PDF(3569 KB)
海拔变化条件下针阔混交林根际土壤活性有机碳特征及影响因素
罗梅, 张金池, 孟苗婧, 姜姜, 林杰, 程子翰, 刘胜龙, 方向华
南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 133-141.
PDF(3569 KB)
PDF(3569 KB)
海拔变化条件下针阔混交林根际土壤活性有机碳特征及影响因素
Characteristics and influencing factors of active organic carbon in rhizosphere soil of mixed forest under altitude change
【目的】 探究浙江百山祖国家级自然保护区内不同海拔的杉木-针阔混交林根际土壤有机碳含量垂直分布差异,明确海拔变化条件下土壤有机碳活性组分的影响因素。【方法】以保护区内不同海拔(600、800、1 000、1 200 m)的杉木-针阔混交林为研究对象,在每个海拔林分设置3个样地,测定每个样地内0~20 cm土层土壤理化性质[土壤总有机碳(TOC)、全氮(TN)、全磷(TP)、土壤pH]、土壤酶活性及土壤有机碳组分含量等指标,分析根际土壤有机碳沿海拔的变化特征及影响因素,并计算土壤碳库管理指数(CMI)。【结果】杉木-针阔混交林根际土壤TOC、TN、TP含量随着海拔的上升逐渐增大,颗粒有机碳(POC)与总有机碳变化一致;易氧化有机碳(ROC)、矿质结合态有机碳(MOC)含量随海拔先上升后下降;根际土壤β-葡萄糖苷酶活性随海拔升高呈增加趋势;与海拔600 m处相比,其他3个海拔土壤CMI显著增加。根际土壤TOC、POC、ROC与TN含量呈显著正相关,与β-葡萄糖苷酶及多酚氧化酶活性呈显著正相关。根际和海拔的交互效应对土壤有机碳组分及酶活性无显著影响。冗余分析表明,TN是影响根际土壤活性有机碳组分及CMI的主要因子。【结论】海拔形成的小气候及土壤理化性质的改变是造成根际土壤活性有机碳组成海拔差异的重要因素,土壤氮含量是影响根际土壤活性有机碳的主导因子,高海拔区域内土壤碳库质量较高,应加强对高海拔地区植被的保护。
【Objective】 This research aims to investigate the differences in vertical distribution of rhizosphere soil organic carbon content in fir coniferous-broadleaved mixed forests at different altitudes in Baishanzu National Nature Reserve, Zhejiang Province, and to clarify the factors influencing the active components of organic carbon under altitudinal changes.【Method】The study was carried out in fir coniferous-broadleaved mixed forests at different altitude gradients (600, 800, 1 000 and 1 200 m) in the park, and three sample plots were set up in each altitude gradient. Soil properties [total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP) and soil pH], soil enzyme activity and soil organic carbon content in soil layers of 0-20 cm were measured and analyzed in each sample plot. Analyzed the distribution characteristics of rhizosphere soil organic carbon along the altitude and the influencing factors, and calculated the soil carbon pool management index (CMI).【Result】TOC, TN and TP contents of the rhizosphere soil increased gradually with the rise of altitude, and the particulate organic carbon (POC) and TOC varied in the same way; the content of readily oxidizable organic carbon (ROC) and mineral-bound organic carbon (MOC) firstly increased and then decreased. The β-glucosidase activity of rhizosphere soil tended to increase with elevation. The soil carbon pool management index (CMI) of the other three elevation gradients significantly increased. The TOC, POC and ROC contents of rhizosphere soil were significantly positively correlated with TN, β-glucosidase and polyphenol oxidase were significantly positively correlated with TOC. The interaction effects of rhizosphere and elevation had no significant effect on soil organic carbon fractions and enzyme activities. Redundancy analysis showed that TN was the main factor affecting active organic carbon fractions and CMI. 【Conclusion】Climate and soil physicochemical changes brought about by altitude changes are important factors affecting the altitudinal differences in rhizosphere soil organic carbon, and soil nitrogen content is the dominant factor affecting active organic carbon in the rhizosphere soil.The quality of soil carbon pool in high-altitude areas is high, and the protection of vegetation in high-altitude areas should be strengthened.
