海拔变化条件下针阔混交林根际土壤活性有机碳特征及影响因素

罗梅, 张金池, 孟苗婧, 姜姜, 林杰, 程子翰, 刘胜龙, 方向华

南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 133-141.

PDF(3569 KB)
PDF(3569 KB)
南京林业大学学报(自然科学版) ›› 2026, Vol. 50 ›› Issue (1) : 133-141. DOI: 10.12302/j.issn.1000-2006.202403011
研究论文

海拔变化条件下针阔混交林根际土壤活性有机碳特征及影响因素

作者信息 +

Characteristics and influencing factors of active organic carbon in rhizosphere soil of mixed forest under altitude change

Author information +
文章历史 +

摘要

【目的】 探究浙江百山祖国家级自然保护区内不同海拔的杉木-针阔混交林根际土壤有机碳含量垂直分布差异,明确海拔变化条件下土壤有机碳活性组分的影响因素。【方法】以保护区内不同海拔(600、800、1 000、1 200 m)的杉木-针阔混交林为研究对象,在每个海拔林分设置3个样地,测定每个样地内0~20 cm土层土壤理化性质[土壤总有机碳(TOC)、全氮(TN)、全磷(TP)、土壤pH]、土壤酶活性及土壤有机碳组分含量等指标,分析根际土壤有机碳沿海拔的变化特征及影响因素,并计算土壤碳库管理指数(CMI)。【结果】杉木-针阔混交林根际土壤TOC、TN、TP含量随着海拔的上升逐渐增大,颗粒有机碳(POC)与总有机碳变化一致;易氧化有机碳(ROC)、矿质结合态有机碳(MOC)含量随海拔先上升后下降;根际土壤β-葡萄糖苷酶活性随海拔升高呈增加趋势;与海拔600 m处相比,其他3个海拔土壤CMI显著增加。根际土壤TOC、POC、ROC与TN含量呈显著正相关,与β-葡萄糖苷酶及多酚氧化酶活性呈显著正相关。根际和海拔的交互效应对土壤有机碳组分及酶活性无显著影响。冗余分析表明,TN是影响根际土壤活性有机碳组分及CMI的主要因子。【结论】海拔形成的小气候及土壤理化性质的改变是造成根际土壤活性有机碳组成海拔差异的重要因素,土壤氮含量是影响根际土壤活性有机碳的主导因子,高海拔区域内土壤碳库质量较高,应加强对高海拔地区植被的保护。

Abstract

【Objective】 This research aims to investigate the differences in vertical distribution of rhizosphere soil organic carbon content in fir coniferous-broadleaved mixed forests at different altitudes in Baishanzu National Nature Reserve, Zhejiang Province, and to clarify the factors influencing the active components of organic carbon under altitudinal changes.【Method】The study was carried out in fir coniferous-broadleaved mixed forests at different altitude gradients (600, 800, 1 000 and 1 200 m) in the park, and three sample plots were set up in each altitude gradient. Soil properties [total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP) and soil pH], soil enzyme activity and soil organic carbon content in soil layers of 0-20 cm were measured and analyzed in each sample plot. Analyzed the distribution characteristics of rhizosphere soil organic carbon along the altitude and the influencing factors, and calculated the soil carbon pool management index (CMI).【Result】TOC, TN and TP contents of the rhizosphere soil increased gradually with the rise of altitude, and the particulate organic carbon (POC) and TOC varied in the same way; the content of readily oxidizable organic carbon (ROC) and mineral-bound organic carbon (MOC) firstly increased and then decreased. The β-glucosidase activity of rhizosphere soil tended to increase with elevation. The soil carbon pool management index (CMI) of the other three elevation gradients significantly increased. The TOC, POC and ROC contents of rhizosphere soil were significantly positively correlated with TN, β-glucosidase and polyphenol oxidase were significantly positively correlated with TOC. The interaction effects of rhizosphere and elevation had no significant effect on soil organic carbon fractions and enzyme activities. Redundancy analysis showed that TN was the main factor affecting active organic carbon fractions and CMI. 【Conclusion】Climate and soil physicochemical changes brought about by altitude changes are important factors affecting the altitudinal differences in rhizosphere soil organic carbon, and soil nitrogen content is the dominant factor affecting active organic carbon in the rhizosphere soil.The quality of soil carbon pool in high-altitude areas is high, and the protection of vegetation in high-altitude areas should be strengthened.

