5个冬青品种枝条抗弯力学特性及其与理化性质的关系

殷雅文, 侯召斌, 刘佳琪, 吴文平, 邹义萍, 郝明灼

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (5) : 95-102.

PDF(1929 KB)
PDF(1929 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (5) : 95-102. DOI: 10.12302/j.issn.1000-2006.202402025
研究论文

5个冬青品种枝条抗弯力学特性及其与理化性质的关系

作者信息 +

Bending characteristics of branches of five Ilex varieties and their relationship with physicochemical properties

Author information +
文章历史 +

摘要

【目的】筛选宜造型冬青品种,并分析化学组分与物理性质对枝条抗弯力学特性的影响机制,为其他造型冬青品种的筛选提供理论依据。【方法】以5个冬青品种‘长青柳’(Ilex cassine ‘Angustifolia’ )、‘内莉’(I. × ‘Nellie R. Stevens’)、‘黄金枸骨’(I. × attenuata ‘Sunny Foster’)、‘红玛瑙’(I. decidua ‘Hongmanao’)、‘冬红’(I. verticillata ‘Winter Red’)为研究对象,测定2.5~7.5mm共5个径级的枝条抗弯力及抗弯弹性模量(MOE),纤维素、半纤维素和木质素的含量,以及微纤丝角(MFA)及结晶度(Crl)等指标。【结果】①5个冬青品种的抗弯力、抗弯弹性模量(MOE)随径级增加而增大,枝条化学组分及结晶度的变化与力学性质的变化类似,微纤丝角随径级增加而减小。②5个冬青品种抗弯力和MOE存在显著差异(P<0.05),‘红玛瑙’的抗弯力及MOE最高,‘冬红’最低。③纤维素含量、综纤维素含量、结晶度与枝条的MOE呈显著正相关,微纤丝角与MOE呈显著负相关(P<0.05)。【结论】‘冬红’(MOE为154.88~645.87 MPa)及‘内莉’(MOE为212.09~772.00 MPa)的MOE显著低于其他品种,表明其枝条柔韧性更优,为适宜造型的冬青品种;而枝条纤维素、综纤维素含量、微纤丝角、结晶度等指标是影响枝条抗弯特性的主要因素。

Abstract

【Objective】To screen Ilex varieties suitable for topiary and to investigate the influencing mechanisms of chemical composition and physical properties on the flexural mechanical characteristics of branches, providing a theoretical basis for selecting other Ilex varieties for topiary.【Method】Five Ilex varieties—Ilex cassine ‘Angustifolia’, I. × ‘Nellie R. Stevens’), I. × attenuata ‘Sunny Foster’, I. decidua ‘Hongmanao’, and I. verticillata ‘Winter Red’—were selected as research subjects. The flexural force and flexural modulus of elasticity (MOE) in bending of branches across five diameter classes (2.5-7.5 mm), as well as the contents of cellulose, hemicellulose, and lignin, as well as microfibril angle (MFA), and crystallinity (Crl), were measured.【Result】(1) The flexural force and MOE of the five Ilex varieties increased with increasing branch diameter class. Changes in the chemical composition and crystallinity exhibited trends similar to those of the mechanical properties, while the MFA decreased with increasing diameter class. (2) Significant differences (P < 0.05) in flexural force and MOE were observed among the five varieties. ‘Hongmanao’ exhibited the highest values for both flexural force and MOE, whereas ‘Winter Red’ exhibited the lowest. (3) Cellulose content, holocellulose content, and crystallinity showed significant positive correlations with branch MOE, while the MFA showed a significant negative correlation with MOE (P < 0.05). 【Conclusion】The MOE of ‘Winter Red’ (MOE: 154.88-645.87 MPa) and ‘Nellie R. Stevens’ (MOE: 212.09-772.00 MPa) was significantly lower than that of the other varieties, indicating their branches possess greater flexibility and are thus more suitable for topiary. Cellulose content, holocellulose content, MFA, and crystallinity are identified as key factors influencing the flexural properties of branches.

