369.DOI: 10.13287/j.1001-9332.2012.0327.
[39]
赵琼, 曾德慧, 陈伏生, 等. 沙地樟子松人工林土壤磷库及其有效性初步研究[J]. 生态学杂志, 2004, 23(5):224-227.
ZHAO Q, ZENG D H, CHEN F S, et al. Soil phosphorus pools and availability on Pinus sylvestris var. mongolica plantation[J]. Chinese Journal of Ecology, 2004, 23(5):224-227.
[40]
刘广路, 范少辉, 官凤英, 等. 毛竹凋落叶组成对叶凋落物分解的影响[J]. 生态学杂志, 2011, 30(8):1598-1603.
LIU G L, FAN S H, GUAN F Y, et al. Effects of different proportion mixed Phyllostachys pubescens leaf litter on litter decomposition in P.pubescens forest[J]. Chinese Journal of Ecology, 2011, 30(8):1598-1603.DOI: 10.13292/j.1000-4890.2011.0241.
[41]
MAGE S M, PORDER S. Parent material and topography determine soil phosphorus status in the Luquillo mountains of Puerto Rico[J]. Ecosystems, 2013, 16(2):284-294.DOI: 10.1007/s10021-012-9612-5.
[42]
YOUSEFPOUR R, AUGUSTYNCZIK A L D, REYER C P O, et al. Realizing mitigation efficiency of European commercial forests by climate smart forestry[J]. Scientific Reports, 2018, 8(1):345.DOI: 10.1038/s41598-017-18778-w.
[43]
冯德枫, 包维楷. 土壤碳氮磷化学计量比时空格局及影响因素研究进展[J]. 应用与环境生物学报, 2017, 23(2):400-408.
FENG D F, BAO W K. Review of the temporal and spatial patterns of soil C∶N∶P stoichiometry and its driving factors[J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(2):400-408.DOI: 10.3724/SP.J.1145.2016.04018.
[44]
Huhe, CHEN X J, HOU F J, et al. Bacterial and fungal community structures in Loess Plateau grasslands with different grazing intensities[J]. Frontiers in Microbiology, 2017, 8:606.DOI: 10.3389/fmicb.2017.00606.
[45]
许宇星, 王志超, 竹万宽, 等. 雷州半岛3种速生人工林下土壤生态化学计量特征[J]. 浙江农林大学学报, 2018, 35(1):35-42.
XU Y X, WANG Z C, ZHU W K, et al. Ecological stoichiometric characteristics of soil C,N,P,and K in three types of plantations on the Leizhou Peninsula[J]. Journal of Zhejiang A & F University, 2018, 35(1):35-42.DOI: 10.11833/j.issn.2095-0756.2018.01.005.
[46]
张跃进, 李沁谊, 王好才, 等. 中国西南喀斯特地区植被自然恢复演替典型群落土壤碳氮储量特征[J]. 林业科学, 2023, 59(7):45-53.
ZHANG Y J, LI Q Y, WANG H C, et al. Characteristics of soil carbon and nitrogen storage in typical communities of natural restoration and succession of vegetation in Karst areas of southwest China[J]. Scientia Silvae Sinicae, 2023, 59(7):45-53.DOI: 10.11707/j.1001-7488.LYKX20220014.
[47]
CHEN M Y, YANG X, SHAO M A, et al. Changes in soil C-N-P stoichiometry after 20 years of typical artificial vegetation restoration in semiarid continental climate zones[J]. Science of The Total Environment, 2022, 852:158380.DOI: 10.1016/j.scitotenv.2022.158380.
[48]
HÖGBERG P, WELLBROCK N, HÖGBERG M N, et al. Large differences in plant nitrogen supply in German and Swedish forests: implications for management[J]. Forest Ecology and Management, 2021, 482:118899.DOI: 10.1016/j.foreco.2020.118899.
[49]
DENG J J, YIN Y, ZHU W X, et al. Variations in soil bacterial community diversity and structures among different revegetation types in the Baishilazi Nature Reserve[J]. Frontiers in Microbiology, 2018, 9:2874.DOI: 10.3389/fmicb.2018.02874.
[50]
黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.
HUANG C Y. Soil science[M]. Beijing: China Agriculture Press, 2000.
[51]
姜哲浩, 周泽, 陈建忠, 等. 三江源区不同海拔高寒草原土壤养分及化学计量特征[J]. 草地学报, 2019, 27(4):1029-1036.
JIANG Z H, ZHOU Z, CHEN J Z, et al. Soil nutrient and stoichiometry of alpine steppe under different altitudes in the Three-River Headwaters region[J]. Acta Agrestia Sinica, 2019, 27(4):1029-1036.DOI: 10.11733/j.issn.1007-0435.2019.04.030.
[52]
张萍, 章广琦, 赵一娉, 等. 黄土丘陵区不同森林类型叶片-凋落物-土壤生态化学计量特征[J]. 生态学报, 2018, 38(14):5087-5098.
ZHANG P, ZHANG G Q, ZHAO Y P, et al. Ecological stoichiometry characteristics of leaf-litter-soil interactions in different forest types in the Loess hilly-gully region of China[J]. Acta Ecologica Sinica, 2018, 38(14):5087-5098.DOI: 10.5846/stxb201707051215.
[53]
罗丝琼, 郭其强, 盘金文, 等. 黔东南3种林型土壤碳氮磷生态化学计量特征[J]. 南方农业学报, 2022, 53(11):3192-3200.
LUO S Q, GUO Q Q, PAN J W, et al. Stoichiometry characteristics of soil carbon,nitrogen and phosphorus of three forest types in southeast of Guizhou Province[J]. Journal of Southern Agriculture, 2022, 53(11):3192-3200.DOI: 10.3969/j.issn.2095-1191.2022.11.020.
[54]
雷丽群, 卢立华, 农友, 等. 不同林龄马尾松人工林土壤碳氮磷生态化学计量特征[J]. 林业科学研究, 2017, 30(6):954-960.
LEI L Q, LU L H, NONG Y, et al. Stoichiometry characterization of soil C,N and P of Pinus massoniana plantations at different age stages[J]. Forest Research, 2017, 30(6):954-960.DOI: 10.13275/j.cnki.lykxyj.2017.06.010.
[55]
杨帆, 徐洋, 崔勇, 等. 近30年中国农田耕层土壤有机质含量变化[J]. 土壤学报, 2017, 54(5):1047-1056.
YANG F, XU Y, CUI Y, et al. Variation of soil organic matter content in croplands of China over the last three decades[J]. Acta Pedologica Sinica, 2017, 54(5):1047-1056.DOI: 10.11766/trxb201703180633.
[56]
简尊吉, 倪妍妍, 徐瑾, 等. 中国马尾松林土壤肥力特征[J]. 生态学报, 2021, 41(13):5279-5288.
JIAN Z J, NI Y Y, XU J, et al. Soil fertility in the Pinus massoniana forests of China[J]. Acta Ecologica Sinica, 2021, 41(13):5279-5288.DOI: 10.5846/stxb202007021716.

基金

百山祖国家公园科学研究项目(2021KFLY12)
中国林业科学研究院基本科研业务费专项资金项目(CAFYBB2022SY010)

编辑: 孟苗婧
PDF(1718 KB)

Accesses

Citation

Detail

段落导航
相关文章

/