关键词

海拔梯度 / 碳组分 / 酶活性 / 针阔混交林 / 根际土壤

Key words

altitude gradient / carbon component / enzymatic activity / coniferous-broadleaved mixed forests / rhizosphere soil

引用本文

导出引用
罗梅, 张金池, 孟苗婧, . 海拔变化条件下针阔混交林根际土壤活性有机碳特征及影响因素[J]. 南京林业大学学报(自然科学版). 2026, 50(1): 133-141 https://doi.org/10.12302/j.issn.1000-2006.202403011
LUO Mei, ZHANG Jinchi, MENG Miaojing, et al. Characteristics and influencing factors of active organic carbon in rhizosphere soil of mixed forest under altitude change[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2026, 50(1): 133-141 https://doi.org/10.12302/j.issn.1000-2006.202403011
中图分类号: S714   

参考文献

[1]
ELZEIN A, BALESDENT J. Mechanistic simulation of vertical distribution of carbon concentrations and residence times in soils[J]. Soil Science Society of America Journal, 1995(59): 1328-1335. DOI: 10.2136/sssaj1995.03615995005900050019x.
[2]
SIX J, CONANT R T, PAUL E A, et al. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2): 155-176. DOI: 10.1023/A:1016125726789.
[3]
朱浩宇, 王子芳, 陆畅, 等. 缙云山5种植被下土壤活性有机碳及碳库变化特征[J]. 土壤, 2021, 53(2): 354-360.
ZHU H Y, WANG Z F, LU C, et al. Variation characteristics of soil active organic carbon and carbon pools under five vegetation types in Jinyun Mountain[J]. Soils, 2021, 53(2): 354-360. DOI: 10.13758/j.cnki.tr.2021.02.019.
[4]
盖旭, 张健, 吕衡, 等. 雷竹林下养鸡对土壤活性有机碳及碳库管理指数的影响[J]. 林业科学, 2023, 59(12): 78-86.
GAI X, ZHANG J, LV H, et al. Effects of chicken farming on soil active organic carbon and carbon pool management index in the Lei bamboo (Phyllostachys praecox) forest[J]. Scientia Silvae Sinicae, 2023, 59(12): 78-86. DOI: 10.11707/j.1001-7488.LYKX20220160.
[5]
马进鹏, 庞丹波, 陈林, 等. 贺兰山不同海拔植被下土壤微生物群落结构特征[J]. 生态学报, 2022, 42(2): 667-676.
MA J P, PANG D B, CHEN L, et al. Characteristics of soil microbial community structure under vegetation at different altitudes in Helan Mountains[J]. Acta Ecologica Sinica, 2022, 42 (2): 667-676. DOI: 10.5846/stxb202101150162.
[6]
习丹, 余泽平, 熊勇, 等. 江西官山常绿阔叶林土壤有机碳组分沿海拔的变化[J]. 应用生态学报, 2020, 31(10): 3349-3356.
XI D, YU Z P, XIONG Y, et al. Altitudinal changes of soil organic carbon fractions of evergreen broadleaved forests in Guanshan Mountain, Jiangxi, China[J]. Chinese Journal of Applied Ecology, 2020, 31(10): 3349-3356. DOI: 10.13287/j.1001-9332.202010.009.
[7]
吴玥, 赵盼盼, 林开淼, 等. 戴云山黄山松林土壤碳组分的海拔变化特征及影响因素[J]. 生态学报, 2020, 40(16): 5761-5770.
WU Y, ZHAO P P, LIN K M, et al. Elevation gradient characteristics and impact factors of soil carbon fractions in the Pinus taiwanensis Hayata forests of Daiyun Mountain[J]. Acta Ecologica Sinica, 2020, 40(16): 5761-5770. DOI: 10.5846/stxb201908161713.
[8]
吴雅琼, 刘国华, 傅伯杰, 等. 森林生态系统土壤CO2释放随海拔梯度的变化及其影响因子[J]. 生态学报, 2007, 27(11): 4678-4685.
WU Y Q, LIU G H, FU B J, et al. Soil CO2 emission distribution along an elevation gradient and the controlling factors in the forest ecosystem[J]. Acta Ecologica Sinica, 2007, 27(11):4678-4685.
[9]
张鹏, 张涛, 陈年来. 祁连山北麓山体垂直带土壤碳氮分布特征及影响因素[J]. 应用生态学报, 2009, 20(3): 51-524.