关键词

冬青 / 枝条 / 抗弯弹性模量 / 微纤丝角 / 纤维素 / 结晶度

Key words

Ilex / branches / flexural modulus of elasticity / microfibril angle / cellulose / crystallinity

引用本文

导出引用
殷雅文, 侯召斌, 刘佳琪, . 5个冬青品种枝条抗弯力学特性及其与理化性质的关系[J]. 南京林业大学学报(自然科学版). 2025, 49(5): 95-102 https://doi.org/10.12302/j.issn.1000-2006.202402025
YIN Yawen, HOU Zhaobin, LIU Jiaqi, et al. Bending characteristics of branches of five Ilex varieties and their relationship with physicochemical properties[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(5): 95-102 https://doi.org/10.12302/j.issn.1000-2006.202402025
中图分类号: S687;TS611   

参考文献

[1]
陈雪, 钱大为. 植物编艺技术原理及在园林绿化工程中的应用[J]. 绿色科技, 2019, 21(23):181-182.
CHEN X, QIAN D W. Principle of plant weaving technology and its application in landscape engineering[J]. Journal of Green Science and Technology, 2019, 21(23):181-182.DOI: 10.16663/j.cnki.lskj.2019.23.075.
[2]
李树华. 中国盆景文化史[M]. 2版. 北京: 中国林业出版社, 2019.
LI S H. A cultural history of Chinese penjing[M]. 2nd ed. Beijing: China Forestry Publishing House, 2019.
[3]
ANTONY F, JORDAN L, SCHIMLECK L R, et al. Regional variation in wood modulus of elasticity (stiffness) and modulus of rupture (strength) of planted loblolly pine in the United States[J]. Canadian Journal of Forest Research, 2011, 41(7):1522-1533.DOI: 10.1139/x11-064.
[4]
梁莉, 郭玉明. 作物茎秆生物力学性质与形态特性相关性研究[J]. 农业工程学报, 2008, 24(7):1-6.
LIANG L, GUO Y M. Correlation study of biomechanical properties and morphological characteristics of crop stalks[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(7):1-6.DOI: 10.3321/j.issn:1002-6819.2008.07.001.
[5]
SONE K, NOGUCHI K, TERASHIMA I. Mechanical and ecophysiological significance of the form of a young Acer rufinerve tree:vertical gradient in branch mechanical properties[J]. Tree Physiology, 2006, 26(12):1549-1558.DOI: 10.1093/treephys/26.12.1549.
[6]
VAN CASTEREN A, SELLERS W I, THORPE S K S, et al. Why don’t branches snap? The mechanics of bending failure in three temperate angiosperm trees[J]. Trees, 2012, 26(3):789-797.DOI: 10.1007/s00468-011-0650-y.
[7]
刘基, 金诚谦, 梁苏宁, 等. 黄淮海地区大豆茎秆力学特性的多品种对比试验研究[J]. 农机化研究, 2018, 40(6):124-131.
LIU J, JIN C Q, LIANG S N, et al. Comparison experiment research on mechanics characteristics of varieties of soybean stalks of Huanghuaihai Region[J]. Journal of Agricultural Mechanization Research, 2018, 40(6):124-131.DOI: 10.13427/j.cnki.njyi.2018.06.025.
[8]
成俊卿. 木材学[M]. 北京: 中国林业出版社, 1985.
CHENG J Q. Woodology[M]. Beijing: China Forestry Publishing House, 1985.
[9]
王传贵, 江泽慧, 费本华, 等. 化学成分对木材细胞壁纵向弹性模量和硬度的影响[J]. 北京林业大学学报, 2012, 34(3):107-110.
WANG C G, JIANG Z H, FEI B H, et al. Effects of chemical components on longitudinal MOE and hardness of wood cell wall[J]. Journal of Beijing Forestry University, 2012, 34(3):107-110.DOI: 10.13332/j.1000-1522.2012.03.004.
[10]