海拔梯度 / 碳组分 / 酶活性 / 针阔混交林 / 根际土壤
altitude gradient / carbon component / enzymatic activity / coniferous-broadleaved mixed forests / rhizosphere soil
| [1] |
|
| [2] |
|
| [3] |
朱浩宇, 王子芳, 陆畅, 等. 缙云山5种植被下土壤活性有机碳及碳库变化特征[J]. 土壤, 2021, 53(2): 354-360.
|
| [4] |
盖旭, 张健, 吕衡, 等. 雷竹林下养鸡对土壤活性有机碳及碳库管理指数的影响[J]. 林业科学, 2023, 59(12): 78-86.
|
| [5] |
马进鹏, 庞丹波, 陈林, 等. 贺兰山不同海拔植被下土壤微生物群落结构特征[J]. 生态学报, 2022, 42(2): 667-676.
|
| [6] |
习丹, 余泽平, 熊勇, 等. 江西官山常绿阔叶林土壤有机碳组分沿海拔的变化[J]. 应用生态学报, 2020, 31(10): 3349-3356.
|
| [7] |
吴玥, 赵盼盼, 林开淼, 等. 戴云山黄山松林土壤碳组分的海拔变化特征及影响因素[J]. 生态学报, 2020, 40(16): 5761-5770.
|
| [8] |
吴雅琼, 刘国华, 傅伯杰, 等. 森林生态系统土壤CO2释放随海拔梯度的变化及其影响因子[J]. 生态学报, 2007, 27(11): 4678-4685.
|
| [9] |
张鹏, 张涛, 陈年来. 祁连山北麓山体垂直带土壤碳氮分布特征及影响因素[J]. 应用生态学报, 2009, 20(3): 51-524.
|
| [10] |
徐侠, 陈月琴, 汪家社, 等. 武夷山不同海拔高度土壤活性有机碳变化[J]. 应用生态学报, 2008, 19(3): 539-544.
|
| [11] |
|
| [12] |
宫立, 刘国华, 李宗善, 等. 川西卧龙岷江冷杉林土壤有机碳组分与氮素关系随海拔梯度的变化特征[J]. 生态学报, 2017, 37(14): 4696-4705.
|
| [13] |
|
| [14] |
加鹏华, 李春雨, 尹海魁, 等. 太行山区不同海拔梯度土壤有机碳库及组分变化特征[J]. 林业与生态科学, 2021, 36(3): 269-276.
|
| [15] |
王磊, 刘晴廙, 关庆伟, 等. 平原沙土区不同林分类型下土壤有机碳库特征及其影响因子[J]. 林业科学研究, 2023, 36(4): 72-81.
|
| [16] |
孟苗婧, 郭晓平, 张金池, 等. 海拔变化对凤阳山针阔混交林地土壤微生物群落的影响[J]. 生态学报, 2018, 38(19): 7057-7065.
|
| [17] |
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
|
| [18] |
张仕吉, 项文化, 孙伟军, 等. 中亚热带土地利用方式对土壤易氧化有机碳及碳库管理指数的影响[J]. 生态环境学报, 2016, 25(6): 911-919.
|
| [19] |
赵友朋. 凤阳山主要林分类型土壤团聚体及其稳定性研究[D]. 南京: 南京林业大学, 2018.
|
| [20] |
关松荫. 土壤酶及其研究法[M]. 北京: 中国农业出版社, 1986.
|
| [21] |
|
| [22] |
张学利, 杨树军, 张百习. 我国林木根际土壤研究进展[J]. 沈阳农业大学学报, 2002, (6): 461-465.
|
| [23] |
张参参, 吴刚, 刘斌, 等. 江西九连山不同海拔梯度土壤有机碳的变异规律[J]. 北京林业大学学报, 2019, 41(2): 19-28.
|
| [24] |
|
| [25] |
杨丽韫, 罗天祥, 吴松涛. 长白山原始阔叶红松林不同演替阶段地下生物量与碳、氮贮量的比较[J]. 应用生态学报, 2005, 16(7): 1195-1199.
|
| [26] |
习丹, 旷远文. 广州城郊森林公园常绿阔叶林土壤有机碳及组分特征[J]. 生态科学, 2019, 38(1): 226-232.
|
| [27] |
邹珊, 段文标, 王亚飞, 等. 阔叶红松林皆伐后不同恢复方式下土壤有机碳形态与矿化速率变化[J]. 森林工程, 2024, 40(6):79-90.
|
| [28] |
|
| [29] |
|
| [30] |
|
/
| 〈 |
|
〉 |