ZHANG P, ZHANG T, CHEN N L. Vertical distribution patterns of soil organic carbon and total nitrogen and related affecting factors along northern slope of Qilian Mountains[J]. Chinese Journal of Applied Ecology, 2009, 20(3): 51-524. DOI: 10.13287/j.1001-9332.2009.0105.
[10]
徐侠, 陈月琴, 汪家社, 等. 武夷山不同海拔高度土壤活性有机碳变化[J]. 应用生态学报, 2008, 19(3): 539-544.
XU X, CHEN Y Q, WANG J S, et al. Variations of soil labile organic carbon along an altitude gradient in Wuyi Mountain[J]. Chinese Journal of Applied Ecology, 2008, 19 (3): 539-544. DOI: 10.13287/j.1001-9332.2008.0125.
[11]
ZHANG M, ZHANG X K, LIANG W J, et al. Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai Mountain, China[J]. Pedosphere, 2011, 21(5): 615-620. DOI: 10.1016/S1002-0160(11)60163-X.
[12]
宫立, 刘国华, 李宗善, 等. 川西卧龙岷江冷杉林土壤有机碳组分与氮素关系随海拔梯度的变化特征[J]. 生态学报, 2017, 37(14): 4696-4705.
GONG L, LIU G H, LI Z S, et al. Altitudinal changes in nitrogen, organic carbon, and its labile fractions in different soil layers in an Abies faxoniana forest in Wolong[J]. Acta Ecologica Sinica, 2017, 37(14): 4696-4705. DOI: 10.5846/stxb201604060628.
[13]
ZHANG B, YANG Y A, ZEPP H. Effect of vegetation restoration on soil and water erosion and nutrient losses of a severely eroded clayey plinthudult in southeastern China[J]. Catena, 2004, 57(1): 77-90. DOI: 10.1016/j.catena.2003.07.001.
[14]
加鹏华, 李春雨, 尹海魁, 等. 太行山区不同海拔梯度土壤有机碳库及组分变化特征[J]. 林业与生态科学, 2021, 36(3): 269-276.
JIA P H, LI C Y, YIN H K, et al. Changes of soil organic carbon pools and components in different altitudinal gradients in Taihang Mountain[J]. Forestry and Ecological Sciences, 2021, 36(3): 269-276. DOI: 10.13320/j.cnki.hjfor.2021.0038.
[15]
王磊, 刘晴廙, 关庆伟, 等. 平原沙土区不同林分类型下土壤有机碳库特征及其影响因子[J]. 林业科学研究, 2023, 36(4): 72-81.
WANG L, LIU Q Y, GUAN Q W, et al. Characteristics of soil organic carbon pools and their influencing factors under different stand types in the Plain Sandy Area[J]. Forest Research, 2023, 36(4): 72-81. DOI: 10.12403/j.1001-1498.20220553.
[16]
孟苗婧, 郭晓平, 张金池, 等. 海拔变化对凤阳山针阔混交林地土壤微生物群落的影响[J]. 生态学报, 2018, 38(19): 7057-7065.
MENG M J, GUO X P, ZHANG J C, et al. Effects of altitude on soil microbial community in Fengyang Mountain coniferous and broad-leaved forest[J]. Acta Ecologica Sinica, 2018, 38(19): 7057-7065. DOI: 10.5846/stxb201708211503.
[17]
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil agrochemical analysis[M]. 3rd ed. Beijing: China Agricultural Press, 2000.
[18]
张仕吉, 项文化, 孙伟军, 等. 中亚热带土地利用方式对土壤易氧化有机碳及碳库管理指数的影响[J]. 生态环境学报, 2016, 25(6): 911-919.
ZHANG S J, XIANG W H, SUN W J, et al. Effects of land use on soil readily oxidized carbon and carbon management index in Hilly Region of central Hunan Province[J]. Ecology and Environmental Sciences, 2016, 25(6): 911-919. DOI: 10.16258/j.cnki.1674-5906.2016.06.001.
[19]
赵友朋. 凤阳山主要林分类型土壤团聚体及其稳定性研究[D]. 南京: 南京林业大学, 2018.
ZHAO Y P. Study on soil aggregates and their stability of main forest types in Fengyang Moutain[D]. Nanjing: Nanjing Forestry University, 2018.