EVANS R, ILIC J. Rapid prediction of wood stiffness from microfibril angle and density[J]. Forest Products Journal, 2001, 51(3):53-57.
[11]
JORDAN L, HE R, HALL D B, et al. Variation in loblolly pine ring microfibril angle in the southeastern United States[J]. Wood and Fiber Science, 2007, 39(2): 352-363.
[12]
BAYANI S, TAGHIYARI H R, PAPADOPOULOS A N. Physical and mechanical properties of thermally-modified beech wood impregnated with silver nano-suspension and their relationship with the crystallinity of cellulose[J]. Polymers, 2019, 11(10):1538.DOI: 10.3390/polym11101538.
[13]
KARIMI K, TAHERZADEH M J. A critical review of analytical methods in pretreatment of lignocelluloses:composition,imaging,and crystallinity[J]. Bioresource Technology, 2016, 200:1008-1018.DOI: 10.1016/j.biortech.2015.11.022.
[14]
江苏省林业局. 江苏省2021年林木品种审(认)定初审结果公示[EB/OL].(2021-12-08)[2024-02-28]. https://lyj.jiangsu.gov.cn/art/2021/12/8/art_7235_10185328.html
[15]
江苏省林业局. 江苏省2019年林木品种审(认)定情况公示[EB/OL].(2019-11-25)[2024-02-28]. https://lyj.jiangsu.gov.cn/art/2019/11/25/art_7235_8824366.html
[16]
江苏省林业局. 江苏省2020年林木品种审(认)定情况公示[EB/OL].(2020-12-09)[2024-02-28]. https://lyj.jiangsu.gov.cn/art/2020/12/9/art_61275_9597827.html
[17]
武艺儒, 刘静, 张欣, 等. 3种灌木直根抗剪特性及其与化学组分的关系[J]. 干旱区资源与环境, 2019, 33(4):129-133.
WU Y R, LIU J, ZHANG X, et al. Relationship between anti-shear characteristics of root and its responses to their chemical components for three shrubs[J]. Journal of Arid Land Resources and Environment, 2019, 33(4):129-133.DOI: 10.13448/j.cnki.jalre.2019.117.
[18]
国家林业和草原局. 无疵小试样木材物理力学性质试验方法第10部分:抗弯弹性模量测定:GB/T 1927.10—2021[S]. 北京: 中国标准出版社, 2021.
[19]
季必超, 薛夏, 汪佑宏, 等. 大白藤和小白藤纤维形态及主要物理力学性质[J]. 西北林学院学报, 2019, 34(3):180-184.
JI B C, XUE X, WANG Y H, et al. Fiber morphological and main physico-mechanical properties of Calamus faberii and C.balansaeanus[J]. Journal of Northwest Forestry University, 2019, 34(3):180-184.DOI: 10.3969/j.issn.1001-7461.2019.03.28.
[20]
雷世博, 丁龙朋, 李景彬, 等. 枣树修剪枝条弯曲及压缩特性研究[J]. 农机化研究, 2022, 44(5):198-203.
LEI S B, DING L P, LI J B, et al. Study on bending and compression characteristics of pruning branches of jujube[J]. Journal of Agricultural Mechanization Research, 2022, 44(5):198-203.DOI: 10.13427/j.cnki.njyi.2022.05.036.
[21]
SIEGEL C, BUCHELT B, WAGENFÜHR A. Application of the three-point bending test for small-sized wood and veneer samples[J]. Wood Material Science & Engineering, 2022, 17(3):157-162.DOI: 10.1080/17480272.2020.1814410.
[22]
薛冬梅, 刘静, 林凤友, 等. 3种植物枝条抗拉和抗弯特性研究[J]. 内蒙古农业大学学报(自然科学版), 2012, 33(4):87-90.
XUE D M, LIU J, LIN F Y, et al. Tensile and bending characteristics of 3 kinds of branches[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2012, 33(4):87-90.DOI: 10.16853/j.cnki.1009-3575.2012.04.018.
[23]
刘忠, 张素风. 制浆造纸分析与检测[M]. 2版. 北京: 中国轻工业出版社, 2020.
LIU Z, ZHANG S F. Pulp and paper testing[M]. 2nd ed. Beijing: China Light Industry Press, 2020.
[24]
王成龙. 四种植物根系剪拉组合力损伤自修复后固土特性[D]. 呼和浩特: 内蒙古农业大学, 2021.
WANG C L. Characteristics of soil consolidation after self-repair of shear-tension combined damage of four plant roots[D]. Hohhot: Inner Mongolia Agricultural University, 2021.DOI: 10.27229/d.cnki.gnmnu.2021.000042.
[25]
李坚. 木材波谱学[M]. 北京: 科学出版社, 2003.
LI J. Wood spectroscopy[M]. Beijing: Science Press, 2003.
[26]
KIJIDANI Y, TSUYAMA T, ODA H, et al. Wood density and microfibril angle from pith to bark of a sugi cultivar (Cryptomeria japonica,Japanese cedar,Tosaaka) grown in a Nelder plot[J]. Journal of Wood Science, 2022, 68(1):57.DOI: 10.1186/s10086-022-02063-0.
[27]
SALEM K S, KASERA N K, RAHMAN M A, et al. Comparison and assessment of methods for cellulose crystallinity determination[J]. Chemical Society Reviews, 2023, 52(18):6417-6446.DOI: 10.1039/D2CS00569G.
[28]
ADEKOYA M A, LIU S H, OLUYAMO S S, et al. Influence of size classifications on the crystallinity index of Albizia gummifera cellulose[J]. Heliyon, 2022, 8(12):e12019.DOI: 10.1016/j.heliyon.2022.e12019.
[29]
李坚. 木材科学[M]. 哈尔滨: 东北林业大学出版社, 1994.
LI J. Wood science[M]. Harbin: Northeast Forestry University, 1994.
[30]
李业鑫. 基于力学数值模型的青花椒枝条切割机理和切枝装置研究[D]. 重庆: 西南大学, 2023.
LI Y X. Study on branch cutting mechanism and branch cutting device of green pepper based on mechanical numerical model[D]. Chongqing: Southwest University, 2023.DOI: 10.27684/d.cnki.gxndx.2023.003277.
[31]
段涛. 基于条桑力学特性的弧形切割装置结构设计与试验[D]. 合肥: 安徽农业大学, 2022.
DUAN T. Structural design and test of arc cutting device based on mechanical properties of mulberry[D]. Hefei: Anhui Agricultural University, 2022.
[32]
王淑娟, 谢宝元. 休眠期树枝抗弯弹性模量的模型分析[J]. 北京林业大学学报, 2014, 36(6):130-134.
WANG S J, XIE B Y. Modeling analysis of the bending modulus of elasticity for branches in the period of dormancy[J]. Journal of Beijing Forestry University, 2014, 36(6):130-134.DOI: 10.13332/j.cnki.jbfu.2014.06.024.
[33]
PANSHIN A J, DE ZEEUW C. Textbook of wood technology[M]. 4th ed. New York: McGraw-Hill Book Company, 1980.
[34]
郭维俊, 王芬娥, 黄高宝, 等. 小麦茎秆力学性能与化学组分试验[J]. 农业机械学报, 2009, 40(2):110-114.
GUO W J, WANG F E, HUANG G B, et al. Experiment on mechanical properties and chemical compositions of wheat stems[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(2):110-114.
[35]
余雁, 江泽慧, 任海青, 等. 针叶材管胞纵向零距抗张强度的影响因子研究[J]. 中国造纸学报, 2007, 22(3):72-76.
YU Y, JIANG Z H, REN H Q, et al. Factors affecting longitudinal tensile strength of softwood tracheids investigated with zero-span tension[J]. Transactions of China Pulp and Paper, 2007, 22(3):72-76.DOI: 10.3321/j.issn:1000-6842.2007.03.018.
[36]
HUSSAIN S, LIU T, IQBAL N, et al. Effects of lignin,cellulose,hemicellulose,sucrose and monosaccharide carbohydrates on soybean physical stem strength and yield in intercropping[J]. Photochemical & Photobiological Sciences, 2020, 19(4):462-472.DOI: 10.1039/c9pp00369j.
[37]