[20]
关松荫. 土壤酶及其研究法[M]. 北京: 中国农业出版社, 1986.
GUAN S Y. Soil enzymes and their research method[M]. Beijing: China Agricultural Press, 1986.
[21]
BLAIR G J, LEFORY R D B, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46: 1459-1466. DOI: 10.1071/AR9951459.
[22]
张学利, 杨树军, 张百习. 我国林木根际土壤研究进展[J]. 沈阳农业大学学报, 2002, (6): 461-465.
ZHANG X L, YANG S J, ZHANG B X. A summary of studies on rhizosphere soil of trees in China[J]. Journal of Shenyang Agricultural University, 2002, (6): 461-465. DOI: 10.3969/j.issn.1000-1700.2002.06.017.
[23]
张参参, 吴刚, 刘斌, 等. 江西九连山不同海拔梯度土壤有机碳的变异规律[J]. 北京林业大学学报, 2019, 41(2): 19-28.
ZHANG C C, WU G, LIU B. et al. Variations in soil organic carbon along an altitudinal gradient of Jiulian Mountain in Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 19-28. DOI: 10.13332/j.1000-1522.20180383.
[24]
LONGBOTTOM T L, TOWNSEND-SMALL A, OWEN L A, et al. Climatic and topographic controls on soil organic matter storage and dynamics in the Indian Himalaya: potential carbon cycl-climate change feed backs[M]. Catena, 2014, 119: 125-135. DOI: 10.1016/j.catena.2014.03.002.
[25]
杨丽韫, 罗天祥, 吴松涛. 长白山原始阔叶红松林不同演替阶段地下生物量与碳、氮贮量的比较[J]. 应用生态学报, 2005, 16(7): 1195-1199.
YANG L Y, LUO T X, WU S T. Root biomass and underground C and N storage of primitive Korean pine and broad-leaved climax forest in Changbai Mountains at its different succession stages[J]. Chinese Journal of Applied Ecology, 2005, 16(7): 1195-1199. DOI: 10.13287/j.1001-9332.2005.0124.
[26]
习丹, 旷远文. 广州城郊森林公园常绿阔叶林土壤有机碳及组分特征[J]. 生态科学, 2019, 38(1): 226-232.
XI D, KUANG Y W. Characteristics of soil organic carbon and its components in evergreen broadleaved forests of suburban forest parks in Guangzhou[J]. Ecological Science, 2019, 38(1): 226-232. DOI: 10.14108/j.cnki.1008-8873.2019.01.029.
[27]
邹珊, 段文标, 王亚飞, 等. 阔叶红松林皆伐后不同恢复方式下土壤有机碳形态与矿化速率变化[J]. 森林工程, 2024, 40(6):79-90.
ZOU S, DUAN W B, WANG Y F, et al. Changes of Soil organic carbon morphology and mineralization rate under different recovery methods of broad-leaved Korean pine forest[J]. Forest Engineering, 2024, 40(6):79-90.DOI:10. 7525/j. issn. 1006-8023. 2024. 06. 008
[28]
ANDERSON T H, DOMSCH K H. Ratios of microbial biomass carbon to total organic carbon in arable soils[J]. Soil Biology and Biochemistry, 1989, 21(4): 471-479. DOI: 10.1016/0038-0717(89)90117-X.
[29]
YANG H, ZHANG P P, WANG Q T, et al. Temperature rather than N availability determines root exudation of alpine coniferous forests on the eastern Tibetan Plateau along elevation gradients[J]. Tree Physiology, 2023, 43(9): 1479-1492. DOI:10.1093/TREEPHYS/TPAD067.
[30]
HENDRICK R L, PREGITZER K S. Temporal and depth-related patterns of fine root dynamics in northern hardwood forests[J]. Journal of Ecology, 1996, 84(2): 167-176. DOI: 10.2307/2261352.

基金

百山祖国家公园科学研究项目(2021ZDLY01)
百山祖国家公园科学研究项目(2021KFLY05)
百山祖国家公园科学研究项目(2022JBGS03)

责任编辑: 王国栋
PDF(3569 KB)

Accesses

Citation

Detail

段落导航
相关文章

/