王争贤, 格日乐, 崔天民, 等. 固沙先锋树种沙柳枝条力学特性及其影响因素[J]. 中国农业大学学报, 2021, 26(11):84-96.
WANG Z X, Gerile, CUI T M, et al. Mechanical properties of the branches of Salix psammophila and its influencing factors[J]. Journal of China Agricultural University, 2021, 26(11):84-96.DOI: 10.11841/j.issn.1007-4333.2021.11.08.
[38]
王争贤. 沙棘枝条和根系防风固土力学特性研究[D]. 呼和浩特: 内蒙古农业大学, 2023.
WANG Z X. Study on mechanical properties of seabuckthorn branches and roots for windbreak and soil fixation[D]. Hohhot: Inner Mongolia Agricultural University, 2023.DOI: 10.27229/d.cnki.gnmnu.2023.000837.
[39]
吕春娟, 陈丽华. 华北典型植被根系抗拉力学特性及其与主要化学成分关系[J]. 农业工程学报, 2013, 29(23):69-78.
LYU C J, CHEN L H. Relationship between root tensile mechanical properties and its main chemical components of typical tree species in north China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(23):69-78.DOI: 10.3969/j.issn.1002-6819.2013.23.010.
[40]
孙海燕, 苏明垒, 吕建雄, 等. 细胞壁微纤丝角和结晶区对木材物理力学性能影响研究进展[J]. 西北农林科技大学学报(自然科学版), 2019, 47(5):50-58.
SUN H Y, SU M L, LYU J X, et al. Research progress on effect of microfibril angle and crystalline area in cell wall on wood physical and mechanical properties[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(5):50-58.DOI: 10.13207/j.cnki.jnwafu.2019.05.007.
[41]
YU S H, LIU Z G, XU N, et al. Influencing factors for determining the crystallinity of native cellulose by X-ray diffraction[J]. Analytical Sciences, 2020, 36(8):947-951.DOI: 10.2116/analsci.19P427.
[42]
邓波, 杨万霞, 方升佐, 等. 青钱柳幼龄期生长与木材性状表现及其性状相关分析[J]. 南京林业大学学报(自然科学版), 2014, 38(5):113-117.
DENG B, YANG W X, FANG S Z, et al. Growth and wood properties of juvenile Cyclocarya paliurus,and their correlation analysis[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(5):113-117.DOI: 10.3969/j.issn.1000-2006.2014.05.022.
[43]
WALKER J C F, BUTTERFIELD B G. The importance of microfibril angle for the processing industries[J]. New Zealand Forestry, 1996, 40(4):34-40.
[44]
周贤武, 邓丽萍, 王滋, 等. 沙柳的孔隙结构、微纤丝角和纤维素结晶度研究[J]. 西北农林科技大学学报(自然科学版), 2018, 46(1):46-51.
ZHOU X W, DENG L P, WANG Z, et al. Pore structure,microfibril angle and cellulose crystallinity of Salix psammophila[J]. Journal of Northwest A & F University (Natural Science Edition), 2018, 46(1):46-51.DOI: 10.13207/j.cnki.jnwafu.2018.01.007.
[45]
WANG X, ZHAO W W, ZHANG Y L, et al. Exploring wood micromechanical structure:impact of microfibril angle and crystallinity on cell wall strength[J]. Journal of Building Engineering, 2024, 90:109452.DOI: 10.1016/j.jobe.2024.109452.
[46]
杨欣, 刘杏娥, 杨淑敏, 等. 4种竹材微纤丝角变异及其对抗弯性质的影响[J]. 西北林学院学报, 2021, 36(2):193-197,230.
YANG X, LIU X E, YANG S M, et al. Variation of microfibril angle of four bamboo species and its effect on bending properties[J]. Journal of Northwest Forestry University, 2021, 36(2):193-197,230.DOI: 10.3969/j.issn.1001-7461.2021.02.28.

基金

南京市科技发展计划(202306003)

编辑: 孟苗婧
PDF(1929 KB)

Accesses

Citation

Detail

段落导航
相关文章

/